CHAPTER 7
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Heat

Heat transport is an integral part of convection. Heat is trans-
ported in two principal ways in the mantle: by conduction and
by advection. Advection means that heat is carried along with
mass motion. Heat is also generated internally by radioactivity.
Here we consider these processes in turn. A key feature of heat
conduction is that there is a fundamental relationship between
the time scale of conductive cooling (or heating) and the length
scale over which the process is occurring. This is demonstrated in
several ways and at different mathematical levels.

A key application of heat conduction theory is to the cooling
oceanic lithosphere, and a key consequence is the subsidence of the
sea floor with age. The lithosphere is a special case of a conductive
thermal boundary layer, which is the source of convective motion
(Chapter 8). The oceanic lithosphere and its subsidence play a
central role in the discussions of Chapters 10 and 12 of what can
be inferred about the form of mantle convection from observations.
The role of the continents in the earth’s thermal regime is consid-
ered separately, since continental lithosphere does not partake in
subduction like oceanic lithosphere.

The advection of heat is a phenomenon that can be understood
in quite simple terms. It is presented first in a simple way, and the
idea is then used to derive a general equation that describes heat
generation and transport, including both conduction and advec-
tion. Finally, thermal properties of materials are briefly considered,
including their likely variations with pressure. This leads into the
concept of adiabatic gradients of temperature and density.

7.1 Heat conduction and thermal diffusion

Let us start from Fourier’s ‘law’ of heat conduction, that the rate of
flow of heat is proportional to the temperature gradient:
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g = —KaT/ox (7.1.1)

where 7' is temperature, ¢ is the rate of flow of heat per unit area
(that is, the heat flux) in the positive x direction, and K is the
conductivity of the material. The negative sign ensures that heat
flows from hotter to cooler regions.

We need to be able to consider situations in which the tem-
perature varies with time and in which heat is generated by radio-
activity within the rocks. To do this, let us consider the thermal
energy budget of the small block of material sketched in Figure 7.1.
Suppose that the temperature 7" depends only on time and the x-
coordinate. The change in heat content of the block during a time
interval will be equal to the heat conducted in minus the heat
conducted out plus the heat generated internally. Suppose the tem-
perature changes by an amount d7" within a time interval ds. Then
the change in heat content H is

dH = pSdx - Cp -dT

where p is the density, .S is the area of the end surfaces of the block
(so that pSdx is the mass of the block), and Cp is the specific heat
at constant pressure of the material. The specific heat measures the
capacity of a material to hold heat, and for mantle minerals it has a
value of the order of 1000 J/kg °C. (The subscript P is used because
this is the specific heat at constant pressure. In other words it is the
change in heat content, per unit mass per degree, with the pressure
held constant so that thermal expansion is allowed to happen. It is
possible to define the specific heat at constant volume, Cy, but we
will not have any use for this here. Since the two quantities have
significantly different values, it is usual to distinguish them.)
Again taking positive heat flow to be in the positive x direction,
the heat added by conduction through the left side of the box
during the interval dz is ¢S df, and the heat lost by conduction
through the right side is (¢ + dg)S dt. If A4 is the rate of radioactive
heat generation per unit volume, the heat generated during dr is
A - Sdx - dt. The total heat budget for the time interval df is then

pSdx- Cp-dT =¢qSdt — (g +dg)Sdt+ A4 - Sdx - dt
which yields, upon dividing by S dx df and taking limits,

o g
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Figure 7.1. Heat
budget of a small
block of material
with heat transported
by thermal
conduction and with
internal heat
generation (A).
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If K is uniform (that is, independent of x), this can be written, using
Equation (7.1.1),

aT T

— =Kk 7.1.3

dt K8x2+a ( )
where

k=K/pCp

a=A/pCp

i 1s called the thermal diffusivity and a is the rate of increase of
temperature due to the radioactive heating. Notice that the
dimensions of « are length®/time. With K=3W/m°C, p =
3000kg/m> and Cp=1000J/kg°C, a typical value of « for
rocks is 107° m?/s.

Equation (7.1.3) governs conductive heat flow in situations
where the material is not moving, so that conduction is the only
method of heat transport. We will use it below to consider the
thermal structure of the lithosphere and of thermal boundary layers
more generally. It is an example of a diffusion equation. A similar
equation governs the diffusion of chemical species through solids,
for example, though without the generation term «. This is why « is
called a diffusivity. As we will see, heat conduction causes tempera-
ture differences to spread out and become more uniform, in other
words to diffuse. The term thermal diffusion is often used inter-
changeably with heat conduction: they mean the same thing, but
in cases where the temperature is changing with time it is useful to
emphasise the diffusive nature of the process by using the term
thermal diffusion.

7.2 Thermal diffusion time scales

It is a very general feature of thermal diffusion (and other forms of
diffusion) that the time it takes for a body to heat up or cool down
is related to its size in a particular way. This general property of
thermal diffusion is a key to building a simple understanding of
thermal convection. It also governs a key part of mantle convection
in a particularly simple way. In this section we look at this aspect of
thermal diffusion in different ways, in order to provide a clear
understanding of it.
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7.2.1 Crude estimate of cooling time

Suppose a layer of magma with some high temperature 7 intrudes
between sedimentary rock layers (forming a sill), as illustrated in
Figure 7.2. Can we estimate how long it will take to cool? Would it,
for example, take hours, or weeks, or centuries? Often it is possible
to get some idea of an answer by making very crude approxima-
tions. (We have already seen examples of useful rough approxima-
tions in Sections 6.8.1 and 6.9.1.)

Suppose the sill thickness is D. At first (¢ = 0) there will be a
very steep temperature gradient at the top and bottom of the sill
(Figure 7.2), but after some time, ¢, you might expect the tempera-
ture profile to have smoothed out, as sketched. This will be justified
more rigorously below. At this stage, a typical temperature differ-
ence is 7, and a typical length scale over which the temperature
varies by this much might be about half the thickness of the sill,
D/2. Let us try approximating the differentials in Equation (7.1.3)
with these large differences (assuming there is no heat generation,
so that a = 0):

T T
i ,
L (D))

which yields 1 = D?/4«. Notice that this is independent of 7.

What does this time ¢ mean? According to Equation (7.1.3),
T/t is a rough measure of the rate of change of T, so ¢ should be a
rough measure of the time it takes for the temperature to change by
a significant fraction of 7. Suppose D is 10m and « is 10~® m?/s.
Then 7 ~ 2.5 x 10’ s, which is about 9 months. If this seems to be a
surprisingly long time, it illustrates that rocks are not very good
conductors of heat. Of course this may only be an approximate
result, but it suggests that the cooling time for a 10 m sill is months
rather than hours or centuries.

Notice now that the cooling time depends on the square of
the thickness D. Thus if D is only 1 m, then # & 3 days, and if D
is 10 cm then ¢ =~ 40 minutes. This behaviour is quite characteristic

i\
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Figure 7.2. Cooling magma layer (or sill).
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of diffusion processes: the time scale depends on the square of the
length scale, with the diffusivity being the constant of proportion-
ality. In fact this is built into the dimensions of the thermal diffu-
sivity:

T (7.2.1)

This is the fundamental point to understand about time-dependent
heat conduction processes. With this simple formula, we can make
rough estimates of such things as the thickness of the oceanic litho-
sphere and the rate at which mantle convection should go. The
latter will be done in Chapter 8. You will see in following sections
that Equation (7.2.1) always emerges from a more rigorous analy-
sis, with a proportionality constant of the order of 1.

7.2.2 Spatially periodic temperature [Intermediate]

In order to keep the mathematics from being unnecessarily com-
plicated, let us approximate the initial temperature variation with
depth (x) in Figure 7.2 as

T(x,0) = Tycospx (7.2.2)

where p = 2rn/(2D) is a wavenumber, corresponding to a wave-
length of 2D. You can, if you want, regard this as the first
Fourier component of the initial square temperature variation of
Figure 7.2. Although this is still a crude approximation to the
actual initial temperature distribution, it allows a rigorous solution
of Equation (7.1.3) to be derived.

The evolution of the temperature is governed by Equation
(7.1.3) with a = 0. If the geometry and initial conditions are appro-
priate, a solution to a partial differential equation such as this can
often be found by assuming the solution to be a product of a
function of depth, x(x), and a function of time, &(¢):

T(x, 1) = x(x)O(1) (7.2.3)

(This method is called ‘separation of variables’.) Substitution of
this into Equation (7.1.3) and rearrangement leads to

1do  d%*x 1
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where 7 is a constant with dimension time. The first and second
parts of this equation must each be equal to a constant because ¢
and x can be varied independently, so the only way the two expres-
sions can remain equal is if they are each equal to the same con-
stant, which I have written with malice aforethought as —1/t. This
equation is now in the form of two ordinary differential equations,
each of which can be readily solved. Thus the first and third terms
of Equation (7.2.4) can be equated and integrated to yield

O=0,"" (7.2.5)
while the second and third terms can be rearranged as

rx_
dx?

which has a general solution of the form

x(x) = acos ¢_+ b sm\/_ (7.2.6)

We want Equations (7.2.5) and (7.2.6) to combine in Equation
(7.2.3) with the constants evaluated so that the solution matches
the initial condition, (7.2.2). This requires b =0,a0@y =T, and
p = 1/4/kt. The solution is then

T(x,t) = Tyexp(—t/7) cos px (7.2.7)
with
1 D
Pk Tk

Compare this with the crude estimate in the last section, which
yielded a time scale of D?/4«. They differ only by a factor of about
2.5. You can see again the dependence of time scale on the square
of the length scale embodied in the dimensionality of « (Equation
(7.2.1)). With this formula, the cooling time of a 10m sill can be
estimated as 4 months.

7.2.3 Why is cooling time proportional to the square of the length
scale?

A simple illustration can clarify why there is this general relation-
ship between time scale and length scale in thermal diffusion
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processes. Compare the two sinusoidal temperature distributions in
Figure 7.3, with similar amplitudes, and wavelengths of A and 2.
Heat will flow from the hotter part to the colder part. The heat flux
at the point where 7" = 0 is only half as great in case (b) as in case
(a), because the temperature gradient is less: the same temperature
difference is spread over twice the distance. Thus the rate at which
the hot part loses heat to the cool part is only half as great in case
(b): it is proportional to 1/2A.

There is another factor to be considered. So far we have
accounted for time scale being proportional only to the first
power of A. We must also take account of the fact that in case
(b) there is twice as much heat to be moved as in case (a), because
the volume of the hot region is twice as great. Twice as much heat
flowing at half the rate will take four times as long. Thus we can
conclude that the time scale for a significant reduction in the tem-
perature differences is proportional to A2,

7.3 Heat loss through the sea floor

At a midocean rise crest, or spreading centre, two tectonic plates
pull apart. It is observed that the zone of rifting is quite narrow,
only a few tens of kilometres in width. Beyond the rift zone, each
plate is a rigid unit moving away from the spreading centre. If the
plates are separating, then of course there must be a replenishing
flow of material ascending from below. I will argue in Chapter 12
that at normal midocean rises the upwelling is passive, being simply
the flow of mantle material drawn in to replace the material moving
away with the plates. In cross-section then, the situation must be
like that sketched in Figure 7.4a.

Hot material, at temperature 73, rises close to the surface at
the spreading centre. Some of it melts, and the magma rises to the
top to form the oceanic crust, but this can be ignored for the

(a) T
Iy 2
\/ x
() T )
o

Figure 7.3. Effect of length scale on cooling time.
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Figure 7.4. Cooling oceanic lithosphere.

moment. As the rising hot material approaches the cool surface, it
will begin to cool by conduction, because the surface is maintained
at a temperature close to 0 °C. If you imagine standing on one side
of the spreading centre (stick figure, Figure 7.4a), you will be car-
ried away with the plate at velocity V. The material under you will
continue simply to cool by conduction. Once you are some distance
from the spreading centre, its presence and your motion relative to
it might be ignored, in which case the only process happening
would be the conduction of heat vertically to the surface. We will
justify this assumption in retrospect. After a time, the temperature
profile with depth might look like that sketched in Figure 7.4b. As
discussed in Chapter 6, the cold material will behave like an elastic/
brittle material, and in this context it will not flow like the deeper
(solid) material. In other words, the cooled upper part will behave
like a rigid plate, consistent with what is observed.

7.3.1 Rough estimate of heat flux

We can use the results of Section 7.2 to get some idea of the thick-
ness, D, of the cooled zone. From Equation (7.2.1), it should be
approximately

D = JV«t

where 7 1s the time for which the cooling has been proceeding. The
older parts of the sea floor are over 100 Ma old. Setting t = 100 Ma
(1 year ~3.16 x 10’ s) and using « = 10 %m?/s gives D = 56km.
This says that D should be roughly a few tens to 100 km.

The larger plates are typically 5000-10 000 km across, which is
consistent with velocities of 50-100mm/a (50-100km/Ma) sus-
tained for about 100Ma. Thus plate widths are much greater
than plate thicknesses. This justifies our assumption that heat con-
duction is mainly vertical, except within about 100km of the
spreading centre. Putting it another way, the vertical temperature
gradients will be much greater than horizontal gradients, except
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near spreading centres. The plate material will be close to the
spreading centre for only about 1 Ma.

We can estimate the order of magnitude of the heat flux
through the sea floor to be expected from this conductive cooling
process. From Equation (7.1.1) it is g~ KAT/D ~ 70 mW/m>
using K =3W/m°C, AT =1300°C and D = 56km. This com-
pares with the average heat flux through the sea floor of about
100 mW/m?, decreasing to about 50 mW/m? through the oldest
sea floor.

7.3.2 The cooling halfspace model [/ntermediate]

The assumptions used above are that the temperature profile at a
given location moving with a plate is determined only by heat
conduction in the vertical direction and that the conductivity is
spatially uniform. This amounts to assuming that the mantle is a
uniform infinite halfspace (that half of an infinite space below
z = 0). With the initial condition that 7'(z, 0) = T, the boundary
condition that 7(0,7) =0 and the assumption that radioactive
heating can be neglected (so @ =0) Equation (7.1.3) has the
solution

T(z, 1) = Tmerf(zi@) (7.3.1)

where erf stands for the error function:
erf(x) = = / e ap (7.3.2)
X)=— 3.
VT o

The derivation of this result is outlined in the next section. The
error function looks like the temperature profile sketched in Figure
7.4b. It has the value 0.843 at x = 1.

The temperature in this solution depends on depth and time
only through the combination [z/2./(k?)]. Thus, for example, the
temperature reaches 84% of its maximum value when
z/2/(kt) = 1. In other words, the depth, D, to the isotherm 7 =
0.84T,, is

D =2kt (7.3.3)

This is just twice the value resulting from the rough estimate of the
last section. Using x = 10~ ®m?/s, the depth to this isotherm is thus
112km at 100 Ma. More generally, you can see that the propor-
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tionality between length? and time has emerged again in this solu-
tion. It implies here that the thickness of the lithosphere should be
proportional to the square root of its age. Thus D should be 56 km
at 25Ma and 11.2km at 1 Ma. An impression of this thickening
with age is included in Figure 7.4a as the dashed curves.

We can calculate the heat flux through the sea floor from this
solution. For this, we need the result

derf(x) ., = 2 _p
P _erf(x)_ﬁe

This follows from the fact that erf(x) depends on x only through
the upper limit of the integral in Equation (7.3.2), and can be
derived using basic calculus methods for differentiating integrals
with variable limits. If we identify x with z/2./(kf), we can use
the chain rule of differentiation:

8T_Tderf(x)8_x_T 2 21

9z ™ dx oz "Um 2kt

Then the heat flux at z =0 1s

aT KT
= —K— = — m
o az o Tkt

Zz=l

(7.3.4)

Thus the heat flux declines with time in proportion to ¢ />, The
minus in Equation (7.3.4) is because the heat flux is upwards, which
is the negative z direction.

We saw in Chapter 4 (Figure 4.7B) that the observations of
heat flow through the sea floor follow this behaviour to within the
errors of measurement. The values used above yield a heat flux of
39mW/m? for 100 Ma-old sea floor, compared with observed
values of 40-50 mW/m?. This very simple model, which approxi-
mates the earth below the sea floor as a uniform halfspace, thus
gives a remarkably good description of the observed heat flux
through the sea floor.

The physics we have considered here is the same as was con-
sidered last century by Lord Kelvin in making his estimate of the
age of the earth (Chapter 2). His assumptions were that the earth
had started hot and that it had been cooling by conduction to the
surface ever since. He asked how long it would take for the near-
surface temperature gradient (or the surface heat flux) to fall to the
presently observed values. This is explored further in Exercise 4.
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7.3.3 The error function solution [Advanced|

Since it is a central result in our understanding of oceanic litho-
sphere, and through that of mantle convection, I will outline the
derivation of the error function solution. Another account is given,
for example, by Officer [1]. A general form of solution to Equation
(7.1.3) (with a = 0) is

T(z, t,y)= exp(—/cyzt)[B()/) cos yz + C(y)sin yz| (7.3.5)

where the notation shows explicitly the dependence of T on the
wavenumber y. This form is just a more general version of
Equation (7.2.7), and it can be derived in the same way. The coeffi-
cients B and C are also assumed to depend on y because we can
use this form to Fourier synthesise the total solution. This can
be done by first Fourier analysing the initial condition
T(z>0,0)=T,, T(0,0) = 0; then the time dependence of each
Fourier component will have the above form. Thus the forms of
B and C can be derived from the Fourier integrals of the initial
condition:

1 o0
B = [ Teoeosyede

-0

1 [~ .
=1 [ T@osinyeds

The top boundary condition can be matched by assuming that
the solution is antisymmetric about z=0:7T(z<0,0)=
—T1(z > 0,0) = —T,,. Substitution into these integrals then yields

B(y)=0

) =21, [ sinyeae
n 0
The Fourier synthesised solution is then of the form
1o = [ TG0y
0

= / exp(—ky*)C(y) sin yz dy
0

2T [ [~ . .
=—= / / exp(—ky 1) sin ysin yzdy d¢
T Jo Jo
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where the expression for C has been substituted and the order of
integration reversed in the third line.
The following two results allow this to be rewritten:

sin A sin B = [cos(4 — B) — cos(4 + B)]/2

[ expncose -y =5 [E expl(c - 27 e
0 Kt

Then

T o]
T(z, )= 2_;‘: \/% /0 [e,@,z)z/m _ ef(§+z)2/4/cti| de

Transform the internal variables in each of these integrals to the
following;:

B=n(¢ - 2), B =n(+2)

where n = 1/2./(kf). Then the integrals have the same form, but
over different ranges of g and ', so they can be combined to yield

7. ("™ 2

T(z, 1) =2 Fd
co=p[ o
2T, [

NZAN

= Tyerf(nz)

efﬂzdﬂ

which is the solution defined by Equations (7.3.1) and (7.3.2).

7.4 Seafloor subsidence and midocean rises

If the lithosphere cools, it will undergo thermal contraction. As a
result, the surface (the sea floor) will subside, and the amount of
subsidence can be roughly estimated as follows. If the temperature
rises from 0 °C to about 1400 °C through the thickness of the litho-
sphere, then the average temperature of the lithosphere is about
700 °C. This means that the average temperature deficit of the litho-
sphere relative to the underlying mantle is A7 = 1400°C -
700 °C = 700 °C. This will cause the density to increase by the frac-
tion Ap/p = a AT, where « is the coefficient of thermal expansion.
If the lithosphere thickness is D, then a vertical column of rock of
height D through the lithosphere will shorten by this fraction. In
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other words, the shortening, /, of the top of the column will be
given by

h/D = aAT

This shortening / is not the actual amount by which the surface
subsides, since the rock that has subsided away is replaced by
water. We have to consider the isostatic balance of the column
relative to a similar column at the midocean rise crest. These are
illustrated in Figure 7.5. The mass per unit area in the column at
the rise crest is (d + D — h)p,,, while the mass per unit area in the
other column is [dp, + (D — h)p]. Equating these, and neglecting
second-order terms yields

d = hpw/(Pn — Pw) (7.4.1)

Old lithosphere (say 100Ma) is about 100km thick and
@~ 3 x107°/°C. Then h=2.1km. Using p, =3.3Mg/m’ and
pyw = 1.0 Mg/m?, this implies d ~ 3.0km. Old sea floor is indeed
observed to be about 3km deeper than midocean rise crests
(Chapter 4, Figures 4.5, 4.6). This result suggests that the greater
depth of the old sea floor relative to midocean rise crests may be
explained simply by the thermal contraction of the lithosphere. In
other words, the existence of the midocean rise topography may be
explained by this cooling process.

We can test this idea more rigorously by using the solution to
the thermal halfspace model obtained above. Each layer of thick-
ness dz at depth z will have a temperature deficit of
AT(z, ) =T, — T(z, 1). Then the total thermal contraction will be

h(t) = /0 " GAT(z, )dz

Using the result that

Water, p,,

Lithosphere, p;
Mantle, p,,, D-h

Figure 7.5. Seafloor subsidence by thermal contraction, with isostasy.
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e 1
[1 —erf(x)]dx =—
/0 VT
and making the appropriate variable transformation in the integral
expression for /1, this combines with Equation (7.4.1) to yield

P T ) Kt

d = =
(prn - pw) T

(7.4.2)

Using the same values as previously, this gives d = 3.8km at
t = 100 Ma.

Equation (7.4.2) predicts that the seafloor depth should
increase in proportion to the square root of its age. We saw in
Chapter 4 (Figure 4.6) that the sea floor does follow this behaviour
to first order, particularly for ages less than about 50 Ma. At
greater ages, many parts of the sea floor are shallower than this
by up to about 1 km. The possible reasons for such deviations will
be discussed in Chapter 12.

Here I want to emphasise the further success of the cooling
halfspace model in accounting for most of the variations of both
the heat flux through the sea floor and the depth of the sea floor
with age. It is a remarkably simple and powerful result, which
suggests that major features of the earth’s surface can be explained
by a simple process of near-surface thermal conduction. It also
suggests that we can usefully think of the midocean rises as stand-
ing high by default, because the surrounding sea floor has subsided,
rather than the rises having been actively uplifted.

The success of the cooling halfspace model in accounting for
seafloor subsidence and heat flux suggests some very important
things about the earth and about mantle convection. The midocean
rise system is the second-largest topographic feature of the earth
after the continents, and we have seen here that it can be accounted
for by a simple near-surface process: conductive heat loss to the
carth’s surface. Its explanation does not require any process operat-
ing deeper than about 100 km, and in particular it does not require a
buoyant convective upwelling under midocean rises, as has often
been supposed (see Chapter 3). If the midocean rise topography is
not an expression of deep convection, as I am suggesting here, this
leads to the question of why there is not some more obvious expres-
sion in the earth’s topography of deep convection. These questions
will be taken up in later Chapters 8, 10, 11 and 12, where they will
lead to some important conclusions about the form of mantle
convection.
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Table 7.1. Heat-producing isotopes [2].

Half life Power
Element Isotope (Ga) (LW/kg of element)
Uranium 28y 4.468 94.35
23y 0.7038 4.05
Thorium 232Th 14.01 26.6
Potassium oK 1.250 0.0035

7.5 Radioactive heating

Radioactivity generates heat, and radioactive heat generated in the
carth sustains the earth’s thermal regime, as we will see in Chapter
14. There are two aspects that I want to cover here: its effect in
modifying continental geotherms and its contribution to the heat
budget of the mantle.

The isotopes that make the main heat contributions are “°K,
28U, °U and ***Th. Each of these has a half life of the order of 1—
10 Ga. (If they had shorter half lives, they would not still be present
in significant quantities.} Their half lives and current rates of heat
production are given in Table 7.1.

Geochemists find that these elements occur in similar propor-
tions relative to each other in the crust and mantle, although their
absolute concentrations differ greatly. Thus the mass ratio Th/U is
usually 3.5-4 and the ratio K/U is usually 1-2 x 10*. It is sufficient
for our purposes to assume the particular values Th/U = 4 g/g and
K/U = 10" g/g. (The unit g/g may seem to be redundant, but it
serves to specify that this is a ratio by weight, rather than by mole
or by volume, for example.) With these ratios, the total power
production due to all of these isotopes, expressed per kg of uranium
in the rock, is 190 pW/(kg of U). Then representative values of the
concentration of uranium in different rocks allow us to estimate the
total rate of heat production. Such estimates are given in Table 7.2.

These are only representative values, and there is considerable
variation, especially in the continental crust. These values probably
tend to be on the high side of the distribution. For the upper
mantle, Jochum and others [3] have estimated on the basis of mea-
surements of representative rocks that the likely value of the heat
production rate is 0.6 pW/kg, with the value unlikely to be as great
as 1.5pW/kg.

You will see in the next section that heat production in the
upper continental crust is sufficient to account for about half of
typical continental heat fluxes. For example, a heat production rate
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Table 7.2. Radiogenic heat production rates, assuming Th/U =
4kglkg, K/U = 10* kglkg. U concentrations from [4, 5].

Concentration Power Density Power

Region of U (pW/kg) (Mg/m?) (nW/m®)
Upper continental crust 5 pg/g 1000 2.6 2600
Oceanic crust 50 ng/g 10 2.9 30
Upper mantle S ng/g 1 33 3
Chondritic meterorites” 20 ng/g 4-6 33 12-18

“With K/U = 2-6 x 10" kg/kg.

of 2.5 yW/m’ through a depth of 10 km will produce a surface heat
flux of 25 mW/m?, compared with typical continental values of 60—
100mW/m>. On the other hand, the oceanic crust produces very
little heat (30 nW/m? through 7km gives 0.2 mW/m?).

There is a puzzle about the amount of heat production in the
mantle. It is not clear that there is enough radioactivity to account
for the heat being lost at the earth’s surface. Heat production is
small in the upper mantle: 3nW/m? through a depth of 650km
yields 2mW/m?. If this heat production rate applied through the
whole 3000 km depth of the mantle, the surface heat flux would still
be only about 10mW/m?. To account for the observed average
oceanic heat flux of 100 mW/m? requires heat production in the
mantle to be closer to that of oceanic crust. Some of the deficit
can be accounted for by the slow cooling of the earth’s interior, as
will be shown in Chapter 14, and some may be explained by a
greater heat production in the deeper mantle, either because the
deep mantle composition is more “primitive’ (that is, closer to that
of chondritic meteorites) or because there is an accumulation of
subducted oceanic crust at depth, or both (Chapters 13, 14).
Another contribution comes from mantle plumes, but these seem
to account for less than 10% of the total (Chapter 11). In any case,
there is a significant discrepancy here that has not been entirely
accounted for. It is believed that none of the principal heat-produ-
cing elements would dissolve in the core in significant quantities,
which implies that the discrepancy cannot be made up there. The
question is addressed again in Chapters 12 and 14.

7.6 Continents

In the theory of plate tectonics, the continents are part of the litho-
spheric plates, carried passively as the plates move. Although the
assumption that plates are non-deforming is not as good in con-
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tinental areas as in oceanic areas, it is nevertheless sufficiently true
to be a useful approximation. If the continents are part of the
lithosphere, then heat transport within them must be by conduction
rather than by convection (assuming that heat transport by perco-
lating liquids, such as water or magma, is not important in most
places most of the time). This was assumed in Section 7.3 for the
oceanic lithosphere. There is, however, an important difference
between the continental lithosphere and the oceanic lithosphere,
and this is that the continental lithosphere is much older, since
we know that most continental crust is much older. Whereas we
treated the oceanic lithosphere as a transient (time-dependent)
cooling problem, the continental thermal regime is more likely to
be near a steady state, as we will now see.

The more stable parts of the continents, the cratons and
shields, have not had major tectonic activity for periods ranging
from a few hundred million years up to a few billion years. Their
heat flux tends to be lower, 40-50 mW/m?, than younger parts of
the continents (Figure 4.8) It is often assumed that they are in
thermal steady state, that is the heat input (from below and from
radioactivity) balances the heat loss through the surface. Is this
reasonable? We saw in Section 7.2 that the time scale for cooling
oceanic lithosphere to a depth of 100 km is about 100 Ma. The time
scale to cool or equilibrate to a depth of 200km would then be
about 400 Ma. It would thus seem to be reasonable to assume that
at least the Archean shields, and perhaps the Proterozoic cratons,
had approached equilibrium. I do not want to belabour this point
either way. It is instructive to assume that the older continental
geotherms are roughly in steady state, but on the other hand
most continental areas have had some tectonic activity within the
last billion years or so, and little is known about whether the litho-
sphere might have had a constant thickness during such periods.

The typical heat flux out of continents of about 60 mW/m? is
due partly to heat generated within the continental crust and partly
to heat conducting from the mantle below. The relative proportions
of these contributions are not known very accurately, but they seem
to be roughly comparable. The heat-producing elements tend to be
concentrated in the upper crust, and a common and useful assump-
tion is that their concentration decreases exponentially with depth,
with a depth scale of about /4= 10km. At the surface the heat
production rate is of the order of 1 nW/kg, so that the heat produc-
tion rate per unit volume is A4, ~2.5uW/m>. The crust is very
heterogeneous, so you should understand that these are merely
representative numbers. Thus we might assume that the heat
production rate as a function of depth is
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A= Ape " (7.6.1)

Let us assume that a piece of continental crust is in thermal
steady state, which implies that the lithosphere thickness, the heat
production rate and the distribution of heat production with depth
have all been constant for a sufficiently long time. Let us also
assume that heat is transported only by conduction, which excludes
transport by percolating water or magma and transport by defor-
mation of the crust and lithosphere. By steady state I mean simply
that the temperature at a given depth is not changing, so that
aT /9t = 0. Then Equation (7.1.3), which governs the evolution of
temperature by conduction, is

(7.6.2)

where K is the conductivity.

We know that the temperature at the earth’s surface is about
0°C and its gradient is constrained by the surface heat flux. From
Equation (7.1.1), the surface gradient Ty = —gqy/K ~20°C/km,
taking ¢y & —60mW/m? and K = 3W/m°C. Equation (7.6.2) is a
differential equation and these are the boundary conditions:

T, =0°C, T§=20°C/km (7.6.3)

Suppose, for the moment, there were no radioactive heat pro-
duction in the crust: 4 = 0. Then the solution to Equation (7.6.2)
with these boundary conditions is

T="Ty+ T4z (7.6.4)

With the values of Equations (7.6.3), the temperature at the base of
the crust, about 40 km deep, would be 800 °C, at which temperature
the crust would be likely to be melting, depending on its composi-
tion. The temperature at 60 km depth would be 1200 °C, at which
depth the mantle would almost certainly be melting. Since seismol-
ogy tells us that the mantle is largely solid, this suggests that at least
one of our assumptions becomes invalid at some depth of the order
of 60 km.

Now let us return to the assumption that there is radioactive
heat generation, and that its variation with depth is given by
Equation (7.6.1). Then the solution to Equation (7.6.2) with the
same boundary conditions is
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2
T=T, +M<1 _e*Z/h> + (TO/ _A_Oh)z
K K (7.6.5)

— T, + Th<1 . e*zﬂi) Tz

The solutions (7.6.4) and (7.6.5) are sketched in Figure 7.6.
Equation (7.6.5) approaches an asymptote at depth, line (a),
given by

T =(Ty+ Ty) + Tz (7.6.6)

At 40km depth the term ¢ " is already as small as 0.018, so for
greater depths the asymptote is a good approximation. Using this,
it is easy to calculate that the temperature at 40 km depth is 550 °C,
compared with 800°C from Equation (7.6.4) without radioactive
heating. The depth at which 1200 °C is reached is 96 km, compared
with 60km without radioactive heating. The mantle below the
lithosphere is believed to be at a temperature of 1300°C to
1400 °C. Assuming the latter, the lithosphere could be no more
than 113 km thick using the values assumed here. This is relatively
thin, and might be appropriate for a relatively young continental
province.

It might seem paradoxical that lower temperatures have been
calculated when radioactive heating has been included, in Equation
(7.6.5), compared with temperatures from Equation (7.6.4) with no
radioactive heating. In order to clarify this, I will spend some time
explaining some aspects of this solution. The reason for the lower

A=0 A=Ay
T 7
7~
7~
7~
F Pad
@) 74 - -
Th / -~
~,
3
N Ad ®
Depth, z

Figure 7.6. Sketch of calculated continental geotherms. Geotherm with no
radioactivity (4 = 0, light solid line), with radioactivity given by Equation
(7.6.1) (heavy solid). Line (a) is the asymptote of the heavy curve. Line (b)
is the geotherm, with 4 = 0, that would match the temperature at the
surface and the temperature gradient below the zone of radioactive heating.
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temperatures is that the temperature gradient was fixed at the sur-
face. Physically you can think of it as follows. If the temperature
gradient is fixed at the surface, then so is the surface heat flux. If
there is no crustal radioactive heat generation, then all of that heat
flux must be coming from below the lithosphere. This requires that
the temperature gradient must equal the surface value right
through the lithosphere (assuming for simplicity that the conduc-
tivity is constant). On the other hand, if some of the heat comes
from radioactivity near the surface, then below the heat-generating
zone the heat flux will be less, so the temperature gradient will also
be smaller. This is why the geotherm in this case bends down
(Figure 7.6) and reaches lower temperatures at depth than the
geotherm with no heat generation (but with the same temperature
and temperature gradient at the surface).

If we required instead to keep the same heat flux into the base
of the lithosphere, then with no heat generation the result would be
line (b), with a slope of T}, = Tj — Ayh/K. This matches the sur-
face temperature and has the same temperature gradient at the base
of the lithosphere. You can see that including heat generation raises
the temperature relative to line (b). This comparison is more in
accord with simple intuition. It also illustrates what is sometimes
called thermal blanketing: the geotherm with heating is hotter by
the amount 73, = thz/K. With the values used above, 7}, = 83 °C.

The heat flux through the base from the mantle, using the
above values, is ¢, = KT, = 35mW/m’. The heat flux due to
radioactive heating is in this case g, = Aph =25mW/m”. Thus
you can see that in this case the total surface heat flux of 60 mW/
m? is the sum of 35mW/m? from the mantle and 25 mW/m? from
radioactive heating. If the lithosphere were thicker, the heat flux
from the mantle would be less, as would the total surface heat flux.

From the point of view of considering mantle convection, an
important question is how much heat escapes from the mantle
through the continents, since this heat is not then available to
drive mantle convection. This is the amount of heat entering the
base of the continental lithosphere, and it is determined essentially
by the thickness of the continental lithosphere, as modified by the
thermal blanketing effect of radioactivity in the upper crust. Thus
the long-term or steady-state conducted heat flux is determined by
the temperature gradient (7, — 73,)/D. The mantle temperature 77,
does not vary much in comparison with variations in the litho-
sphere thickness D, and you have just seen an estimate that the
thermal blanketing effect of radioactivity is to raise the effective
surface temperature by about 80 °C, which also is small in compar-
ison with the total temperature difference. Thus if we take the
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effective temperature difference across continental lithosphere to be
about 1200 °C and a typical range of thickness to be 100-250 km,
we get a range of heat flux out of the mantle of 14-36 mW/m?, with
an average of perhaps 20-25mW/m?,

Continental crust covers about 40% of the earth’s surface, with
an area of about 2 x 10'* m?, so the total heat loss from the mantle
through continents is about 4-5TW, about 10% of the global heat
budget. Thus the mantle heat loss through the continents is not a
large fraction of the total. In fact it is such a small fraction that we
can regard the continents as insulating blankets. The complemen-
tary role of oceanic heat loss will be taken up in Chapter 10.

7.7 Heat transport by fluid flow (Advection)

So far we have looked at heat transported by thermal conduction,
but heat can also be transported by the motion of mantle material.
Suppose, for example, that mantle material with a temperature
of T, = 1500°C replaces normal mantle at 73, = 1400 °C. Then
the local heat content per unit volume is increased by
pCpAT = pCp(Ty, — Thy). With p = 3300kg/m> and Cp = 10001J/
kg °C, the increase is 3.3 x 10° J/m®. Now, referring to Figure 7.7,
suppose the hot material is flowing up a vertical pipe of radius
R=50km at a velocity v=1 m/a ~3x 10 °m/s. Then the
volume of hot material that flows past a point on the pipe within
unit time is ¥ = nR*v &~ 250m’/s. The amount of extra heat that
has been carried past this point within unit time is

0 = VpCpAT = nR*vpCpAT (7.7.1)

With the above values, O &~ 8 x 10'°J/s = 8 x 10" W: this is the
heat flow rate. The heat flux is

g = Q/nR> = vpCpAT (7.7.2)

Then ¢ & 10 W/m?. This heat flux is a much higher value than the
conducted heat fluxes we discussed above. The heat flow, Q, is
about 0.2% of the global heat budget, despite the small area of
the pipe in comparison with the surface area of the earth. This
example has been tailored to approximate a mantle plume, and
these will be discussed in more detail in Chapter 11.

This process of heat transport by mass motion is called advec-
tion. It usually accounts for most of the heat transport in convec-
tion. In fact, you will see in Chapter 8 that in a sense convection
only occurs when conduction is inadequate to transport heat. You
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can see from the above example that advection can transport much
greater heat fluxes than conduction in some situations.

The distinction between advection and convection is that the
term advection is used to refer to heat transport by mass motion
regardless of the source of the mass motion, whereas in convection
the motion is due specifically to the internal buoyancies of the
material. Thus when you stir your coffee with a spoon, you force
fluid motion that transports heat around in the cup by advection.
On the other hand, if you let the cup sit, the top of the coffee will
cool and sink, producing convection that will also advect heat.

7.8 Advection and diffusion of heat
7.8.1 General equation for advection and diffusion of heat

The approach just used in Section 7.7 can be used to derive an
equation that governs the evolution of temperature in the presence
of both conduction (diffusion) and advection. Advection occurs
when there is fluid motion and when there are temperature differ-
ences within the fluid: if the temperature is homogeneous, then
there is no net heat transport. In Section 7.1 we considered heat
conduction in one dimension (the x direction). If we now suppose
that in addition to the other things happening in Figure 7.1 there is
a flow with velocity v in the positive x direction, then we should add
two terms to the right-hand side of the heat budget for the little
box:

Svdt - pCpT — Sudt - pCp(T + AT)

You can recognise these as the heat advected into the box through
the left-hand side, within the time interval d¢, minus the heat
advected out through the right-hand side. Dividing again by
S - dx-dt and taking the limit yields the extra term on the right-
hand side of Equation (7.1.2)

oT
ax

Equation (7.1.3) can then be generalised to

aT AT T
T i 7.8.1
at T ox o a2 ta ( )
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Here the advection term is placed on the left-hand side, and you
can see it depends on there being both a fluid velocity and a tem-
perature gradient.

This equation can readily be generalised to three dimensions
just by considering heat transport in the other two coordinate
directions of Figure 7.1. The result is

8T+ aT . FT a
a0t
a ' ax; 9x,;9x;

(7.8.2)

where 1 have used the summation convention (Box 6.B1). This
equation governs the evolution of temperature in the presence of
advection, diffusion (conduction) and internal heat generation.

We now have the conceptual and mathematical tools to con-
sider convection. We have looked at viscous fluid flow, including
examples driven by buoyancy forces, and at heat transport.
Convection involves the combination of these processes. Their gen-
eral mathematical description is embodied in Equations (6.6.1),
(6.6.3) and (7.8.2). Convection will be discussed in Part 3.

7.8.2 An advective-diffusive thermal boundary layer

Here is a relatively simple illustration of the simultaneous occur-
rence of advection and diffusion. We will see in Chapter 11 that
mantle plumes are believed to transport material from the base of
the mantle, where mantle material is heated by heat flowing out of
the core, which is believed to be hotter. This heat will generate a hot
thermal boundary layer at the base of the mantle. The thickness of
this boundary layer will depend on the rate at which material flows
through it, and also on the form of that flow. If the flow is basically
horizontal, like the bottom of a large-scale convection cell, then the
boundary layer thickness will depend on the time for which mantle
material is adjacent to the hot core. The theory of Section 7.3 will
then apply. In this case the bottom thermal boundary layer would
be analogous to the top thermal boundary layer (the lithosphere),
and its thickness would be proportional to the square root of the
time spent at the bottom of the mantle. It is conceivable, however,
that the large-scale, plate-related flow penetrates only minimally to
the bottom of the mantle (Chapters 10, 12), and that the dominant
flow near the bottom is a vertical downwards flow that balances the
material flowing upwards in plumes. In this case the relationship
between the advection and diffusion of heat would be different
from that in Section 7.3. We now look at this possibility.
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The situation is sketched in Figure 7.8. Material flows slowly
downwards with velocity v = — V. Hot, low-viscosity material flows
rapidly sideways within a thin layer adjacent to the core, and then
into narrow plumes where it rises rapidly upwards. Away from the
plumes and above the thin channel at the base, the flow can be
approximated as being vertical. We now derive an expression for
the temperature in this region, as a function of height, z, above the
core.

If we assume that there is a steady state and no heat generation,
then Equation (7.8.1) reduces to

dr

T
ool — 8
dz

e (7.8.3)

K

Note first of all that if we use a representative temperature scale
AT and a representative length scale /2, then rough approximations
to the differentials in this equation yield

h= /v (7.8.4)

Thus this ratio contains an implicit length scale, /, which we can
also see from the dimensions of « and v.

Using Equation (7.1.1) for the heat flux, ¢, Equation (7.8.3) can
be rewritten as

ldg v V 1

5& K K h
which defines the length scale 42 = «/V for the particular problem in
Figure 7.8. This equation can be integrated to give

i=aven(~2)

Figure 7.8. Sketch of the flow associated with a mantle plume drawing hot
material from the base of the mantle. The temperature at the bottom
boundary is T}, and the temperature of the ambient mantle is 7,,,. Away
from plumes, mantle material is assumed to flow vertically downwards with
velocity v = —V. A thermal boundary layer (dashed line) forms above the
core-mantle boundary.
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where ¢, is the heat flux into the base. This in turn can be inte-
grated to give

h
T— Tm+%exp<—%> (78.5)
where K is the conductivity. The temperature at the boundary,
z =20, is then

In Chapter 11 we will see that the total heat flow carried by
plumes is about 3.5 TW, roughly 10% of the heat flowing out of the
top of the mantle. This heat is inferred to be flowing out of the core.
Since the surface area of the core is only about % of the surface area
of the earth, the heat flux out of the core is then about 40% of the
surface heat flux, or about 30 mW/m2 . In Exercise 12, later, you can
deduce that the downward velocity is about ¥ = 1.3 x 10! m/s
(0.4mm/a). Then taking the density at the base of the mantle to
be 5600kg/m> and other quantities from Table 7.3, below, we
obtain 2= 115km and 7}, — T, = 385°C.

The physics described by this solution is that mantle material
slowly flows down towards the hot interface with the core and heat
conducts upwards against this flow. Thus upwards thermal diffu-
sion is competing against downwards advection of heat. In the
steady state, the temperature declines exponentially towards the
ambient mantle temperature as a function of height above the inter-
face. This thermal boundary layer has a characteristic thickness of
the order of 100 km and a temperature increase across it of about
400 °C, according to the numerical values we have used.

7.9 Thermal properties of materials and adiabatic
gradients

7.9.1 Thermal properties and depth dependence

We have already encountered most of the important thermal prop-
erties of materials that we will be needing in this book. It is useful
to summarise them here, with some typical values. This is done in
Table 7.3. However there is one aspect that we have not yet
encountered, and that is the variation with depth of some of
these properties, and of the temperature in the convecting mantle.
Although we will not be much concerned with these depth varia-
tions, because the effects are secondary to the main points I want to
demonstrate, they are nevertheless significant and worth noting.
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Table 7.3. Representative thermal properties of the mantle [6].

Value Value

Quantity Symbol P =0 CMB Units
Specific heat at constant pressure Cp 900 1200 J/kg°C
Thermal conductivity K 3 9 W/m°C
Thermal diffusivity i 1076 1.5x 107 m?/s
Thermal expansion coefficient o 3x107° 0.9x 107 /°C
Griineisen parameter y 1.0-1.5 09

Some estimates of values at the base of the mantle (CMB or core—
mantle boundary) are included in Table 7.3. These are modified
from Stacey’s [6] values, mainly by using higher values of the ther-
mal expansion coefficient.

7.9.2 Thermodynamic Griineisen parameter

The thermodynamic relationships governing the depth dependence
of the temperature can be expressed most concisely in terms of a
parameter known as the thermodynamic Griineisen parameter, .
It is related to the thermal expansion coefficient, and this relation-
ship is most directly evident if we define y as [6]

L [opP
=— == 7.9.1
’ pCy (3T)V ( )

where Cy is the specific heat at constant volume. This definition
shows that y is a measure of the rate at which pressure increases as
heat is input while volume is held constant. For comparison, the
thermal expansion coefficient is

|l e

Thus « is a measure of the rate at which volume increases as heat is
input while pressure is held constant, and « and y are complemen-
tary measures of the effect of heating. Another way to think of y is
that it measures the pressure required to prevent thermal expan-
sion.

Two other useful expressions for y can be derived with the help
of thermodynamic identities. The latter are complicated, and can be
found in standard thermodynamics texts. A concise summary is
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provided by Stacey [6]. I will just quote the results here. The first
form is

oKy ow%
y=—=— (7.9.3)
pCp  Cp
where Ky = p(dP/dp)s is the adiabatic bulk modulus, subscript S
indicates constant entropy, and v, is the bulk sound speed (Section
5.1.4). The second form is

V (oT p (dT
A B Y e 794
Y T(aV)S T(ap)s (7:54)

where V is specific volume (that is, volume per unit mass: V' = 1/p).

7.9.3 Adiabatic temperature gradient

As mantle material rises and sinks in the course of mantle convec-
tion, thermal diffusion is so inefficient at large scales that through
most of the mantle it can be neglected. At the same time, there are
large changes of pressure accompanying the vertical motion. A
process of compression with no heat exchange with surroundings
is called adiabatic compression. If it happens slowly, so that it is
reversible, it is characterised by having constant entropy. A parcel
of mantle that sinks slowly through the mantle experiences such
adiabatic compression. During adiabatic compression, although
there is no heat exchange with surroundings, the increasing pres-
sure does work on the material as it compresses, and this increases
the internal energy of the material, which is expressed as a rise in
temperature. We will now estimate this adiabatic increase in tem-
perature with depth in the mantle.

The Grineisen parameter provides a convenient way to make
this estimate. The Griineisen parameter in the mantle can be esti-
mated most reliably from Equation (7.9.3), since Ky, p and v, are
known from seismology (Section 5.1.4). Cp does not vary much
with pressure. The thermal expansion coefficient is the least well
constrained, and it is likely to decrease substantially under pressure
[7], as indicated in Table 7.3. This is counteracted by the increase of
v, with depth (Figure 5.3). The result is that y does not vary greatly
with depth, being about 1-1.5 in the peridotite and transition zones
and decreasing to slightly less than 1 at the bottom of the mantle.

If y does not vary greatly through the mantle, then the assump-
tion that it is constant will be a reasonable approximation. In this
case, Equation (7.9.4) can be integrated to yield
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T (o)

where the subscripts 1 and u refer to lower mantle and upper
mantle, respectively. With p; = 5500kg/m’, p, = 3300kg/m>, and
y = 1.0-1.5, this yields 77/T, = 1.7-2.15. However, about 800 kg/
m® of the density increase through the mantle is due to phase
transformations, through which Equation (7.9.4) does not apply.
If we take instead p; = 4700kg/m>, then Ti/T, = 1.4-1.7. With
T, = 1300 °C, this indicates that the adiabatic increase of tempera-
ture through the mantle is about 500-900°C, and 7}=
1800-2200°C.

A schematic temperature profile through the earth is shown in
Figure 7.9. A more quantitative version is not given here, both
because we are not concerned with details, and because the uncer-
tainties are so large that greater detail is hardly justified. For exam-
ple, various estimates put the temperature jump across the lower
thermal boundary layer of the mantle at anything between 500 °C
and 1500°C, with some estimates even higher [6, 7], so that
T, = 23003700 °C. However, it is hard to reconcile these higher
values with the dynamics of plumes (Chapter 11), even taking
account of the likelihood of a layer of denser material at the base
of the mantle (Chapter 5). Stacey [6] estimates the adiabatic tem-
perature increase through the core to be about 1500 °C, so that the
temperature at the centre of the earth might be 7, = 3800—5000 °C.

7.9.4 The super-adiabatic approximation in convection

Although the adiabatic increase of temperature through the mantle
is quite large, it is not of great concern to us in this book. This is
because convection will only occur if the actual temperature gra-
dient exceeds the adiabatic gradient, as I will explain in a moment.
We can therefore focus on this super-adiabatic gradient. An effec-
tive way to do this is to subtract the adiabatic gradient out of the
mantle temperature profile for convection calculations, or in other
words to neglect this effect of pressure.

To see that convection requires a super-adiabatic gradient, sup-
pose that the interior of the mantle has an adiabatic gradient, as
sketched in Figure 7.9. You might suppose at first that since the
deeper mantle is hotter than the shallow mantle, it will be buoyant
and therefore drive convection. However, if a small portion of this
deep mantle rises vertically, it will decompress adiabatically as it
rises and its temperature will follow the adiabatic profile. Thus it
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Figure 7.9. Schematic temperature profile through the earth. Thermal
boundary layers are assumed at the top of the mantle (the lithosphere) and
the bottom of the mantle. Numerical values of the temperatures are quite
uncertain (see text). The grey arrows show adiabatic compression and
decompression paths of material from the thermal boundary layers.

will remain at the same temperature as its surroundings and no
thermal buoyancy will be generated.

In order to have buoyancy that will drive convection, a deep
portion of the mantle must start hotter than its surroundings, as
would for example material from the lower thermal boundary
layer. It may then follow an adiabatic decompression path that is
sub-parallel to the mantle adiabat, and consequently remain hotter
and buoyant as it rises. Such a path is illustrated in Figure 7.9. An
analogous path is also shown for descending, cool, negatively
buoyant lithospheric material. Of course these portions of the man-
tle may exchange heat with the surrounding mantle by thermal
diffusion, in which case their paths will tend to converge towards
the mantle adiabat, but their initial buoyancy will be approximately
preserved within a larger volume of material.
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7.11 Exercises

1. Use Equation (7.2.1) to estimate the time it would take for
a sill of thickness 100 m to cool substantially.

2. During the ice age, glaciers kept the surface of Canada
cooler than at present. The glaciers had melted by about
10 000 years ago. To about what depth in the crust would
the subsequent warming of the surface have penetrated?

3. [Intermediate] Complete the derivation of Equation (7.2.7).
Either integrate the equations or show that the forms used
are solutions of the relevant equations. Apply the initial
condition to evaluate the constants of integration.

4. Use Lord Kelvin’s argument to estimate the age of the earth
from the fact that the rate of temperature increase with
depth in mines and bore holes is about 20 °C/km and
assuming the upper mantle temperature to be 1400 °C.
Comment on the relationship between your answer and the
age of oceanic lithosphere.

5. [Advanced) Derive the general solution (7.3.5), using the
same approach as in Exercise 3.

6. Using values in Table 7.2, calculate the thicknesses of layers
composed of (i) upper continental crust, (i) oceanic crust,
and (iii) chondritic meteorites required to produce the
average heat flux of 80 mW/m” observed at the earth’s
surface. What constraints does this impose on the
composition of the continental crust and the mantle?

7. Calculate, by integration from the surface to great depth,
the total rate of heat production per unit surface area
implied by Equation (7.6.1).

8. Derive the solution (7.6.4) for temperature versus depth
from Equations (7.6.2) and (7.6.3).
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