
CHAPTER 7HeatHeat transport is an integral part of convection. Heat is trans-ported in two principal ways in the mantle: by conduction andby advection. Advection means that heat is carried along withmass motion. Heat is also generated internally by radioactivity.Here we consider these processes in turn. A key feature of heatconduction is that there is a fundamental relationship betweenthe time scale of conductive cooling (or heating) and the lengthscale over which the process is occurring. This is demonstrated inseveral ways and at different mathematical levels.A key application of heat conduction theory is to the coolingoceanic lithosphere, and a key consequence is the subsidence of thesea floor with age. The lithosphere is a special case of a conductivethermal boundary layer, which is the source of convective motion(Chapter 8). The oceanic lithosphere and its subsidence play acentral role in the discussions of Chapters 10 and 12 of what canbe inferred about the form of mantle convection from observations.The role of the continents in the earth's thermal regime is consid-ered separately, since continental lithosphere does not partake insubduction like oceanic lithosphere.The advection of heat is a phenomenon that can be understoodin quite simple terms. It is presented first in a simple way, and theidea is then used to derive a general equation that describes heatgeneration and transport, including both conduction and advec-tion. Finally, thermal properties of materials are briefly considered,including their likely variations with pressure. This leads into theconcept of adiabatic gradients of temperature and density.7.1 Heat conduction and thermal diffusionLet us start from Fourier's law' of heat conduction, that the rate offlow of heat is proportional to the temperature gradient:178



7 . 1 HEAT C O N D U C T I O N AN D T H E R M AL D I F F U S I O NzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA179zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q =  - KdT/ dxzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7.1.1)

where  T  is temperature, q is the rate of flow of heat per unit  area

(that  is, the heat  flux)  in the positive  x  direction,  and K  is the

conductivity  of  the  material.  The  negative  sign  ensures  that  heat

flows from  hotter to cooler  regions.

We  need  to be able  to consider  situations  in which  the  tem-

perature varies with  time and in which  heat is generated  by radio-

activity  within  the rocks.  To do this,  let us consider  the thermal

energy  budget of the small block of material sketched  in Figure 7.1.

Suppose  that  the  temperature  T  depends  only  on time  and  the x-

coordinate.  The change in heat  content of the block  during a time

interval  will  be  equal  to  the heat  conducted  in minus  the heat

conducted out plus  the heat generated  internally.  Suppose  the tem-

perature changes  by an amount dT  within a time interval  dt. Then

the change in heat  content H is

dH  = pSdx  CpdT

where p is the density, S is the area of the end surfaces  of the block

(so  that pSdx  is the mass  of the block),  and C
P
  is the specific  heat

at constant pressure  of the material. The specific  heat measures  the

capacity of a material  to hold heat, and for mantle minerals it has a

value of the order of 1000 J/kg  °C.  (The subscript P is used  because

this is the specific  heat at constant pressure.  In other words  it is the

change  in heat content, per unit mass  per degree, with  the  pressure

held constant so that thermal expansion  is allowed  to happen. It is

possible to define  the specific  heat at constant volume,  C
v
,  but we

will  not  have  any use for this  here.  Since  the two quantities  have

significantly  different  values,  it is usual  to distinguish  them.)

Again taking  positive  heat flow to be in the positive  x direction,

the  heat  added  by  conduction  through  the left  side  of  the  box

during  the interval  dt  is  qS dt,  and the heat  lost  by conduction

through  the right  side is (q +  dq)S  dt. If A  is the rate of  radioactive

heat  generation  per unit  volume,  the heat  generated  during  dt is

A  •  Sdx •  dt.  The  total  heat  budget  for the  time interval  dt is then

pSdx  •   C
P
-   dT = qS dt  -   (q + dq)Sdt  +  A •   Sdx •   dt

which  yields, upon  dividing  by S dx dt  and  taking  limits,

dx

ρ,A

area S

q+dq

T+dT

Figure  7.1. Heat

budget of a  small

block of material

with  heat  transported

by  thermal

conduction and with

(7  1 2)  internal heat

generation  (A).



180 7 HEATIf Kis uniform (that is, independent of x), this can be written, usingEquation (7.1.1),dT d2T— =  K—̂ + a  (7.1.3)dt dxzwhereK = K/pCpa = A/pCpK is called the thermal diffusivity and a is the rate of increase oftemperature due to the radioactive heating. Notice that thedimensions of K are Iength2/time. With K = 3 W/m ° C, p =3000kg/m3 and CP = 1000J/kg° C, a typical value of K forrocks is 1CT6 m2/s.Equation (7.1.3) governs conductive heat flow in situationswhere the material is not moving, so that conduction is the onlymethod of heat transport. We will use it below to consider thethermal structure of the lithosphere and of thermal boundary layersmore generally. It is an example of a diffusion equation. A similarequation governs the diffusion of chemical species through solids,for example, though without the generation term a. This is why K iscalled a diffusivity. As we will see, heat conduction causes tempera-ture differences to spread out and become more uniform, in otherwords to diffuse. The term thermal diffusion is often used inter-changeably with heat conduction: they mean the same thing, butin cases where the temperature is changing with time it is useful toemphasise the diffusive nature of the process by using the termthermal diffusion.7.2 Thermal diffusion time scalesIt is a very general feature of thermal diffusion (and other forms ofdiffusion) that the time it takes for a body to heat up or cool downis related to its size in a particular way. This general property ofthermal diffusion is a key to building a simple understanding ofthermal convection. It also governs a key part of mantle convectionin a particularly simple way. In this section we look at this aspect ofthermal diffusion in different ways, in order to provide a clearunderstanding of it.



7.2 T H E R M A L D I F F U S I O N T I M E SCALES 1 8 17.2.1 Crude estimate of cooling timeSuppose a layer of magma with some high temperature T intrudesbetween sedimentary rock layers (forming a sill), as illustrated inFigure 7.2. Can we estimate how long it will take to cool? Would it,for example, take hours, or weeks, or centuries? Often it is possibleto get some idea of an answer by making very crude approxima-tions. (We have already seen examples of useful rough approxima-tions in Sections 6.8.1 and 6.9.1.)Suppose the sill thickness is D. At first (t = 0) there will be avery steep temperature gradient at the top and bottom of the sill(Figure 7.2), but after some time, t, you might expect the tempera-ture profile to have smoothed out, as sketched. This will be justifiedmore rigorously below. At this stage, a typical temperature differ-ence is T, and a typical length scale over which the temperaturevaries by this much might be about half the thickness of the sill,D/2. Let us try approximating the differentials in Equation (7.1.3)with these large differences (assuming there is no heat generation,so that a = 0):T T— = K-t (D/2)2which yields t = D2/4K. Notice that this is independent of T.What does this time t mean? According to Equation (7.1.3),T/t is a rough measure of the rate of change of T, so t should be arough measure of the time it takes for the temperature to change bya significant fraction of T. Suppose D is 10 m and K is 1CT6 m2/s.Then t & 2.5 x 107 s, which is about 9 months. If this seems to be asurprisingly long time, it illustrates that rocks are not very goodconductors of heat. Of course this may only be an approximateresult, but it suggests that the cooling time for a 10 m sill is monthsrather than hours or centuries.Notice now that the cooling time depends on the square ofthe thickness D. Thus if D is only 1 m, then t & 3 days, and if Dis 10 cm then t & 40 minutes. This behaviour is quite characteristicD T^^ R)xFigure 7.2. Cooling magma layer (or sill).



182 7 HEATof diffusion processes: the time scale depends on the square of thelength scale, with the diffusivity being the constant of proportion-ality. In fact this is built into the dimensions of the thermal diffu-sivity: D2 (7.2.1)This is the fundamental point to understand about time-dependentheat conduction processes. With this simple formula, we can makerough estimates of such things as the thickness of the oceanic litho-sphere and the rate at which mantle convection should go. Thelatter will be done in Chapter 8. You will see in following sectionsthat Equation (7.2.1) always emerges from a more rigorous analy-sis, with a proportionality constant of the order of 1.7.2.2 Spatially periodic temperature [Intermediate]In order to keep the mathematics from being unnecessarily com-plicated, let us approximate the initial temperature variation withdepth (x) in Figure 7.2 asT(x, 0) = T0cospx (7.2.2)where p = 2n/(2D) is a wavenumber, corresponding to a wave-length of 2D. You can, if you want, regard this as the firstFourier component of the initial square temperature variation ofFigure 7.2. Although this is still a crude approximation to theactual initial temperature distribution, it allows a rigorous solutionof Equation (7.1.3) to be derived.The evolution of the temperature is governed by Equation(7.1.3) with a = 0. If the geometry and initial conditions are appro-priate, a solution to a partial differential equation such as this canoften be found by assuming the solution to be a product of afunction of depth, x(x), a n d a function of time, 0(t):T(x, t) = X(x)0(t) (7.2.3)(This method is called 'separation of variables'.) Substitution ofthis into Equation (7.1.3) and rearrangement leads to1 ^ = ̂ - 1 (7.2.4)0 dt dx2 x '



7.2 T H E R M A L D I F F U S I O N T I M E SCALES 1 8 3where r is a constant with dimension time. The first and secondparts of this equation must each be equal to a constant because tand x can be varied independently, so the only way the two expres-sions can remain equal is if they are each equal to the same con-stant, which I have written with malice aforethought as — 1/r. Thisequation is now in the form of two ordinary differential equations,each of which can be readily solved. Thus the first and third termsof Equation (7.2.4) can be equated and integrated to yield0 = 0oe-'/r (7.2.5)while the second and third terms can be rearranged asKXwhich has a general solution of the formx(x) = acos—̂  + bsin—̂  (7.2.6)JKX JKXWe want Equations (7.2.5) and (7.2.6) to combine in Equation(7.2.3) with the constants evaluated so that the solution matchesthe initial condition, (7.2.2). This requires b = 0, a&0 = To andp = l/Jlcx. The solution is thenT(x, t) = To exp(-t/x) cos px (7.2.7)with
r = -L = ^- (7.2.8)p K UKCompare this with the crude estimate in the last section, whichyielded a time scale of D2/4K. They differ only by a factor of about2.5. You can see again the dependence of time scale on the squareof the length scale embodied in the dimensionality of K (Equation(7.2.1)). With this formula, the cooling time of a 10 m sill can beestimated as 4 months.7.2.3 Why is cooling time proportional to the square of the lengthscale?A simple illustration can clarify why there is this general relation-ship between time scale and length scale in thermal diffusion



184 7 HEATprocesses. Compare the two sinusoidal temperature distributions inFigure 7.3, with similar amplitudes, and wavelengths of A, and 2X.Heat will flow from the hotter part to the colder part. The heat fluxat the point where T = 0 is only half as great in case (b) as in case(a), because the temperature gradient is less: the same temperaturedifference is spread over twice the distance. Thus the rate at whichthe hot part loses heat to the cool part is only half as great in case(b): it is proportional to 1/21.There is another factor to be considered. So far we haveaccounted for time scale being proportional only to the firstpower of X. We must also take account of the fact that in case(b) there is twice as much heat to be moved as in case (a), becausethe volume of the hot region is twice as great. Twice as much heatflowing at half the rate will take four times as long. Thus we canconclude that the time scale for a significant reduction in the tem-perature differences is proportional to A, .7.3 Heat loss through the sea floorAt a midocean rise crest, or spreading centre, two tectonic platespull apart. It is observed that the zone of rifting is quite narrow,only a few tens of kilometres in width. Beyond the rift zone, eachplate is a rigid unit moving away from the spreading centre. If theplates are separating, then of course there must be a replenishingflow of material ascending from below. I will argue in Chapter 12that at normal midocean rises the upwelling is passive, being simplythe flow of mantle material drawn in to replace the material movingaway with the plates. In cross-section then, the situation must belike that sketched in Figure 7.4a.Hot material, at temperature Tm, rises close to the surface atthe spreading centre. Some of it melts, and the magma rises to thetop to form the oceanic crust, but this can be ignored for the(a)(b) TFigure 7.3. Effect of length scale on cooling time.



7.3 HEAT LOSS THROUGH THE SEA FLOOR 185
V

TFigure 7.4. Cooling oceanic lithosphere.moment. As the rising hot material approaches the cool surface, itwill begin to cool by conduction, because the surface is maintainedat a temperature close to 0 ° C. If you imagine standing on one sideof the spreading centre (stick figure, Figure 7.4a), you will be car-ried away with the plate at velocity V. The material under you willcontinue simply to cool by conduction. Once you are some distancefrom the spreading centre, its presence and your motion relative toit might be ignored, in which case the only process happeningwould be the conduction of heat vertically to the surface. We willjustify this assumption in retrospect. After a time, the temperatureprofile with depth might look like that sketched in Figure 7.4b. Asdiscussed in Chapter 6, the cold material will behave like an elastic/brittle material, and in this context it will not flow like the deeper(solid) material. In other words, the cooled upper part will behavelike a rigid plate, consistent with what is observed.7.3.1 Rough estimate of heat fluxWe can use the results of Section 7.2 to get some idea of the thick-ness, D, of the cooled zone. From Equation (7.2.1), it should beapproximately
D =where t is the time for which the cooling has been proceeding. Theolder parts of the sea floor are over 100 Ma old. Setting t = 100 Ma(1 year ^ 3.16 x 107 s) and using K = 10~6m2/s gives D = 56 km.This says that D should be roughly a few tens to 100 km.The larger plates are typically 5000-10 000 km across, which isconsistent with velocities of 50-100 mm/a (50-100 km/Ma) sus-tained for about 100 Ma. Thus plate widths are much greaterthan plate thicknesses. This justifies our assumption that heat con-duction is mainly vertical, except within about 100 km of thespreading centre. Putting it another way, the vertical temperaturegradients will be much greater than horizontal gradients, except



186 7 HEATnear spreading centres. The plate material will be close to thespreading centre for only about 1 Ma.We can estimate the order of magnitude of the heat fluxthrough the sea floor to be expected from this conductive coolingprocess. From Equation (7.1.1) it is q ~ KAT/D ~ 70 mW/m2using K= 3W/m° C, AT = 1300 ° C and D = 56km. This com-pares with the average heat flux through the sea floor of about100 mW/m2, decreasing to about 50 mW/m2 through the oldestsea floor.7.3.2 The cooling halfspace model [Intermediate]The assumptions used above are that the temperature profile at agiven location moving with a plate is determined only by heatconduction in the vertical direction and that the conductivity isspatially uniform. This amounts to assuming that the mantle is auniform infinite halfspace (that half of an infinite space belowz = 0). With the initial condition that T(z, 0) = Tm, the boundarycondition that T(0, t) = 0 and the assumption that radioactiveheating can be neglected (so a = 0) Equation (7.1.3) has thesolution (7.3.1)lCtJwhere erf stands for the error function:VnJo (7.3.2)The derivation of this result is outlined in the next section. Theerror function looks like the temperature profile sketched in Figure7.4b. It has the value 0.843 at x = 1.The temperature in this solution depends on depth and timeonly through the combination [z/2*/(ict)]. Thus, for example, thetemperature reaches 84% of its maximum value whenz/2*/(ict) = 1. In other words, the depth, D, to the isotherm T =0.847^ is[ m (7.3.3)This is just twice the value resulting from the rough estimate of thelast section. Using K = 10~6m2/s, the depth to this isotherm is thus112 km at 100 Ma. More generally, you can see that the propor-



7.3 HEAT LOSS THROUGH THE SEA FLOOR 187tionality between length2 and time has emerged again in this solu-tion. It implies here that the thickness of the lithosphere should beproportional to the square root of its age. Thus D should be 56 kmat 25 Ma and 11.2 km at 1 Ma. An impression of this thickeningwith age is included in Figure 7.4a as the dashed curves.We can calculate the heat flux through the sea floor from thissolution. For this, we need the resultderf(x) 2 _X2— = erf (x) = —=edx +/nThis follows from the fact that erf(x) depends on x only throughthe upper limit of the integral in Equation (7.3.2), and can bederived using basic calculus methods for differentiating integralswith variable limits. If we identify x with z/2+J(jci), we can usethe chain rule of differentiation:3 T _ derf(x)3x _2_ _X2 1dz~ m dx dz~ m V ^ eThen the heat flux at z = 0 is~dz KTrmz=0 /•met (7.3.4)Thus the heat flux declines with time in proportion to t 1/2. Theminus in Equation (7.3.4) is because the heat flux is upwards, whichis the negative z direction.We saw in Chapter 4 (Figure 4.7B) that the observations ofheat flow through the sea floor follow this behaviour to within theerrors of measurement. The values used above yield a heat flux of39mW/m2 for 100 Ma-old sea floor, compared with observedvalues of 40-50 mW/m2. This very simple model, which approxi-mates the earth below the sea floor as a uniform halfspace, thusgives a remarkably good description of the observed heat fluxthrough the sea floor.The physics we have considered here is the same as was con-sidered last century by Lord Kelvin in making his estimate of theage of the earth (Chapter 2). His assumptions were that the earthhad started hot and that it had been cooling by conduction to thesurface ever since. He asked how long it would take for the near-surface temperature gradient (or the surface heat flux) to fall to thepresently observed values. This is explored further in Exercise 4.



188 7 HEAT7.3.3 The error function solution [Advanced\Since it is a central result in our understanding of oceanic litho-sphere, and through that of mantle convection, I will outline thederivation of the error function solution. Another account is given,for example, by Officer [1]. A general form of solution to Equation(7.1.3) (with a = 0) isT(z, t; y) = exp(-icy2t)[B(y)cos yz + C(y) sin yz] (7.3.5)where the notation shows explicitly the dependence of T on thewavenumber y. This form is just a more general version ofEquation (7.2.7), and it can be derived in the same way. The coeffi-cients B and C are also assumed to depend on y because we canuse this form to Fourier synthesise the total solution. This canbe done by first Fourier analysing the initial conditionT(z > 0, 0) = Tm, T(0, 0) = 0; then the time dependence of eachFourier component will have the above form. Thus the forms ofB and C can be derived from the Fourier integrals of the initialcondition: 1 f° °B(y) = - r(f, 0) cos1 f° °C(y) = - r(f, 0) sinThe top boundary condition can be matched by assuming thatthe solution is antisymmetric about z = 0 : T(z < 0, 0) =— T(z > 0, 0) = — Tm. Substitution into these integrals then yieldsB(y) = 02 f° °C(y) = -TmJ siThe Fourier synthesised solution is then of the formT(z, t) = ^ T(z, t; y)dyJo/•oo= / exp(—Ky 2t)C(y) sin yzdyJo= —~ / /n Jo Jo



7.4 SEAFLOOR S U B S I D E N C E A N D M I D O C E A N RISES 1 8 9where the expression for C has been substituted and the order ofintegration reversed in the third line.The following two results allow this to be rewritten:sin A sin B = [cos(A - B) - cos(A + B)]/2/ exp(-Ky2f)cos y(£ - z)dy = - /—exp[-(f - z) 2/4Kt]Jo zy KtThenTransform the internal variables in each of these integrals to thefollowing:where 77 = \/2^Qci). Then the integrals have the same form, butover different ranges of p and p', so they can be combined to yield
which is the solution defined by Equations (7.3.1) and (7.3.2).7.4 Seafloor subsidence and midocean risesIf the lithosphere cools, it will undergo thermal contraction. As aresult, the surface (the sea floor) will subside, and the amount ofsubsidence can be roughly estimated as follows. If the temperaturerises from 0 ° C to about 1400 ° C through the thickness of the litho-sphere, then the average temperature of the lithosphere is about700 ° C. This means that the average temperature deficit of the litho-sphere relative to the underlying mantle is Ar=1400° C -700 ° C = 700 ° C. This will cause the density to increase by the frac-tion Ap/p = a AT, where a is the coefficient of thermal expansion.If the lithosphere thickness is D, then a vertical column of rock ofheight D through the lithosphere will shorten by this fraction. In



190zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 HEATzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
other  words,  the  shortening,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA  h,  of  the  top  of  the  column  will  be

given  by

h/ D  =  aAT

This shortening h is not the actual amount by which the  surface

subsides,  since  the  rock  that  has  subsided  away  is  replaced  by

water.  We  have  to  consider  the  isostatic  balance  of  the  column

relative  to  a  similar  column  at  the midocean  rise  crest.  These  are

illustrated  in  Figure  7.5.  The mass  per  unit  area  in  the column  at

the  rise  crest  is  (d +  D — h)p
m
,  while  the mass  per  unit  area  in the

other  column  is  [dp
w
  + (D — h)p\ \ .  Equating  these,  and  neglecting

second- order  terms  yields

=  hp
m
/ (p

m
  - (7.4.1)

Old  lithosphere  (say  100 Ma)  is  about  100 km  thick  and

a  «  3 x  10~
5
/ °C  Then  h «  2.1km.  Using  p

m
  = 3.3Mg/ m

3
  and

p
w
  =   l.OMg/ m

3
,  this  implies  d ^   3.0km.  Old  sea  floor  is  indeed

observed  to  be  about  3 km  deeper  than  midocean  rise  crests

(Chapter  4, Figures  4.5,  4.6).  This  result  suggests  that  the  greater

depth  of  the  old  sea  floor  relative  to  midocean  rise  crests  may  be

explained  simply  by  the thermal contraction of  the lithosphere. In

other words,  the existence  of the midocean rise  topography may be

explained  by  this  cooling  process.

We  can test  this  idea more rigorously  by  using  the solution  to

the  thermal halfspace  model  obtained  above.  Each  layer  of  thick-

ness  dz  at  depth  z  will  have  a  temperature  deficit  of

AT(z,  t) =  T
m
  —  T(z, t). Then the total thermal contraction will be

h(t)=  /   aAT(z,t)dz
Jo

Using  the result  that

Mantle, ρ D- h

Figure 7.5. Seafloor  subsidence  by  thermal contraction, with isostasy.
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7.4 SEAFLOOR S U B S I D E N C E A N D M I D O C E A N RISES 1 9 11[1 - erf 0)] dx =and making the appropriate variable transformation in the integralexpression for h, this combines with Equation (7.4.1) to yield(7.4.2)Using the same values as previously, this gives d = 3.8 km att = 100 Ma.Equation (7.4.2) predicts that the seafloor depth shouldincrease in proportion to the square root of its age. We saw inChapter 4 (Figure 4.6) that the sea floor does follow this behaviourto first order, particularly for ages less than about 50 Ma. Atgreater ages, many parts of the sea floor are shallower than thisby up to about 1 km. The possible reasons for such deviations willbe discussed in Chapter 12.Here I want to emphasise the further success of the coolinghalfspace model in accounting for most of the variations of boththe heat flux through the sea floor and the depth of the sea floorwith age. It is a remarkably simple and powerful result, whichsuggests that major features of the earth's surface can be explainedby a simple process of near-surface thermal conduction. It alsosuggests that we can usefully think of the midocean rises as stand-ing high by default, because the surrounding sea floor has subsided,rather than the rises having been actively uplifted.The success of the cooling halfspace model in accounting forseafloor subsidence and heat flux suggests some very importantthings about the earth and about mantle convection. The midoceanrise system is the second-largest topographic feature of the earthafter the continents, and we have seen here that it can be accountedfor by a simple near-surface process: conductive heat loss to theearth's surface. Its explanation does not require any process operat-ing deeper than about 100 km, and in particular it does not require abuoyant convective upwelling under midocean rises, as has oftenbeen supposed (see Chapter 3). If the midocean rise topography isnot an expression of deep convection, as I am suggesting here, thisleads to the question of why there is not some more obvious expres-sion in the earth's topography of deep convection. These questionswill be taken up in later Chapters 8, 10, 11 and 12, where they willlead to some important conclusions about the form of mantleconvection.



192 7 HEATTable 7.1. Heat-producing isotopes [2].ElementUraniumThoriumPotassium Isotope238U235U232T h4 0 K
Half life(Ga)4.4680.703814.011.250 Power(p.W/kg of element)94.354.0526.60.00357.5 Radioactive heatingRadioactivity generates heat, and radioactive heat generated in theearth sustains the earth's thermal regime, as we will see in Chapter14. There are two aspects that I want to cover here: its effect inmodifying continental geotherms and its contribution to the heatbudget of the mantle.The isotopes that make the main heat contributions are 40K,238U, 235U and 232Th. Each of these has a half life of the order of 1-10 Ga. (If they had shorter half lives, they would not still be presentin significant quantities.) Their half lives and current rates of heatproduction are given in Table 7.1.Geochemists find that these elements occur in similar propor-tions relative to each other in the crust and mantle, although theirabsolute concentrations differ greatly. Thus the mass ratio Th/U isusually 3.5-4 and the ratio K/U is usually 1-2 x 104. It is sufficientfor our purposes to assume the particular values Th/U = 4 g/g andK/U = 104 g/g. (The unit g/g may seem to be redundant, but itserves to specify that this is a ratio by weight, rather than by moleor by volume, for example.) With these ratios, the total powerproduction due to all of these isotopes, expressed per kg of uraniumin the rock, is 190|iW/(kg of U). Then representative values of theconcentration of uranium in different rocks allow us to estimate thetotal rate of heat production. Such estimates are given in Table 7.2.These are only representative values, and there is considerablevariation, especially in the continental crust. These values probablytend to be on the high side of the distribution. For the uppermantle, Jochum and others [3] have estimated on the basis of mea-surements of representative rocks that the likely value of the heatproduction rate is 0.6pW/kg, with the value unlikely to be as greatas 1.5pW/kg.You will see in the next section that heat production in theupper continental crust is sufficient to account for about half oftypical continental heat fluxes. For example, a heat production rate



7.6 CONTINENTS 19310001014-6 2.62.93.33.3 260030312-18
Table 7.2. Radiogenic heat production rates, assuming Th/U =4kgjkg, K/U = 104 kg/kg. U concentrations from [4, 5].Concentration Power Density PowerRegion ofU (pW/kg) (Mg/m3) (nW/m3)Upper continental crust 5 (ig/gOceanic crust 50 ng/gUpper mantle 5 ng/gChondritic meterorites13 20 ng/gaWith K/U = 2-6 x 104 kg/kg.of 2.5 uW/m3 through a depth of 10 km will produce a surface heatflux of 25 mW/m2, compared with typical continental values of 60-100mW/m2. On the other hand, the oceanic crust produces verylittle heat (30nW/m3 through 7 km gives 0.2mW/m2).There is a puzzle about the amount of heat production in themantle. It is not clear that there is enough radioactivity to accountfor the heat being lost at the earth's surface. Heat production issmall in the upper mantle: 3 nW/m3 through a depth of 650 kmyields 2 mW/m2. If this heat production rate applied through thewhole 3000 km depth of the mantle, the surface heat flux would stillbe only about 10mW/m2. To account for the observed averageoceanic heat flux of 100mW/m2 requires heat production in themantle to be closer to that of oceanic crust. Some of the deficitcan be accounted for by the slow cooling of the earth's interior, aswill be shown in Chapter 14, and some may be explained by agreater heat production in the deeper mantle, either because thedeep mantle composition is more 'primitive' (that is, closer to thatof chondritic meteorites) or because there is an accumulation ofsubducted oceanic crust at depth, or both (Chapters 13, 14).Another contribution comes from mantle plumes, but these seemto account for less than 10% of the total (Chapter 11). In any case,there is a significant discrepancy here that has not been entirelyaccounted for. It is believed that none of the principal heat-produ-cing elements would dissolve in the core in significant quantities,which implies that the discrepancy cannot be made up there. Thequestion is addressed again in Chapters 12 and 14.7.6 ContinentsIn the theory of plate tectonics, the continents are part of the litho-spheric plates, carried passively as the plates move. Although theassumption that plates are non-deforming is not as good in con-



194 7 HEATtinental areas as in oceanic areas, it is nevertheless sufficiently trueto be a useful approximation. If the continents are part of thelithosphere, then heat transport within them must be by conductionrather than by convection (assuming that heat transport by perco-lating liquids, such as water or magma, is not important in mostplaces most of the time). This was assumed in Section 7.3 for theoceanic lithosphere. There is, however, an important differencebetween the continental lithosphere and the oceanic lithosphere,and this is that the continental lithosphere is much older, sincewe know that most continental crust is much older. Whereas wetreated the oceanic lithosphere as a transient (time-dependent)cooling problem, the continental thermal regime is more likely tobe near a steady state, as we will now see.The more stable parts of the continents, the cratons andshields, have not had major tectonic activity for periods rangingfrom a few hundred million years up to a few billion years. Theirheat flux tends to be lower, 40-50 mW/m2, than younger parts ofthe continents (Figure 4.8) It is often assumed that they are inthermal steady state, that is the heat input (from below and fromradioactivity) balances the heat loss through the surface. Is thisreasonable? We saw in Section 7.2 that the time scale for coolingoceanic lithosphere to a depth of 100 km is about 100 Ma. The timescale to cool or equilibrate to a depth of 200 km would then beabout 400 Ma. It would thus seem to be reasonable to assume thatat least the Archean shields, and perhaps the Proterozoic cratons,had approached equilibrium. I do not want to belabour this pointeither way. It is instructive to assume that the older continentalgeotherms are roughly in steady state, but on the other handmost continental areas have had some tectonic activity within thelast billion years or so, and little is known about whether the litho-sphere might have had a constant thickness during such periods.The typical heat flux out of continents of about 60 mW/m2 isdue partly to heat generated within the continental crust and partlyto heat conducting from the mantle below. The relative proportionsof these contributions are not known very accurately, but they seemto be roughly comparable. The heat-producing elements tend to beconcentrated in the upper crust, and a common and useful assump-tion is that their concentration decreases exponentially with depth,with a depth scale of about h & 10 km. At the surface the heatproduction rate is of the order of 1 nW/kg, so that the heat produc-tion rate per unit volume is AQ ?«2.5uW/m . The crust is veryheterogeneous, so you should understand that these are merelyrepresentative numbers. Thus we might assume that the heatproduction rate as a function of depth is



7.6 CONTINENTS 195(7.6.1)Let us assume that a piece of continental crust is in thermalsteady state, which implies that the lithosphere thickness, the heatproduction rate and the distribution of heat production with depthhave all been constant for a sufficiently long time. Let us alsoassume that heat is transported only by conduction, which excludestransport by percolating water or magma and transport by defor-mation of the crust and lithosphere. By steady state I mean simplythat the temperature at a given depth is not changing, so thatdT/dt = 0. Then Equation (7.1.3), which governs the evolution oftemperature by conduction, iswhere K is the conductivity.We know that the temperature at the earth's surface is about0 ° C and its gradient is constrained by the surface heat flux. FromEquation (7.1.1), the surface gradient TQ = — q$/K «20° C/km,taking q0 & -60mW/m2 and K= 3W/m° C. Equation (7.6.2) is adifferential equation and these are the boundary conditions:To = 0 ° C, r0' = 20 ° C/km (7.6.3)Suppose, for the moment, there were no radioactive heat pro-duction in the crust: A = 0. Then the solution to Equation (7.6.2)with these boundary conditions isT = To + ro'z (7.6.4)With the values of Equations (7.6.3), the temperature at the base ofthe crust, about 40 km deep, would be 800 ° C, at which temperaturethe crust would be likely to be melting, depending on its composi-tion. The temperature at 60 km depth would be 1200 ° C, at whichdepth the mantle would almost certainly be melting. Since seismol-ogy tells us that the mantle is largely solid, this suggests that at leastone of our assumptions becomes invalid at some depth of the orderof 60 km.Now let us return to the assumption that there is radioactiveheat generation, and that its variation with depth is given byEquation (7.6.1). Then the solution to Equation (7.6.2) with thesame boundary conditions is



196 7 HEAT— 1o Aoh2K (7.6.5)The solutions (7.6.4) and (7.6.5) are sketched in Figure 7.6.Equation (7.6.5) approaches an asymptote at depth, line (a),given byT = (To + Th) + T^z (7.6.6)At 40 km depth the term e~z//! is already as small as 0.018, so forgreater depths the asymptote is a good approximation. Using this,it is easy to calculate that the temperature at 40 km depth is 550 ° C,compared with 800 ° C from Equation (7.6.4) without radioactiveheating. The depth at which 1200 ° C is reached is 96 km, comparedwith 60 km without radioactive heating. The mantle below thelithosphere is believed to be at a temperature of 1300 ° C to1400 ° C. Assuming the latter, the lithosphere could be no morethan 113 km thick using the values assumed here. This is relativelythin, and might be appropriate for a relatively young continentalprovince.It might seem paradoxical that lower temperatures have beencalculated when radioactive heating has been included, in Equation(7.6.5), compared with temperatures from Equation (7.6.4) with noradioactive heating. In order to clarify this, I will spend some timeexplaining some aspects of this solution. The reason for the lower
Depth, zFigure 7.6. Sketch of calculated continental geotherms. Geotherm with noradioactivity (A = 0, light solid line), with radioactivity given by Equation(7.6.1) (heavy solid). Line (a) is the asymptote of the heavy curve. Line (b)is the geotherm, with A = 0, that would match the temperature at thesurface and the temperature gradient below the zone of radioactive heating.



7.6 CONTINENTS 197temperatures is that the temperature gradient was fixed at the sur-face. Physically you can think of it as follows. If the temperaturegradient is fixed at the surface, then so is the surface heat flux. Ifthere is no crustal radioactive heat generation, then all of that heatflux must be coming from below the lithosphere. This requires thatthe temperature gradient must equal the surface value rightthrough the lithosphere (assuming for simplicity that the conduc-tivity is constant). On the other hand, if some of the heat comesfrom radioactivity near the surface, then below the heat-generatingzone the heat flux will be less, so the temperature gradient will alsobe smaller. This is why the geotherm in this case bends down(Figure 7.6) and reaches lower temperatures at depth than thegeotherm with no heat generation (but with the same temperatureand temperature gradient at the surface).If we required instead to keep the same heat flux into the baseof the lithosphere, then with no heat generation the result would beline (b), with a slope of 7^ = TQ — Aoh/K. This matches the sur-face temperature and has the same temperature gradient at the baseof the lithosphere. You can see that including heat generation raisesthe temperature relative to line (b). This comparison is more inaccord with simple intuition. It also illustrates what is sometimescalled thermal blanketing: the geotherm with heating is hotter bythe amount Th = A0h2/K. With the values used above, Th = 83 ° C.The heat flux through the base from the mantle, using theabove values, is qm = KT^= 35mW/m2. The heat flux due toradioactive heating is in this case qh = Aoh = 25mW/m2. Thusyou can see that in this case the total surface heat flux of 60 mW/m2 is the sum of 35mW/m2 from the mantle and 25mW/m2 fromradioactive heating. If the lithosphere were thicker, the heat fluxfrom the mantle would be less, as would the total surface heat flux.From the point of view of considering mantle convection, animportant question is how much heat escapes from the mantlethrough the continents, since this heat is not then available todrive mantle convection. This is the amount of heat entering thebase of the continental lithosphere, and it is determined essentiallyby the thickness of the continental lithosphere, as modified by thethermal blanketing effect of radioactivity in the upper crust. Thusthe long-term or steady-state conducted heat flux is determined bythe temperature gradient (Tm — T^)/D. The mantle temperature Tmdoes not vary much in comparison with variations in the litho-sphere thickness D, and you have just seen an estimate that thethermal blanketing effect of radioactivity is to raise the effectivesurface temperature by about 80 ° C, which also is small in compar-ison with the total temperature difference. Thus if we take the



198 7 HEATeffective temperature difference across continental lithosphere to beabout 1200 ° C and a typical range of thickness to be 100-250 km,we get a range of heat flux out of the mantle of 14-36 mW/m2, withan average of perhaps 20-25 mW/m2.Continental crust covers about 40% of the earth's surface, withan area of about 2 x 1014 m2, so the total heat loss from the mantlethrough continents is about 4—5  TW, about 10% of the global heatbudget. Thus the mantle heat loss through the continents is not alarge fraction of the total. In fact it is such a small fraction that wecan regard the continents as insulating blankets. The complemen-tary role of oceanic heat loss will be taken up in Chapter 10.7.7 Heat transport by fluid flow (Advection)So far we have looked at heat transported by thermal conduction,but heat can also be transported by the motion of mantle material.Suppose, for example, that mantle material with a temperatureof Th = 1500 ° C replaces normal mantle at Tm = 1400 ° C. Thenthe local heat content per unit volume is increased bypCpAT = pCP(Th - Tm). With p = 3300kg/m3 and CP = 1000 J/kg° C, the increase is 3.3 x 108 J/m3. Now, referring to Figure 7.7,suppose the hot material is flowing up a vertical pipe of radiusR = 50km at a velocity v = 1 m/a »3 x  10~8m/s. Then thevolume of hot material that flows past a point on the pipe withinunit time is V = KR2V ^ 250m3/s. The amount of extra heat thathas been carried past this point within unit time isQ = VpCpAT = TiR2vpCPAT (7.7.1)With the above values, Q & 8 x 1010 J/s = 8 x 1010 W: this is theheat flow rate. The heat flux is
T+T vtFigure 7.7. Heatcarried by fluidflowing with velocity

= Q/nR2 =vpCPAT (7.7.2)Then q & 10W/m2. This heat flux is a much higher value than theconducted heat fluxes we discussed above. The heat flow, Q, isabout 0.2% of the global heat budget, despite the small area ofthe pipe in comparison with the surface area of the earth. Thisexample has been tailored to approximate a mantle plume, andthese will be discussed in more detail in Chapter 11.This process of heat transport by mass motion is called advec-tion. It usually accounts for most of the heat transport in convec-tion. In fact, you will see in Chapter 8 that in a sense convectiononly occurs when conduction is inadequate to transport heat. You



7.8 ADVECTION AND DIFFUSION OF HEAT 1 9 9can see from the above example that advection can transport muchgreater heat fluxes than conduction in some situations.The distinction between advection and convection is that theterm advection is used to refer to heat transport by mass motionregardless of the source of the mass motion, whereas in convectionthe motion is due specifically to the internal buoyancies of thematerial. Thus when you stir your coffee with a spoon, you forcefluid motion that transports heat around in the cup by advection.On the other hand, if you let the cup sit, the top of the coffee willcool and sink, producing convection that will also advect heat.7.8 Advection and diffusion of heat7.8.1 General equation for advection and diffusion of heatThe approach just used in Section 7.7 can be used to derive anequation that governs the evolution of temperature in the presenceof both conduction (diffusion) and advection. Advection occurswhen there is fluid motion and when there are temperature differ-ences within the fluid: if the temperature is homogeneous, thenthere is no net heat transport. In Section 7.1 we considered heatconduction in one dimension (the x direction). If we now supposethat in addition to the other things happening in Figure 7.1 there isa flow with velocity v in the positive x direction, then we should addtwo terms to the right-hand side of the heat budget for the littlebox:Svdt- pCpT - Svdt • pCP(T + AT)You can recognise these as the heat advected into the box throughthe left-hand side, within the time interval dt, minus the heatadvected out through the right-hand side. Dividing again byS • dx • dt and taking the limit yields the extra term on the right-hand side of Equation (7.1.2)dTEquation (7.1.3) can then be generalised todT dT d*T ( ? 8 1 )dx dx1



200 7 HEATHere the advection term is placed on the left-hand side, and youcan see it depends on there being both a fluid velocity and a tem-perature gradient.This equation can readily be generalised to three dimensionsjust by considering heat transport in the other two coordinatedirections of Figure 7.1. The result isdT dT d2T (7 8 2)where I have used the summation convention (Box 6.B1). Thisequation governs the evolution of temperature in the presence ofadvection, diffusion (conduction) and internal heat generation.We now have the conceptual and mathematical tools to con-sider convection. We have looked at viscous fluid flow, includingexamples driven by buoyancy forces, and at heat transport.Convection involves the combination of these processes. Their gen-eral mathematical description is embodied in Equations (6.6.1),(6.6.3) and (7.8.2). Convection will be discussed in Part 3.7.8.2 An advective-diffusive thermal boundary layerHere is a relatively simple illustration of the simultaneous occur-rence of advection and diffusion. We will see in Chapter 11 thatmantle plumes are believed to transport material from the base ofthe mantle, where mantle material is heated by heat flowing out ofthe core, which is believed to be hotter. This heat will generate a hotthermal boundary layer at the base of the mantle. The thickness ofthis boundary layer will depend on the rate at which material flowsthrough it, and also on the form of that flow. If the flow is basicallyhorizontal, like the bottom of a large-scale convection cell, then theboundary layer thickness will depend on the time for which mantlematerial is adjacent to the hot core. The theory of Section 7.3 willthen apply. In this case the bottom thermal boundary layer wouldbe analogous to the top thermal boundary layer (the lithosphere),and its thickness would be proportional to the square root of thetime spent at the bottom of the mantle. It is conceivable, however,that the large-scale, plate-related flow penetrates only minimally tothe bottom of the mantle (Chapters 10, 12), and that the dominantflow near the bottom is a vertical downwards flow that balances thematerial flowing upwards in plumes. In this case the relationshipbetween the advection and diffusion of heat would be differentfrom that in Section 7.3. We now look at this possibility.



7.8 ADVECTION AND DIFFUSION OF HEAT 2 0 1The situation is sketched in Figure 7.8. Material flows slowlydownwards with velocity v = — V. Hot, low-viscosity material flowsrapidly sideways within a thin layer adjacent to the core, and theninto narrow plumes where it rises rapidly upwards. Away from theplumes and above the thin channel at the base, the flow can beapproximated as being vertical. We now derive an expression forthe temperature in this region, as a function of height, z, above thecore.If we assume that there is a steady state and no heat generation,then Equation (7.8.1) reduces toaT d TNote first of all that if we use a representative temperature scaleA T and a representative length scale h, then rough approximationsto the differentials in this equation yieldh = K/V (7.8.4)Thus this ratio contains an implicit length scale, h, which we canalso see from the dimensions of K and v.Using Equation (7.1.1) for the heat flux, q, Equation (7.8.3) canbe rewritten as\dq _v _ V _ 1qdz K K hwhich defines the length scale h = K/V for the particular problem inFigure 7.8. This equation can be integrated to give= qh expv = _VFigure 7.8. Sketch of the flow associated with a mantle plume drawing hotmaterial from the base of the mantle. The temperature at the bottomboundary is Th, and the temperature of the ambient mantle is Tm. Awayfrom plumes, mantle material is assumed to flow vertically downwards withvelocity v = — V. A thermal boundary layer (dashed line) forms above thecore-mantle boundary.



202 7 HEATwhere qh is the heat flux into the base. This in turn can be inte-grated to give (7.8.5)where K is the conductivity. The temperature at the boundary,z = 0, is thenTh = Tm + hqh/K (7.8.6)In Chapter 11 we will see that the total heat flow carried byplumes is about 3.5 TW, roughly 10% of the heat flowing out of thetop of the mantle. This heat is inferred to be flowing out of the core.Since the surface area of the core is only about | of the surface areaof the earth, the heat flux out of the core is then about 40% of thesurface heat flux, or about 30mW/m2. In Exercise 12, later, you candeduce that the downward velocity is about V = 1.3 x 10nm/s(0.4mm/a). Then taking the density at the base of the mantle tobe 5600 kg/m3 and other quantities from Table 7.3, below, weobtain h = 115 km and Th - Tm = 385 ° C.The physics described by this solution is that mantle materialslowly flows down towards the hot interface with the core and heatconducts upwards against this flow. Thus upwards thermal diffu-sion is competing against downwards advection of heat. In thesteady state, the temperature declines exponentially towards theambient mantle temperature as a function of height above the inter-face. This thermal boundary layer has a characteristic thickness ofthe order of 100 km and a temperature increase across it of about400 ° C, according to the numerical values we have used.7.9 Thermal properties of materials and adiabaticgradients7.9.1 Thermal properties and depth dependenceWe have already encountered most of the important thermal prop-erties of materials that we will be needing in this book. It is usefulto summarise them here, with some typical values. This is done inTable 7.3. However there is one aspect that we have not yetencountered, and that is the variation with depth of some ofthese properties, and of the temperature in the convecting mantle.Although we will not be much concerned with these depth varia-tions, because the effects are secondary to the main points I want todemonstrate, they are nevertheless significant and worth noting.



7.9 THERMAL PROPERTIES OF MATERIALS 203Table 7.3. Representative thermal properties of the mantle [6].Value ValueQuantity Symbol P = 0 CMB UnitsSpecific heat at constant pressure CP 900 1200 J/kg° CThermal conductivity K 3 9 W/m ° CThermal diffusivity K 10"6 1.5 x 10"6 m2/sThermal expansion coefficient a 3 x 10~5 0.9 x 10~5 /° CGriineisen parameter y 1.0-1.5 0.9Some estimates of values at the base of the mantle (CMB or core-mantle boundary) are included in Table 7.3. These are modifiedfrom Stacey's [6] values, mainly by using higher values of the ther-mal expansion coefficient.7.9.2 Thermodynamic Griineisen parameterThe thermodynamic relationships governing the depth dependenceof the temperature can be expressed most concisely in terms of aparameter known as the thermodynamic Griineisen parameter, y.It is related to the thermal expansion coefficient, and this relation-ship is most directly evident if we define y as [6]where Cv is the specific heat at constant volume. This definitionshows that y is a measure of the rate at which pressure increases asheat is input while volume is held constant. For comparison, thethermal expansion coefficient isThus a is a measure of the rate at which volume increases as heat isinput while pressure is held constant, and a and y are complemen-tary measures of the effect of heating. Another way to think of y isthat it measures the pressure required to prevent thermal expan-sion.Two other useful expressions for y can be derived with the helpof thermodynamic identities. The latter are complicated, and can befound in standard thermodynamics texts. A concise summary is



204 7 HEATprovided by Stacey [6]. I will just quote the results here. The firstform is (7.9.3)where Ks = p(dP/dp)s is the adiabatic bulk modulus, subscript Sindicates constant entropy, and vh is the bulk sound speed (Section5.1.4). The second form isT\dVjs T\dp/Swhere Fis specific volume (that is, volume per unit mass: F = 1/p).7.9.3 Adiabatic temperature gradientAs mantle material rises and sinks in the course of mantle convec-tion, thermal diffusion is so inefficient at large scales that throughmost of the mantle it can be neglected. At the same time, there arelarge changes of pressure accompanying the vertical motion. Aprocess of compression with no heat exchange with surroundingsis called adiabatic compression. If it happens slowly, so that it isreversible, it is characterised by having constant entropy. A parcelof mantle that sinks slowly through the mantle experiences suchadiabatic compression. During adiabatic compression, althoughthere is no heat exchange with surroundings, the increasing pres-sure does work on the material as it compresses, and this increasesthe internal energy of the material, which is expressed as a rise intemperature. We will now estimate this adiabatic increase in tem-perature with depth in the mantle.The Griineisen parameter provides a convenient way to makethis estimate. The Griineisen parameter in the mantle can be esti-mated most reliably from Equation (7.9.3), since Ks, p and vh areknown from seismology (Section 5.1.4). CP does not vary muchwith pressure. The thermal expansion coefficient is the least wellconstrained, and it is likely to decrease substantially under pressure[7], as indicated in Table 7.3. This is counteracted by the increase ofvb with depth (Figure 5.3). The result is that y does not vary greatlywith depth, being about 1-1.5 in the peridotite and transition zonesand decreasing to slightly less than 1 at the bottom of the mantle.If y does not vary greatly through the mantle, then the assump-tion that it is constant will be a reasonable approximation. In thiscase, Equation (7.9.4) can be integrated to yield



7.9 THERMAL PROPERTIES OF MATERIALS 205Tn \PuJwhere the subscripts 1 and u refer to lower mantle and uppermantle, respectively. With p{ = 5500 kg/m3, pu = 3300 kg/m3, andy = 1.0-1.5, this yields T{/Tu = 1.7-2.15. However, about 800 kg/m3 of the density increase through the mantle is due to phasetransformations, through which Equation (7.9.4) does not apply.If we take instead p{ = 4700 kg/m3, then T{/Tu = 1.4-1.7. WithTn = 1300 ° C, this indicates that the adiabatic increase of tempera-ture through the mantle is about 500-900 ° C, and Tx =1800-2200 ° C.A schematic temperature profile through the earth is shown inFigure 7.9. A more quantitative version is not given here, bothbecause we are not concerned with details, and because the uncer-tainties are so large that greater detail is hardly justified. For exam-ple, various estimates put the temperature jump across the lowerthermal boundary layer of the mantle at anything between 500 ° Cand 1500 ° C, with some estimates even higher [6, 7], so thatTh = 2300—3700  ° C. However, it is hard to reconcile these highervalues with the dynamics of plumes (Chapter 11), even takingaccount of the likelihood of a layer of denser material at the baseof the mantle (Chapter 5). Stacey [6] estimates the adiabatic tem-perature increase through the core to be about 1500 ° C, so that thetemperature at the centre of the earth might be Tc = 3800—5000 ° C.7.9.4 The super-adiabatic approximation in convectionAlthough the adiabatic increase of temperature through the mantleis quite large, it is not of great concern to us in this book. This isbecause convection will only occur if the actual temperature gra-dient exceeds the adiabatic gradient, as I will explain in a moment.We can therefore focus on this super-adiabatic gradient. An effec-tive way to do this is to subtract the adiabatic gradient out of themantle temperature profile for convection calculations, or in otherwords to neglect this effect of pressure.To see that convection requires a super-adiabatic gradient, sup-pose that the interior of the mantle has an adiabatic gradient, assketched in Figure 7.9. You might suppose at first that since thedeeper mantle is hotter than the shallow mantle, it will be buoyantand therefore drive convection. However, if a small portion of thisdeep mantle rises vertically, it will decompress adiabatically as itrises and its temperature will follow the adiabatic profile. Thus it
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2890Depth (km) 6371Figure 7.9. Schematic temperature profile through the earth. Thermalboundary layers are assumed at the top of the mantle (the lithosphere) andthe bottom of the mantle. Numerical values of the temperatures are quiteuncertain (see text). The grey arrows show adiabatic compression anddecompression paths of material from the thermal boundary layers.will remain at the same temperature as its surroundings and nothermal buoyancy will be generated.In order to have buoyancy that will drive convection, a deepportion of the mantle must start hotter than its surroundings, aswould for example material from the lower thermal boundarylayer. It may then follow an adiabatic decompression path that issub-parallel to the mantle adiabat, and consequently remain hotterand buoyant as it rises. Such a path is illustrated in Figure 7.9. Ananalogous path is also shown for descending, cool, negativelybuoyant lithospheric material. Of course these portions of the man-tle may exchange heat with the surrounding mantle by thermaldiffusion, in which case their paths will tend to converge towardsthe mantle adiabat, but their initial buoyancy will be approximatelypreserved within a larger volume of material.7.10 References1. C. B. Officer, Introduction to Theoretical Geophysics, 385 pp.,Springer-Verlag, New York, 1974.2. V. M. Hamza and A. E. Beck, Terrestrial heat flow, the neutrinoproblem, and a possible energy source in the core, Nature 240, 343,1972.3. K. P. Jochum, A. W. Hofmann, E. Ito, H. M. Seufert and W. M.White, K, U and Th in midocean ridge basalt glasses and heat pro-duction, Nature 306, 431-6, 1986.



7.11 EXERCISES 2074. R. L. Rudnick and D. M. Fountain, Nature and composition of thecontinental crust: a lower crustal perspective, Rev. Geophys. 33, 267-309, 1995.5. W. F. McDonough and S.-S. Sun, The composition of the Earth,Chem. Geol. 120, 223-53, 1995.6. F. D. Stacey, Physics of the Earth, 513 pp., Brookfield Press, Brisbane,1992.7. R. Boehler, A. Chopelas and A. Zerr, Temperature and chemistry ofthe core-mantle boundary, Chem. Geol. 120, 199-205, 1995.7.11 Exercises1. Use Equation (7.2.1) to estimate the time it would take fora sill of thickness 100 m to cool substantially.2. During the ice age, glaciers kept the surface of Canadacooler than at present. The glaciers had melted by about10000 years ago. To about what depth in the crust wouldthe subsequent warming of the surface have penetrated?3. [Intermediate] Complete the derivation of Equation (7.2.7).Either integrate the equations or show that the forms usedare solutions of the relevant equations. Apply the initialcondition to evaluate the constants of integration.4. Use Lord Kelvin's argument to estimate the age of the earthfrom the fact that the rate of temperature increase withdepth in mines and bore holes is about 20 ° C/km andassuming the upper mantle temperature to be 1400 ° C.Comment on the relationship between your answer and theage of oceanic lithosphere.5. [Advanced] Derive the general solution (7.3.5), using thesame approach as in Exercise 3.6. Using values in Table 7.2, calculate the thicknesses of layerscomposed of (i) upper continental crust, (ii) oceanic crust,and (iii) chondritic meteorites required to produce theaverage heat flux of 80 mW/m2 observed at the earth'ssurface. What constraints does this impose on thecomposition of the continental crust and the mantle?7. Calculate, by integration from the surface to great depth,the total rate of heat production per unit surface areaimplied by Equation (7.6.1).8. Derive the solution (7.6.4) for temperature versus depthfrom Equations (7.6.2) and (7.6.3).


