Unit 8

Bash Programming and Git

Alberto Casagrande
Email: acasagrande@units.it

a.a. 2019/2020

Interactive vs Scripting

The command line is a powerful tool, but error prone

Interactive vs Scripting

The command line is a powerful tool, but error prone

Interactive vs Scripting

The command line is a powerful tool, but error prone
Repeatitive tasks are problematic because of typos and fatigue.

You must be focused along all the interactive process.

Any command provided to a shell can be included into a shell script

A Very Simple BASH Script

#1/bin/bash
This is a comment

A=1 # this is a variable assignment
B=2; # another one

echo $A" _$B _test_ ${B} _test”

A Very Simple BASH Script (Cont'd)

@ save it as first.sh

@ make it executable

al@foo:”"> chmod +x first.sh

@ execute it

al@foo:"> ./first .sh

The result will be

1 2_test

A Very Simple BASH Script (Cont'd)

#1/bin/bash

This is a comment

A=1 # this s a variable assignment
B=2; # another one

echo $A $B_test ${B} _test

You got
@ the content of A
@ two empty spaces because B_test does not exist

@ the content of B followed by _test

Arithmetic Expressions

Integer arithmetic evaluations are supported through the $((...))
syntax

#1/bin/bash

this is a variable assignment
another one

echo ${A}/${B}=$((A/B))

Script Parameters

$# contains the script parameters.
$1, $2, ...contain parameters.

$@ contains the array of script parameters

#1/bin/bash

echo $# $2 $@

Conditional Statement

#1/bin/bash

if [$# —ne 2], then
(>&2 echo " Error:_Expected_2_parameters”)

Boolean Expressons

Bash supports many many kind of Boolean expressions

E
-a FILE] tests whether the file exists
FILE] tests whether the file exists and is executable

-d DIR] tests whether the directory exists

L T e T e T |
|
»

8.,
°
°
°
o [S1 == S2] tests whether the two strings are equal
@ [vl -gt v2] tests whether the first value is greater than

the second one

@ [E1 -o E2] performs the non-exclusive disjuntion of the

two expressions

Boolean Expressons

Bash supports many many kind of Boolean expressions

E
-a FILE] tests whether the file exists
-x FILE] tests whether the file exists and is executable

-d DIR] tests whether the directory exists

M M/ /M

8.,
°
°
°
o [S1 == S2] tests whether the two strings are equal
°

[vi -gt v2] tests whether the first value is greater than
the second one

@ [E1 -o E2] performs the non-exclusive disjuntion of the
two expressions

See online for a full list of them

While-Loop Statement

#1/bin/bash

i=0

while [$i —ne 10 |; do

echo $i

For-Loop Statement

#1/bin/bash

"a” "b" "c¢"; do

for name in ,
echo $name

done

exit 0

Evaluating a Command

Commands can also be evaluated by using the $(...) syntax

#1/bin/bash

for name in $(Is $1); do
bn=$ (basename ${name} .sh)

echo "The_base_name_of_${name}_is_${bn}"

Functions Can Be Defined Too

#1/bin/bash

function test_function() {
echo "This_.call_has_$#_parameters”
echo "Parameter_1_is_$1"
echo "Parameter_2._is_$2"

for i in $0; do
echo §$i
done

}

test_function $2 $1 $3

It is a distributed version control system

It is meant to keep track of your project revisions (e.g., for bug
tracking)

Many developpers can work on the same project at the same time

It can handle many “version” of the same project

Initializing a GIT project

Enter in the project directory and execute git init

al@foo:"/prj$ Is
program.c
al@foo:"/prj$ git init

Initialized empty Git repository in
/home/al/prj/.git/

The git repository is the place where all the revisions and versions
of the project are stored.

It is automatically handled by git.

Repository Status

None of the files are tracked by the git repository yet.

We can see the repository status by executing git status

al@foo:"/prj$ git status
On branch master

No commits yet
Untracked files:

(use "git_add_<file >..." to include in what will
be committed)

program.c

nothing added to commit but untracked files present
(use "git_add” to track)

Adding a file

Files can be added to the project by using git add

al@foo:"/prj$ git add program.c
al@foo:"/prj$ git status
On branch master

No commits yet

Changes to be committed:
(use "git.rm_——cached._<file >..." to unstage)

new file: program.c

The changes are now planned to be included into next revision

But not commited yet to the repository

Commiting a revision

To commit the first revision of your project

al@foo:"/prj$ git commit —m " First_commit”
[master (root—commit) 62fcde6] First commit
1 file changed, 8 insertions(+)

create mode 100644 program.c

An the status is now

al@foo:"/prj$ git status

On branch master
nothing to commit, working tree clean

Changing a repository file

Any file change is reported by git status

al@foo:"/prj$ git status
Sul branch master
Changes not staged for commit:

(use "git.add.<file >...” to update what will
be committed)

(use "git.checkout.—.<file >..." to discard
changes in working directory)

modified: program.c

no changes added to commit (use " git_add” and/or
"git.commit.—a")

What about the differences?

The differences between the current revision of the file and the last
repository revision can be seen as follows

al@foo:"/prj$ git diff
diff —git a/program.c b/program.c
index 9dfdaf4 ..f8ef5d6 100644
— a/program.c
b/program.c
@@ —-2,7 +2,7 @@

int main(int argv, char xargv][])
{
printf (" Hello, _world!\n");
printf (" Hello, _world 1\ n");

return O;

}

Branches

From time to time, having different versions of the same project in
development may be usefull

E.g., when adding a feature that potentially breaks the project
itself or bug fixing different version of the same software

Branches are branches in the development flow of a project.

Any project have one “main” branch named master

Creating a branch

al@foo:"/prj$ git branch longer_string

To see all the branches use git branch again

al@foo:"/prj$ git branch

longer_string
* master

We are still on the master branch

Moving between branches

To move to longer_string branch use git checkout

al@foo:"/prj$ git checkout longer_string
program.c
Moved to branch 'longer_string’
git branch
* longer_string
master

All the changed can be commited to this branch as usual

al@foo:"/prj$ git commit —a —m "New_branch”
[longer_string 26d7695] New branch

1 file changed, 1 insertion(+), 1 deletion(—)

Tracking changes

git diff can be used to see the differences between branches

al@foo:"/prj$ git diff master
diff —git a/program.c b/program.c
index 9dfdaf4 ..f8efbd6 100644
— a/program.c

b/program.c
@@ —2,7 +2,7 @@

int main(int argv, char xargv][])
{

printf (" Hello,_world!\n");
printf (" Hello,_world!!!\n");

return 0;

}

Branches evolutions

The branches evolve independently

Every commit exclusively concerns the active branch

master

Switching branches

Use git checkout to move from a branch to another one

al@foo:"/prj$ git branch
* longer_string
master

al@foo:"/prj$ git checkout master
Switched to branch 'master’

Getting branch history

git log shows branch history

al@foo:"/prj$ git log

commit aa9ed46f...fc2a73 (HEAD —> longer_string)
Author: Alberto Casagrande <al@foo.bar>

Date: Fri Sep 27 14:20:04 2019 +0200

longer_string third commit

commit ba7f80f2...8¢e4189
Author: Alberto Casagrande <al@foo.bar>
Date: Fri Sep 27 14:09:40 2019 +0200

First commit

Reverting to a previous revision

git checkout can also be used to revert to a previous revision

al@foo:"/prj$ git log

commit 1a4619d8595....e70e9eeb

Author: Alberto Casagrande <al@foo.bar>
Date: Fri Sep 27 14:19:28 2019 +0200

longer_string second commit

al@foo:"/prj$ git checkout 1a4619d
Note: checking out '1a4619d’.

Branches merging

If you want to merge the changing in two branching since the last
merge/split, use git merge

al@foo:"/prj$ git branch
* longer_string
master
al@foo:"/prj$ git merge master

Auto—merging program.c

CONFLICT (content): Merge conflict in program.c
Automatic merge failed; fix conflicts and then
commit the result.

Branches merging (cont'd)

...if needed, fix all the conflicts by editing the files . ..

#include <stdio.h>
#include <string .h>

#include <math.h>

int main(int argv, char xargv][])
{

<<<<<< HEAD

printf (" Hello,_world!!!\n");

printf (" Hello, _world!_Boh!\n");
>>>>>>> master

return 0;

}

Branches merging (cont'd 2)

...and commit the result

al@foo:"/prj$ git commit —m " Merge_from_master” —a
[longer_string 78f8c6f] Merge from master

All the changes done in the merging branch since the last
merge/split will be applied to the current branch.

master

Deleting a branch

A branch can be deleted by using the git branch command

al@foo:"/prj$ git checkout master
Switched to branch 'master’

al@foo:"/prj$ git branch —D longer_string

Deleted branch longer_string (was 78f8c6f).

git branch
* master

Git on a remote server

Your local git repositories can be saved on remote servers (e.g.,
github.org, gitlab.org, etc.) to:

@ avoid data loss

@ work on shared project

To this goal, at least a remote should be defined

E.g.
al@foo:"/prj$ git remote

al@foo:"/prj$ git remote add github https://github.
org/myuser/prj.git

al@foo:"/prj$ git remote —v
github https://github.org/myuser/prj.git (fetch)
github https://github.org/myuser/prj.git (push)

Pushing and Pulling

Once remotes have been defined, the last commits on the
repository can be pushed on the server by issuing

al@foo:"/prj$ git push github

None of the commits in the local repository are sent to the remote
until the push

Updated version of the repository can be downloaded from the
server by writing

al@foo:"/prj$ git pull github

Cloning a repository

Already created repositories can be downloaded from the servers by
using git clone

al@foo:"/prj$ git clone https://github.com/albertoc]
sagrande/pyModelChecking . git

Cloning into 'pyModelChecking' ...

remote: Enumerating objects: 217, done.

remote: Counting objects: 100% (217/217), done.
remote: Compressing objects: 100% (121/121), done.
remote: Total 483 (delta 129), reused 159 (delta 87
Receiving objects: 100% (483/483), 177.25 KiB | 495
Resolving deltas: 100% (273/273), done.

Coming soon. . .

@ The End

The End

