## Financial Econometrics

## February 10th 2016

## Exercise 1 Consider:

• the following APT-style model (A):

$$r_A = \beta_0 + \beta_1 r_M + \beta_2 \pi + u$$

where  $r_A$  and  $r_M$  are excess returns on, respectively, an asset A and a market index, and  $\pi$  is the inflation rate,

• the CAPM-style model (B):

$$r_A = \gamma_0 + \gamma_1 r_M + v$$

where  $r_A$  and  $r_M$  are as above.

You have observed a sample of 67 data points and estimated model (A) by OLS, resulting in the following coefficients and standard errors (s.e. in brackets):  $\hat{\beta}_0 = 0.4(0.6), \hat{\beta}_1 = 1.5(0.2), \hat{\beta}_2 = 1.3(0.4)$ .

- You are given the table of critical values for the t distribution. Decide which one of (A) and (B) is a better statistical description of reality.
- Is there an alternative procedure you might have used? Briefly describe it.

Exercise 2 With respect to model (A) above, and based on the estimation results,

• as a statistician/econometrician, would you say that the asset A over-, or under-, performed the market?

**Exercise 3** Consider your chosen model from Exercise 1. You are worried about serial correlation in the errors.

- Discuss why you should be: i.e., which would be the consequences of serial correlation on the properties of the OLS estimator.
- Describe a serial correlation test of your choice, with particular respect to:
  - the null hypothesis  $H_0$  and the alternative  $H_A$
  - the construction of the test
  - the final decision rule