Financial Econometrics

November 16th 2016

Exercise 1 (4/10) Consider a stock A and the market portfolio M. You have observed a sample of 47 data points and estimated a CAPM model of the excess returns r_A :

 $r_A = \alpha + \beta r_M + \varepsilon$

resulting in the estimates of $\hat{\alpha}$, $\hat{\beta}$ reported in the table below:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.4	0.6	Х	Х
rm	1.5	Х	7.5	Х

With respect to the model in Exercise 1 (you are given the table of critical values for the t distribution):

- 1. fill in the missing values (X)
- 2. Construct the 95% confidence interval for α and β .
- 3. Comment on the results in the light of the CAPM theory, with particular respect to the proposition: "A is a defensive stock".

Exercise 2 (3/10)

1. What is your best point forecast for the return on stock A next year if the market grows by 5 (*percent*) and the risk-free rate is 2 (percent)?

Exercise 3 (3/10) Consider the linear model

$$y = \beta X + \varepsilon$$

- 1. Write down the Ordinary Least Squares estimator $\hat{\beta}_{OLS}$ in matrix form
- 2. Show that $\hat{\beta}_{OLS}$ is unbiased, highlighting which properties does this result depend upon