
Chapter 8

Modelling long-run relationship in finance
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Stationarity and Unit Root Testing Why do we
need to test for Non-Stationarity?

The stationarity or otherwise of a series can strongly influence its
behaviour and properties - e.g. persistence of shocks will be infinite
for nonstationary series

Spurious regressions. If two variables are trending over time, a
regression of one on the other could have a high R2 even if the two
are totally unrelated

If the variables in the regression model are not stationary, then it can
be proved that the standard assumptions for asymptotic analysis will
not be valid. In other words, the usual “t-ratios” will not follow a
t-distribution, so we cannot validly undertake hypothesis tests about
the regression parameters.
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Value of R2 for 1000 Sets of Regressions of a
Non-stationary Variable on another Independent
Non-stationary Variable
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Value of t-ratio on Slope Coefficient for 1000 Sets
of Regressions of a Non-stationary Variable on
another Independent Non-stationary Variable
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Two types of Non-Stationarity

Various definitions of non-stationarity exist

In this chapter, we are really referring to the weak form or covariance
stationarity

There are two models which have been frequently used to characterise
non-stationarity: the random walk model with drift:

yt = µ+ yt−1 + ut (1)

and the deterministic trend process:

yt = α + βt + ut (2)

where ut is iid in both cases.
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Stochastic Non-Stationarity

Note that the model (1) could be generalised to the case where yt is
an explosive process:

yt = µ+ φyt−1 + ut

where φ > 1.

Typically, the explosive case is ignored and we use φ = 1 to
characterise the non-stationarity because

– φ > 1 does not describe many data series in economics and finance.

– φ > 1 has an intuitively unappealing property: shocks to the system
are not only persistent through time, they are propagated so that a
given shock will have an increasingly large influence.
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Stochastic Non-stationarity: The Impact of Shocks

To see this, consider the general case of an AR(1) with no drift:

yt = φyt−1 + ut (3)

Let φ take any value for now.

We can write:

yt−1 = φyt−2 + ut−1

yt−2 = φyt−3 + ut−2

Substituting into (3) yields

yt = φ(φyt−2 + ut−1) + ut

= φ2yt−2 + φut−1 + ut
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Stochastic Non-stationarity: The Impact of Shocks
(Cont’d)

Substituting again for yt−2

yt = φ2(φyt−3 + ut−2) + φut−1 + ut

= φ3yt−3 + φ2ut−2 + φut−1 + ut

Successive substitutions of this type lead to:

yt = φT y0 + φut−1 + φ2ut−2 + φ3ut−3 + · · ·
+φTu0 + ut

‘Introductory Econometrics for Finance’ c© Chris Brooks 2013 8



The Impact of Shocks for Stationary and
Non-stationary Series

We have 3 cases:

(1) φ < 1⇒ φT → 0 as T →∞
So the shocks to the system gradually die away.

(2) φ = 1 ⇒ φT = 1 ∀T
So shocks persist in the system and never die away. We obtain

yt = y0 +
∞∑
t=0

ut as T→∞

So the current value of y is just an infinite sum of past shocks plus
some starting value of y0.

(3) φ > 1. Now given shocks become more influential as time goes on,
since if φ > 1, φ3 > φ2 > φ, etc.
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Detrending a Stochastically Non-stationary Series

Going back to our 2 characterisations of non-stationarity, the r.w.
with drift:

yt = µ+ yt−1 + ut (4)

and the trend-stationary process

yt = α + βt + ut (5)

The two will require different treatments to induce stationarity. The
second case is known as deterministic non-stationarity and what is
required is detrending.
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Detrending a Stochastically Non-stationary Series
(Cont’d)

The first case is known as stochastic non-stationarity, where there is a
stochastic trend in the data. Letting ∆yt = yt − yt−1 and Lyt = yt−1
so that (1− L) yt = yt − Lyt = yt − yt−1. If (4) is taken and yt−1
subtracted from both sides

yt − yt−1 = µ+ ut

∆ yt = µ+ ut

We say that we have induced stationarity “by differencing one”.
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Detrending a Series: Using the Right Method

Although trend-stationary and difference-stationary series are both
“trending” over time, the correct approach needs to be used in each
case.

If we first difference the trend-stationary series, it would “remove” the
non-stationarity, but at the expense on introducing an MA(1)
structure into the errors.

Conversely if we try to detrend a series which has stochastic trend,
then we will not remove the non-stationarity.

We will now concentrate on the stochastic non-stationarity model
since deterministic non-stationarity does not adequately describe most
series in economics or finance.
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Sample Plots for various Stochastic Processes: A
White Noise Process
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Sample Plots for various Stochastic Processes: A
Random Walk and a Random Walk with Drift
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Sample Plots for various Stochastic Processes: A
Deterministic Trend Process
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Autoregressive Processes with differing values of φ
(0, 0.8, 1)
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Definition of Non-Stationarity

Consider again the simplest stochastic trend model:

yt = yt−1 + ut

or

∆yt = ut

We can generalise this concept to consider the case where the series
contains more than one “unit root”. That is, we would need to apply
the first difference operator, ∆, more than once to induce stationarity.

Definition

If a non-stationary series, yt must be differenced d times before it
becomes stationary, then it is said to be integrated of order d . We
write yt ∼ I(d). So if yt ∼ I(d) then ∆dyt ∼ I(0).

An I(0) series is stationary
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Definition of Non-Stationarity (Cont’d)

An I(1) series contains one unit root

yt = yt−1 + ut
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Characteristics of I(0), I(1) and I(2) Series

An I(2) series contains two unit roots and so would require
differencing twice to induce stationarity.

I(1) and I(2) series can wander a long way from their mean value and
cross this mean value rarely.

I(0) series should cross the mean frequently.

The majority of economic and financial series contain a single unit
root, although some are stationary and consumer prices have been
argued to have 2 unit roots.
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How do we test for a unit root?

The early and pioneering work on testing for a unit root in time series
was done by Dickey and Fuller (Dickey and Fuller 1979, Fuller 1976).
The basic objective of the test is to test the null hypothesis that φ
=1 in:

yt = φyt−1 + ut

against the one-sided alternative φ < 1. So we have

H0: series contains a unit root
versus H1: series is stationary.

We usually use the regression:

∆yt = ψyt−1 + ut

so that a test of φ = 1 is equivalent to a test of ψ = 0 (since φ− 1
= ψ).
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Different forms for the DF Test Regressions

Dickey Fuller tests are also known as τ tests: τ , τµ, ττ .

The null (H0) and alternative (H1) models in each case are

i. H0: yt = yt−1 + ut
H1: yt = φyt−1 + ut , φ < 1

This is a test for a random walk against a stationary autoregressive
process of order one (AR(1))

ii. H0: yt = yt−1 + ut
H1: yt = φyt−1 + µ+ ut , φ < 1

This is a test for a random walk against a stationary AR(1) with drift.

iii. H0: yt = yt−1 + ut
H1: yt = φyt−1 + µ+ λt + ut , φ < 1

This is a test for a random walk against a stationary AR(1) with drift
and a time trend.
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Computing the DF Test Statistic

We can write

∆yt = ut

where ∆yt = yt − yt−1, and the alternatives may be expressed as

∆yt = ψyt−1 + µ+ λt + ut

with µ = λ = 0 in case i), and λ = 0 in case ii) and ψ = φ− 1. In
each case, the tests are based on the t-ratio on the yt−1 term in the
estimated regression of ∆yt on yt−1, plus a constant in case ii) and a
constant and trend in case iii). The test statistics are defined as

test statistic =
ψ̂

ˆSE ( ˆ )ψ
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Computing the DF Test Statistic (Cont’d)

The test statistic does not follow the usual t-distribution under the
null, since the null is one of non-stationarity, but rather follows a
non-standard distribution. Critical values are derived from Monte
Carlo experiments in, for example, Fuller (1976). Relevant examples
of the distribution are shown in table 4.1 below
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Critical Values for the DF Test

Significance level 10% 5% 1%

CV for constant but no trend −2.57 −2.86 −3.43
CV for constant and trend −3.12 −3.41 −3.96

The null hypothesis of a unit root is rejected in favour of the stationary
alternative in each case if the test statistic is more negative than the
critical value.
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The Augmented Dickey Fuller (ADF) Test

The tests above are only valid if ut is white noise. In particular, ut
will be autocorrelated if there was autocorrelation in the dependent
variable of the regression (∆yt) which we have not modelled. The
solution is to “augment” the test using p lags of the dependent
variable. The alternative model in case (i) is now written:

∆yt = ψyt−1 +

p∑
i=1

αi∆yt−i + ut

The same critical values from the DF tables are used as before. A
problem now arises in determining the optimal number of lags of the
dependent variable

There are 2 ways

– use the frequency of the data to decide

– use information criteria
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Testing for Higher Orders of Integration

Consider the simple regression:

∆yt = ψyt−1 + ut

We test that H0: ψ = 0 vs. H1: ψ < 0.

If H0 is rejected, we simply conclude that yt does not contain a unit
root.

But what do we conclude if H0 is not rejected? The series contains a
unit root, but is that it? No! What if yt ∼ I(2)? We would still not
have rejected. So we now need to test

H0 : yt ∼ I(2) vs. H1 : yt ∼ I(1)

We would continue to test for a further unit root until we rejected H0.
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Testing for Higher Orders of Integration (Cont’d)

We now regress ∆2yt on ∆yt−1 (plus lags of ∆2yt if necessary).

Now we test H0: ∆yt ∼ I (1) which is equivalent to H0: yt ∼ I (2).

So in this case, if we do not reject (unlikely), we conclude that yt is
at least I(2).
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The Phillips-Perron Test

Phillips and Perron have developed a more comprehensive theory of
unit root nonstationarity. The tests are similar to ADF tests, but they
incorporate an automatic correction to the DF procedure to allow for
autocorrelated residuals.

The tests usually give the same conclusions as the ADF tests, and the
calculation of the test statistics is complex.
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Criticism of Dickey-Fuller and Phillips-Perron-type
tests

Main criticism is that the power of the tests is low if the process is
stationary but with a root close to the non-stationary boundary.

e.g. the tests are poor at deciding if φ=1 or φ=0.95,

especially with small sample sizes.

If the true data generating process (dgp) is

yt = 0.95yt−1 + ut

then the null hypothesis of a unit root should be rejected.

One way to get around this is to use a stationarity test as well as the
unit root tests we have looked at.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2013 29



Stationarity tests

Stationarity tests have

H0: yt is stationary
versus H1: yt is non-stationary

So that by default under the null the data will appear stationary.

One such stationarity test is the KPSS test (Kwaitowski, Phillips,
Schmidt and Shin, 1992).

Thus we can compare the results of these tests with the ADF/PP
procedure to see if we obtain the same conclusion.

A Comparison
ADF / PP KPSS
H0: yt ∼ I (1) H0: yt ∼ I (0)
H1: yt ∼ I (0) H0: yt ∼ I (1)
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Stationarity tests (Cont’d)

4 possible outcomes

Reject H0 and Do not reject H0

Do not Reject H0 and Reject H0

Reject H0 and Reject H0

Do not reject H0 and Do not reject H0
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Cointegration: An Introduction

In most cases, if we combine two variables which are I(1), then the
combination will also be I(1)

More generally, if we combine variables with differing orders of
integration, the combination will have an order of integration equal to
the largest. i.e.,

if Xi ,t ∼ I(di ) for i = 1, 2, 3, . . . , k

so we have k variables each integrated of order di .

Let

zt =
k∑

i=1

αiXi ,t (6)

Then zt ∼ I(max di ).
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Linear Combinations of Non-stationary Variables

Rearranging (6), we can write

X1,t =
k∑

i=2

βiXi ,t + z ′t

where βi = − αi
α1
, z ′t = zt

α1
, i = 2, . . . , k .

This is just a regression equation.

But the disturbances would have some very undesirable properties: z ′t
is not stationary and is autocorrelated if all of the Xi are I(1).

We want to ensure that the disturbances are I(0). Under what
circumstances will this be the case?
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Definition of Cointegration (Engle & Granger,
1987)

Let zt be a k × 1 vector of variables, then the components of zt are
cointegrated of order (d,b) if

i. All components of zt are I(d)

ii. There is at least one vector of coefficients α such that

α′zt ∼ I(d − b)

Many time series are non-stationary but “move together” over time.

If variables are cointegrated, it means that a linear combination of
them will be stationary.

There may be up to r linearly independent cointegrating relationships
(where r ≤ k − 1), also known as cointegrating vectors. r is also
known as the cointegrating rank of zt .

A cointegrating relationship may also be seen as a long term
relationship.
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Cointegration and Equilibrium

Examples of possible Cointegrating Relationships in finance:

– spot and futures prices

– ratio of relative prices and an exchange rate

– equity prices and dividends

Market forces arising from no arbitrage conditions should ensure an
equilibrium relationship.

No cointegration implies that series could wander apart without
bound in the long run.
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Equilibrium Correction or Error Correction Models

When the concept of non-stationarity was first considered, a usual
response was to independently take the first differences of a series of
I(1) variables.

The problem with this approach is that pure first difference models
have no long run solution.

e.g. Consider yt and xt both I(1).

The model we may want to estimate is

∆yt = β∆xt + ut

But this collapses to nothing in the long run.

The definition of the long run that we use is where

yt = yt−1 = y ; xt = xt−1 = x .

Hence all the difference terms will be zero, i.e.

∆yt = 0; ∆xt = 0.
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Specifying an ECM

One way to get around this problem is to use both first difference and
levels terms, e.g.

∆yt = β1∆xt + β2(yt−1 − γxt−1) + ut (7)

yt−1 − γxt−1 is known as the error correction term.

Provided that yt and xt are cointegrated with cointegrating
coefficient γ, then (yt−1 − γxt−1) will be I(0) even though the
constituents are I(1).

We can thus validly use OLS on (7)

The Granger representation theorem shows that any cointegrating
relationship can be expressed as an equilibrium correction model.
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Testing for Cointegration in Regression

The model for the equilibrium correction term can be generalised to
include more than two variables:

yt = β1 + β2x2t + β3x3t + · · ·+ βkxkt + ut (8)

ut should be I(0) if the variables yt , x2t , . . . xkt are cointegrated

So what we want to test is the residuals of equation (8) to see if they
are non-stationary or stationary. We can use the DF/ADF test on ut .

So we have the regression

∆ût = ψût−1 + vt with vt ∼ iid .

However, since this is a test on the residuals of an actual model, ût ,
then the critical values are changed.
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Testing for Cointegration in Regression:
Conclusions

Engle and Granger (1987) have tabulated a new set of critical values
and hence the test is known as the Engle Granger (E.G.) test.

We can also use the Durbin Watson test statistic or the Phillips
Perron approach to test for non-stationarity of ût .

What are the null and alternative hypotheses for a test on the
residuals of a potentially cointegrating regression?

H0 : unit root in cointegrating regression’s residuals

H1 : residuals from cointegrating regression are stationary
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Methods of Parameter Estimation in Cointegrated
Systems: The Engle-Granger Approach

There are (at least) 3 methods we could use: Engle Granger, Engle
and Yoo, and Johansen.

The Engle Granger 2 Step Method

This is a single equation technique which is conducted as follows:

Step 1:

– Make sure that all the individual variables are I(1).

– Then estimate the cointegrating regression using OLS.

– Save the residuals of the cointegrating regression, .

– Test these residuals to ensure that they are I(0).

Step 2:
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Methods of Parameter Estimation in Cointegrated
Systems: The Engle-Granger Approach (Cont’d)

– Use the step 1 residuals as one variable in the error correction model
e.g.

∆yt = β1∆xt + β2(ût−1) + ut

where ût−1 = yt−1 − τ̂xt−1.
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An Example of a Model for Non-stationary
Variables: Lead-Lag Relationships between Spot and
Futures Prices

Background

We expect changes in the spot price of a financial asset and its
corresponding futures price to be perfectly contemporaneously
correlated and not to be cross-autocorrelated.

corr(∆log(ft),∆ ln(st)) ≈ 1

corr(∆log(ft),∆ ln(st−k)) ≈ 0 ∀ k > 0

corr(∆log(ft−j),∆ ln(st)) ≈ 0 ∀ j > 0

We can test this idea by modelling the lead-lag relationship between
the two.

We will consider two papers Tse(1995) and Brooks et al (2001).
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Futures & Spot Data

Tse (1995): 1055 daily observations on NSA stock index and stock
index futures values from December 1988 - April 1993.

Brooks et al (2001): 13,035 10-minutely observations on the FTSE
100 stock index and stock index futures prices for all trading days in
the period June 1996 – 1997.
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Methodology

The fair futures price is given by

F
∗
t = St e

(r−d)(T−t)

where F ∗t is the fair futures price, St is the spot price, r is a
continuously compounded risk-free rate of interest, d is the
continuously compounded yield in terms of dividends derived from the
stock index until the futures contract matures, and (T − t) is the
time to maturity of the futures contract. Taking logarithms of both
sides of equation above gives

f
∗
t = st +(r − d)(T − t)

First, test ft and st for nonstationarity.
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Dickey-Fuller Tests on Log-Prices and Returns for
High Frequency FTSE Data

Futures Spot

Dickey–Fuller statistics −0.1329 −0.7335
for log-price data

Dickey–Fuller statistics −84.9968 −114.1803
for returns data
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Cointegration Test Regression and Test on
Residuals

Conclusion: log Ft and log St are not stationary, but ∆ log Ft and
∆ log St are stationary.

But a model containing only first differences has no long run
relationship.

Solution is to see if there exists a cointegrating relationship between
ft and st which would mean that we can validly include levels terms in
this framework.

Potential cointegrating regression:

st = γ0 + γ1ft + zt

where zt is a disturbance term.

Estimate the regression, collect the residuals, Ẑt , and test whether
they are stationary.
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Estimated Equation and Test for Cointegration for
High Frequency FTSE Data

Coefficient Estimated value

γ̂0 0.1345
γ̂1 0.9834

DF test on residuals Test statistic

ẑt −14.7303

Source: Brooks, Rew and Ritson (2001).
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Conclusions from Unit Root and Cointegration
Tests

Conclusion: Ẑt are stationary and therefore we have a cointegrating
relationship between log Ft and log St .

Final stage in Engle-Granger 2-step method is to use the first stage
residuals, Ẑt as the equilibrium correction term in the general
equation.

The overall model is

∆ log st = β0 + δẑt−1 + β1∆ ln st−1 + α1∆ ln ft−1 + vt
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Estimated Error Correction Model for High
Frequency FTSE Data

Coefficient Estimated value t-ratio

β̂0 9.6713E−06 1.6083

δ̂ −0.8388 −5.1298

β̂1 0.1799 19.2886
α̂1 0.1312 20.4946

Source: Brooks, Rew and Ritson (2001).

Look at the signs and significances of the coefficients:

α̂1 is positive and highly significant

β̂1 is positive and highly significant

δ̂ is negative and highly significant
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Forecasting High Frequency FTSE Returns

Is it possible to use the error correction model to produce superior
forecasts to other models?

Comparison of Out of Sample Forecasting Accuracy

ECM ECM-COC ARIMA VAR

RMSE 0.0004382 0.0004350 0.0004531 0.0004510
MAE 0.4259 0.4255 0.4382 0.4378
% Correct direction 67.69% 68.75% 64.36% 66.80%

Source: Brooks, Rew and Ritson (2001).
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Can Profitable Trading Rules be Derived from the
ECM-COC Forecasts?

The trading strategy involves analysing the forecast for the spot
return, and incorporating the decision dictated by the trading rules
described below. It is assumed that the original investment is £1000,
and if the holding in the stock index is zero, the investment earns the
risk free rate.

– Liquid Trading Strategy - making a round trip trade (i.e. a purchase
and sale of the FTSE100 stocks) every ten minutes that the return is
predicted to be positive by the model.

– Buy-&-Hold while Forecast Positive Strategy - allows the trader to
continue holding the index if the return at the next predicted
investment period is positive.

– Filter Strategy: Better Predicted Return Than Average - involves
purchasing the index only if the predicted returns are greater than the
average positive return.
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Can Profitable Trading Rules be Derived from the
ECM-COC Forecasts? (Cont’d)

– Filter Strategy: Better Predicted Return Than First Decile - only the
returns predicted to be in the top 10% of all returns are traded on

– Filter Strategy: High Arbitrary Cut Off - An arbitrary filter of
0.0075% is imposed,
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Spot Trading Strategy Results for Error Correction
Model Incorporating the Cost of Carry

Terminal Terminal Return(%)
Wealth Return(%) Wealth (£) Annualised Number

Trading strategy (£) annualised with slippage with slippage of trades

Passive investment 1040.92 4.09 1040.92 4.09 1
{49.08} {49.08}

Liquid trading 1156.21 15.62 1056.38 5.64 583
{187.44} {67.68}

Buy-and-Hold while 1156.21 15.62 1055.77 5.58 383
forecast positive {187.44} {66.96}

Filter I 1144.51 14.45 1123.57 12.36 135
{173.40} {148.32}

Filter II 1100.01 10.00 1046.17 4.62 65
{120.00} {55.44}

Filter III 1019.82 1.98 1003.23 0.32 8
{23.76} {3.84}

Source: Brooks, Rew and Ritson (2001).
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Conclusions

The futures market “leads” the spot market because:

I the stock index is not a single entity, so
F some components of the index are infrequently traded

F it is more expensive to transact in the spot market

F stock market indices are only recalculated every minute

Spot & futures markets do indeed have a long run relationship.

Since it appears impossible to profit from lead/lag relationships, their
existence is entirely consistent with the absence of arbitrage
opportunities and in accordance with modern definitions of the
efficient markets hypothesis.
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The Engle-Granger Approach: Some Drawbacks

This method suffers from a number of problems:

1 Unit root and cointegration tests have low power in finite samples

2 We are forced to treat the variables asymmetrically and to specify one
as the dependent and the other as independent variables.

3 Cannot perform any hypothesis tests about the actual cointegrating
relationship estimated at stage 1.

– Problem 1 is a small sample problem that should disappear
asymptotically.

– Problem 2 is addressed by the Johansen approach.

– Problem 3 is addressed by the Engle and Yoo approach or the
Johansen approach.
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The Engle & Yoo 3-Step Method

One of the problems with the EG 2-step method is that we cannot
make any inferences about the actual cointegrating regression.

The Engle & Yoo (EY) 3-step procedure takes its first two steps from
EG.

EY add a third step giving updated estimates of the cointegrating
vector and its standard errors.

The most important problem with both these techniques is that in the
general case above, where we have more than two variables which
may be cointegrated, there could be more than one cointegrating
relationship.

In fact there can be up to r linearly independent cointegrating vectors
(where r ≤ g − 1), where g is the number of variables in total.
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The Engle & Yoo 3-Step Method (Cont’d)

So, in the case where we just had y and x, then r can only be one or
zero.

But in the general case there could be more cointegrating
relationships.

And if there are others, how do we know how many there are or
whether we have found the “best”?

The answer to this is to use a systems approach to cointegration
which will allow determination of all r cointegrating relationships -
Johansen’s method.
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Testing for and Estimating Cointegrating Systems
Using the Johansen Technique Based on VARs

To use Johansen’s method, we need to turn the VAR of the form

yt = β1yt−1 + β2yt−2 + · · · + βkyt−k + ut

g × 1 g × g g × 1 g × g g × 1 g × g g × 1 g × 1

into a VECM, which can be written as

∆yt = Πyt−k + Γ1∆yt−1 + Γ2∆yt−2 + · · ·+ Γk−1∆yt−(k−1)

+ut

where Π = (
∑k

i=1 βi )− Ig and Γi = (
∑i

j=1 βj)− Ig

Π is a long run coefficient matrix since all the ∆yt−i = 0.
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Review of Matrix Algebra necessary for the
Johansen Test

Let Π denote a g × g square matrix and let c denote a g×1 non-zero
vector, and let λ denote a set of scalars.

λ is called a characteristic root or set of roots of Π if we can write

Πc = λc

g × g g × 1 g × 1

We can also write
Πc = λIgc

and hence
(Π− λIg )c = 0

where Ig is an identity matrix, and hence
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Review of Matrix Algebra necessary for the
Johansen Test (Cont’d)

Since c 6= 0 by definition, then for this system to have zero solution,
we require the matrix (Π− λI g ) to be singular (i.e. to have zero
determinant).

|Π− λI g | = 0

For example, let Π be the 2× 2 matrix

Π =

[
5 1
2 4

]
Then the characteristic equation is

|Π− λI p| =

∣∣∣∣[ 5 1
2 4

]
− λ
[

1 0
0 1

]∣∣∣∣ = 0

=

∣∣∣∣ 5− λ 1
2 4− λ

∣∣∣∣ = (5− λ)(4− λ)− 2 = λ2 − 9λ+ 18
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Review of Matrix Algebra necessary for the
Johansen Test (Cont’d)

This gives the solutions λ = 6 and λ = 3.

The characteristic roots are also known as Eigenvalues.

The rank of a matrix is equal to the number of linearly independent
rows or columns in the matrix.

We write Rank(Π) = r

The rank of a matrix is equal to the order of the largest square matrix
we can obtain from Π which has a non-zero determinant.

For example, the determinant of Π above 6= 0, therefore it has rank 2.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2013 61



The Johansen Test and Eigenvalues

Some properties of the eigenvalues of any square matrix A:
1 the sum of the eigenvalues is the trace

2 the product of the eigenvalues is the determinant

3 the number of non-zero eigenvalues is the rank

Returning to Johansen’s test, the VECM representation of the VAR
was

∆yt = Πyt−1 + Γ1∆yt−1 + Γ2∆yt−2 + · · ·+ Γk−1∆yt−(k−1)

+ut

The test for cointegration between the y ’s is calculated by looking at
the rank of the Π matrix via its eigenvalues (to prove this requires
some technical intermediate steps).
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The Johansen Test and Eigenvalues (Cont’d)

The rank of a matrix is equal to the number of its characteristic roots
(eigenvalues) that are different from zero.

The eigenvalues denoted λi are put in order:

λ1 ≥ λ2 ≥ λg

If the variables are not cointegrated, the rank of Π will not be
significantly different from zero, so λi = 0 ∀ i .

Then if λi = 0, ln(1− λi ) = 0

if the λ ’s are roots, they must be less than 1 in absolute value.

Say rank (Π) = 1, then ln(1− λ1) will be negative and ln(1− λi ) = 0

If the eigenvalue λi is non-zero, then ln(1− λi ) < 0 ∀ i > 1.
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The Johansen Test Statistics

The test statistics for cointegration are formulated as

λtrace(r) = −T
g∑

i=r+1

ln(1− λ̂i )

and

λmax(r , r + 1) = −T ln(1− λ̂r+1)

where λ̂ is the estimated value for the ith ordered eigenvalue from the
Π matrix.

λtrace tests the null that the number of cointegrating vectors is less
than equal to r against an unspecified alternative.

λtrace = 0 when all the λi = 0, so it is a joint test.

λmax tests the null that the number of cointegrating vectors is r
against an alternative of r + 1.
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Decomposition of the Matrix

For any 1 < r < g , Π is defined as the product of two matrices:

Π = αβ′

g × g g × r r × g

β contains the cointegrating vectors while α gives the “loadings” of
each cointegrating vector in each equation.
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Decomposition of the Matrix (Cont’d)

For example, if g = 4 and r = 1, α and β will be 4× 1, and Πyt−k
will be given by:

Π =


α11

α12

α13

α14

 ( β11 β12 β13 β14 )


y1
y2
y3
y4


t−k

or

Π =


α11

α12

α13

α14

 ( β11y1 + β12y2 + β13y3 + β14y4)t−k

‘Introductory Econometrics for Finance’ c© Chris Brooks 2013 66



Johansen Critical Values

Johansen & Juselius (1990) provide critical values for the 2 statistics.
The distribution of the test statistics is non-standard. The critical
values depend on:

1 the value of g − r , the number of non-stationary components

2 whether a constant and/or trend are included in the regressions.

If the test statistic is greater than the critical value from Johansen’s
tables, reject the null hypothesis that there are r cointegrating vectors
in favour of the alternative that there are more than r.
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The Johansen Testing Sequence

The testing sequence under the null is r = 0, 1, . . . , g − 1

so that the hypotheses for λtrace are

H0 : r = 0 versus H1 : 0 < r ≤ g
H0 : r = 1 versus H1 : 1 < r ≤ g
H0 : r = 2 versus H1 : 2 < r ≤ g

...
...

...
H0 : r = g − 1 versus H1 : r = g

We keep increasing the value of r until we no longer reject the null.
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Interpretation of Johansen Test Results

But how does this correspond to a test of the rank of the Π matrix?

r is the rank of Π.

Π cannot be of full rank (g) since this would correspond to the
original yt being stationary.

If Π has zero rank, then by analogy to the univariate case, ∆yt
depends only on ∆yt−j and not on yt−1, so that there is no long run
relationship between the elements of yt−1. Hence there is no
cointegration.

For 1 < rank(Π) < g , there are multiple cointegrating vectors.
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Hypothesis Testing Using Johansen

EG did not allow us to do hypothesis tests on the cointegrating
relationship itself, but the Johansen approach does.

If there exist r cointegrating vectors, only these linear combinations
will be stationary.

You can test a hypothesis about one or more coefficients in the
cointegrating relationship by viewing the hypothesis as a restriction
on the Π matrix.

All linear combinations of the cointegrating vectors are also
cointegrating vectors.

If the number of cointegrating vectors is large, and the hypothesis
under consideration is simple, it may be possible to recombine the
cointegrating vectors to satisfy the restrictions exactly.
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Hypothesis Testing Using Johansen (Cont’d)
As the restrictions become more complex or more numerous, it will
eventually become impossible to satisfy them by renormalisation.

After this point, if the restriction is not severe, then the cointegrating
vectors will not change much upon imposing the restriction.

A test statistic to test this hypothesis is given by

test statistic = −T
r∑

i=1

[ln(1− λi )− ln(1− λi ∗)] ∼ χ2(m)

where

λ∗i are the characteristic roots of the restricted model,

λi are the characteristic roots of the unrestricted model,

r is the number of non-zero characteristic roots in the unrestricted
model and m is the number of restrictions.
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Cointegration Tests using Johansen: Three
Examples

Example 1: Hamilton(1994, pp.647 )

Does the PPP relationship hold for the US / Italian exchange rate -
price system?

A VAR was estimated with 12 lags on 189 observations. The
Johansen test statistics were

r λmax critical value
0 22.12 20.8
1 10.19 14.0

Conclusion: there is one cointegrating relationship.
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Example 2: Purchasing Power Parity (PPP)

PPP states that the equilibrium exchange rate between 2 countries is
equal to the ratio of relative prices

A necessary and sufficient condition for PPP is that the log of the
exchange rate between countries A and B, and the logs of the price
levels in countries A and B be cointegrated with cointegrating vector
[1 –1 1].

Chen (1995) uses monthly data for April 1973-December 1990 to test
the PPP hypothesis using the Johansen approach.
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Cointegration Tests of PPP with European Data

Tests for
cointegration between r = 0 r ≤ 1 r ≤ 2 α1 α2

FRF–DEM 34.63∗ 17.10 6.26 1.33 −2.50
FRF–ITL 52.69∗ 15.81 5.43 2.65 −2.52
FRF–NLG 68.10∗ 16.37 6.42 0.58 −0.80
FRF–BEF 52.54∗ 26.09∗ 3.63 0.78 −1.15
DEM–ITL 42.59∗ 20.76∗ 4.79 5.80 −2.25
DEM–NLG 50.25∗ 17.79 3.28 0.12 −0.25
DEM–BEF 69.13∗ 27.13∗ 4.52 0.87 −0.52
ITL–NLG 37.51∗ 14.22 5.05 0.55 −0.71
ITL–BEF 69.24∗ 32.16∗ 7.15 0.73 −1.28
NLG–BEF 64.52∗ 21.97∗ 3.88 1.69 −2.17
Critical values 31.52 17.95 8.18 – –

Notes: FRF – French franc; DEM – German mark; NLG – Dutch guilder; ITL – Italian lira; BEF – Belgian franc.
Source: Chen (1995). Reprinted with the permission of Taylor & Francis Ltd <www.tandf.co.uk>.
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Example 3: Are International Bond Markets
Cointegrated?

Mills & Mills (1991)

If financial markets are cointegrated, this implies that they have a
“common stochastic trend”.

Data:

Daily closing observations on redemption yields on government bonds
for 4 bond markets: US, UK, West Germany, Japan.

For cointegration, a necessary but not sufficient condition is that the
yields are nonstationary. All 4 yields series are I(1).
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Testing for Cointegration Between the Yields

The Johansen procedure is used. There can be at most 3 linearly
independent cointegrating vectors.

Mills & Mills use the trace test statistic:

λtrace(r) = −T
g∑

i=r+1

ln(1− λ̂i )

where λi are the ordered eigenvalues.

Johansen Tests for Cointegration between International Bond Yields

Critical values
r (number of cointegrating
vectors under the null hypothesis) Test statistic 10% 5%

0 22.06 35.6 38.6
1 10.58 21.2 23.8
2 2.52 10.3 12.0
3 0.12 2.9 4.2

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.
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Testing for Cointegration Between the Yields
(Cont’d)

Conclusion: No cointegrating vectors.

The paper then goes on to estimate a VAR for the first differences of
the yields, which is of the form

∆Xt =
k∑

i=1

Γi∆Xt−i + vt

where:

Xt =


X (US)t
X (UK)t
X (WG)t
X (JAP)t

 , Γi =


Γ11i Γ12i Γ13i Γ14i

Γ21i Γ22i Γ23i Γ24i

Γ31i Γ32i Γ33i Γ34i

Γ41i Γ42i Γ43i Γ44i

 , vt =


v1t
v2t
v3t
v4t


They set k = 8
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Variance Decompositions for VAR of International
Bond Yields

Explained by movements in
Explaining Days
movements in ahead US UK Germany Japan

US 1 95.6 2.4 1.7 0.3
5 94.2 2.8 2.3 0.7
10 92.9 3.1 2.9 1.1
20 92.8 3.2 2.9 1.1

UK 1 0.0 98.3 0.0 1.7
5 1.7 96.2 0.2 1.9
10 2.2 94.6 0.9 2.3
20 2.2 94.6 0.9 2.3

Germany 1 0.0 3.4 94.6 2.0
5 6.6 6.6 84.8 3.0
10 8.3 6.5 82.9 3.6
20 8.4 6.5 82.7 3.7

Japan 1 0.0 0.0 1.4 100.0
5 1.3 1.4 1.1 96.2
10 1.5 2.1 1.8 94.6
20 1.6 2.2 1.9 94.2

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.
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Impulse Responses for VAR of International Bond
Yields

Response of US to innovations in

Days after shock US UK Germany Japan

0 0.98 0.00 0.00 0.00
1 0.06 0.01 −0.10 0.05
2 −0.02 0.02 −0.14 0.07
3 0.09 −0.04 0.09 0.08
4 −0.02 −0.03 0.02 0.09
10 −0.03 −0.01 −0.02 −0.01
20 0.00 0.00 −0.10 −0.01

Response of UK to innovations in

Days after shock US UK Germany Japan

0 0.19 0.97 0.00 0.00
1 0.16 0.07 0.01 −0.06
2 −0.01 −0.01 −0.05 0.09
3 0.06 0.04 0.06 0.05
4 0.05 −0.01 0.02 0.07
10 0.01 0.01 −0.04 −0.01
20 0.00 0.00 −0.01 0.00

Response of Germany to innovations in

Days after shock US UK Germany Japan

0 0.07 0.06 0.95 0.00
1 0.13 0.05 0.11 0.02
2 0.04 0.03 0.00 0.00
3 0.02 0.00 0.00 0.01
4 0.01 0.00 0.00 0.09
10 0.01 0.01 −0.01 0.02
20 0.00 0.00 0.00 0.00

Response of Japan to innovations in

Days after shock US UK Germany Japan

0 0.03 0.05 0.12 0.97
1 0.06 0.02 0.07 0.04
2 0.02 0.02 0.00 0.21
3 0.01 0.02 0.06 0.07
4 0.02 0.03 0.07 0.06
10 0.01 0.01 0.01 0.04
20 0.00 0.00 0.00 0.01

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.
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