University of Trieste

October 3, 2019

Prof. Walter D. Mooney US Geological Survey Menlo Park, California USA mooney@usgs.gov "Thermal Structure of the Earth"

Mooney: Lecture #2: Thermal Structure of the Earth

Mantle Structure

K

Seismicity of the Earth (1900-2007)

Villaseñor, Benz and Engdahl (Fall AGU, 2007)

S-wave Anomaly 50 Km

S-wave Anomaly 100 km

S-wave Anomaly, 150 km

S-wave Anomaly 200 km

S-wave Anomaly 250 km

The Lithosphere

Mooney et al., EPSL, 2012

Lithosphere-Asthenosphere Boundary

Seismology Provides Accurate and Reproducible Earth Models

Schaeffer and Lebedev,2015

Imaging Deep Mantle Plumes

French and Romanowicz, Nature, 2015

Pacific Core-Mantle Boundary & Hawaiian Plume

Precambrian Cratons

Source: Artemieva and Mooney, 2000

Model for Archean Lithospheric Evolution

Model for Proterozoic Lithospheric Evolution

Global heat flux Heat Flow

Sea Floor Age

"Standard Model" of the Earth

Thermal evolution of the Earth

Present Temp.Past Temp.Future Temp.Fe melting curve

Secular decrease in radioactive decay

Artemieva et al., 2017

S-wave Anomaly 200 km

Model for Archean Lithospheric Evolution

Fishwick's 2009 regional models

2-stage surface wave inversion method 1) fundamental + first four higher models: period range 50-120 seconds

2) 1.5 degree splines

Includes data from GFZ stations in NW Namibia

SAF2000P

P-wave velocity anomaly (%)

B: (34.25S, 19.25E)

B': (18.50S, 31.50E)

Precambrian Lithospheric

Global Heat Flow Data

Global heat flow data:

Paleoclimate corrections can be 30-40%.

Lithospheric Thermal Thickness

Steady State Thermal Conductivity

 $\partial^2 T / \partial z^2 = -A / k$ at z = 0: T = 0 Q₀ = -k · $\partial T / \partial z$

+ Assumption

$$A(z) = A_0 \cdot \exp(-z / D)$$

$$Q_0 = q + A_0 \cdot D$$

A₀ – surface radioactivity Q₀ - surface heat flow q - reduced (mantle)heat flow

- k- thermal conductivity
- T- temperature
- D characteristic depth

Estimated Temperature at 50 km Depth

Source: Artemieva and Mooney, JGR, 2000

Estimated Temperature at 100 km Depth

Source: Artemieva and Mooney, JGR, 2000

Estimated Temperature at 150 km Depth

Source: Artemieva and Mooney, JGR, 2000

Question: Is the **thermal lithosphere** similar to the **seismic lithosphere**?

Lithosphere Thermal Thickness

S-wave Anomaly 200 km

Li et al. (in preparation)

Li et al. (in preparation)

