CHAPTER 8

Convection

Convection is a kind of fluid flow driven by internal buoyancy. In
general, the buoyancy that drives convection derives from horizon-
tal density gradients. In the mantle, the main sources of density
gradients are horizontal thermal boundary layers. Convection is
driven when the buoyancy (positive or negative} of a thermal
boundary layer causes it to become unstable, so that fluid from it
leaves the boundary of the fluid and rises or falls through the
interior of the fluid. This statement may seem to be labouring the
obvious, but there has been a lot of confusion about the nature of
mantle convection, and much of this confusion can be avoided by
keeping these basic ideas clearly in mind.

In general the buoyancy driving convection may be of thermal
or compositional origin. We will be concerned mainly with thermal
buoyancy, but compositional buoyancy is also important in the
mantle. It is best to consider first thermal convection, that is con-
vection driven by thermal buoyancy. Some aspects of composi-
tional buoyancy will be considered in Chapter 14.

Here 1 describe sources of buoyancy, give a simple example of
thermal convection, and show how there is an intimate relationship
between convection and the surface topography that it produces.
This establishes some basic concepts that will be applied more
explicitly to the mantle in subsequent chapters.

In the course of doing this, I show how convection problems
scale, how the Rayleigh number encapsulates this scaling, why con-
vection occurs only if the fluid is heated or cooled strongly enough,
and how the mode of heating (from below or internally) governs
the nature of the thermal boundary layers. In principle there may
be two thermal boundary layers in a fluid layer, one at the top and
one at the bottom, or there may be only one, depending on the way
the fluid is heated and cooled.
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8 CONVECTION

8.1 Buoyancy

Buoyancy arises from gravity acting on density differences.
Technically, buoyancy is used to describe a force. Thus it is not
the same as a density difference. Rather, it is the product of a
density difference, Ap, a volume, ¥V, and the gravitational accelera-
tion, g:

B=—gVAp=—gAm (8.1.1)

where Am is the mass anomaly due to a volume V with a density
difference Ap = pp — p from its surroundings. The minus is used
because, in common usage, buoyancy is positive upwards, whereas
gravity and weight are positive downwards. Thus for a density
excess, Ap is positive and B is negative, that is downwards.

It is buoyancy rather than just density difference that is impor-
tant in convection. A large density difference within a small volume
may be unimportant. For example, you might expect intuitively
that a steel ball-bearing, 1 cm in diameter, embedded in the mantle
would not sink rapidly to the core, despite a density difference of
over 100%. On the other hand, a plume head with a density con-
trast of only about 1% would have a significant velocity if its
diameter were 1000 km, as we saw in Section 6.8.

With thermal buoyancy, density differences arise from thermal
expansion. This is described by

p=poll — (T — Ty)] (8.1.2)

where p is density, « is the volume coefficient of thermal expansion,
T is temperature, and p, is the density at a reference temperature
To. With « typically about 3 x 107°/°C (Table 7.3), a temperature
contrast of 1000 °C gives rise to a density contrast of about 3%. In
the lower mantle, where & may be only about 1 x 107°/°C due to
the effect of pressure, the corresponding density difference would
be only about 1%.

There are some density differences in the earth larger than these
thermal density differences, and these are due to differences in
chemical or mineralogical composition. For example the oceanic
crust has a density of about 2.9 Mg/m®, compared with an upper
mantle density of about 3.3 Mg/m®, so it has a density deficit of
about 400 kg/m® or 12%. The total density change through the
mantle transition zone is about 15%. Much or all of this is believed
to be due to pressure-induced phase transformations of the mineral
assemblage (Chapter 5), and so it is not necessarily a source of
buoyancy. However, locally all of the density differences associated
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with particular transformations may be operative because the
depth of the transformation is changed by temperature, as was
discussed in Chapter 5. Apart from this, if the density increase
through the transition zone is not all due to phase transformations,
the maximum that could be attributed to a difference between the
composition of the upper mantle and the lower mantle is a small
percentage, according to the seismological and material property
constraints discussed in Chapter 5.

It is useful to have some idea of the magnitudes of buoyancies
of various objects. For example, a ball bearing would exert a buoy-
ancy force of about —0.02N (taking buoyancy to be positive
upwards), while a plume head 1000 km in diameter with a tempera-
ture difference of 300°C would have a buoyancy of about
2 x 10°° N. Subducted lithosphere extending to a depth of 600 km
exerts a buoyancy of about —40 TN per metre of oceanic trench,
that is per metre horizontally in the direction of strike of the sub-
ducted slab.

If the subducted lithosphere extended to the bottom of the
mantle, about 3000 km in depth, its buoyancy would be about
—200 TN/m. Comparing this with a plume head, it takes a piece
of subducted lithosphere about 1000 km wide and 3000 km deep to
equal in magnitude the buoyancy of a plume head. While this may
make plume heads seem to be very important, you should bear in
mind that the total length of oceanic trenches is over 30000 km.
Thus, while the buoyancy of a plume head is impressive, it is still
small compared to the total buoyancy of subducted lithosphere.

The crustal component of subducted lithosphere undergoes a
different sequence of pressure-induced phase transformations than
the mantle component, and as a result it is sometimes less dense
and sometimes denser than the surrounding mantle, with the dif-
ference usually no more than about 200 kg/m? (Section 5.3.4). Even
if it had the same density difference, say —100kg/m?, extending
throughout the mantle, its thickness is only about 7km and its
total contribution to slab buoyancy would be only about 20 TN/
m, compared with the slab thermal buoyancy of —200 TN/m. This
suggests that normally the crustal component of subducted litho-
sphere does not substantially affect the slab buoyancy. However, if
the subducted lithosphere is young, so that its negative thermal
buoyancy is small, the crustal buoyancy may be more important.
This may have been more commonly true at earlier times in earth
history. These possibilities will be taken up again in Chapter 14.

The very large range of the magnitudes of buoyancies of the
various objects just considered serves to emphasise that we must
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8 CONVECTION

consider the volume occupied by anomalous density, not just the
magnitude of the density anomaly itself.

8.2 A simple quantitative convection model

We are now ready to consider a convection model that is simple in
concept but goes to the heart of plate tectonics and its relationship
with mantle convection. The approach was first used by Turcotte
and Oxburgh in 1967 [1]. At that time plate tectonics was only just
beginning to gain acceptance amongst geophysicists. I give a sim-
plified version here. A more detailed version is given by Turcotte
and Schubert [2], p. 279. I also acknowledge that it is only within
the last five years or so that numerical models have become sub-
stantially superior to Turcotte and Oxburgh’s approximate analy-
tical model. Such is the power of capturing the simple essence of a
problem.

Consider plates on a viscous mantle, as sketched in Figure 8.1a.
The plates comprise a thermal boundary layer, within which the
temperature changes from the surface temperature to the tempera-
ture within the interior of the mantle. Because the plates are cold,
they are denser and prone to sink: they have negative buoyancy. In
Figure 8.1a, one plate is depicted as subducting, and we presume
here that it is sinking under its own weight. As the subducted part
sinks, it drags along the surrounding viscous mantle with it. The
motion of the plate is resisted by the viscous stresses accompanying
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Figure 8.1. (a) Sketch of flow driven by a subducting plate. (b) Idealised
form of the situation in (a).
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this mantle flow. The viscous stresses are proportional to velocity.
This permits an equilibrium to develop between the opposing
forces: the velocity adjusts until the resistance balances the buoy-
ancy.

Our approach is based on the same principle as that used in
Chapter 6 when we considered flow down a pipe that is driven by
the fluid’s own weight, and the rise of a buoyant sphere. In each
case, there was a balance between a buoyancy force and a viscous
resistance. The system achieves balance by adjusting its velocity
until the viscous resistance balances the buoyancy. This balance
is stable, in the sense that a change in the velocity will induce an
imbalance of the forces that will quickly return the velocity to its
equilibrium value. However, we should remember that the motions
are so slow in the mantle that accelerations and momenta are quite
negligible, and the forces are essentially in balance at every instant,
though their magnitudes may slowly change in concert.

Let us make a simple dimensional estimate of the balance
between buoyancy and viscous forces, in the same way as we did
for the buoyant sphere in Chapter 6. Here, because the two-dimen-
sional sketch is assumed to be a cross-section through a structure
that extends in the third dimension, the forces will be calculated per
unit length in the third dimension. Let us also simplify the geome-
try into that depicted in Figure 8.1b.

First consider the buoyancy of the lithosphere descending
down the right side of the box. Assume that this lithosphere simply
turned and descended, preserving its thickness and temperature
profile. From the basic formulas (8.1.1) and (8.1.2), the buoyancy is

B=g Dd-paAT

where AT is the average difference in temperature between the
descending lithosphere and the fluid interior. This is approximately
AT = —T/2, where T is the temperature of the interior fluid. (We
used the same approximation in estimating the subsidence of
oceanic lithosphere in Section 7.4). Thus

B=—g-DdpaT/2 (8.2.1)

If we want to evaluate this expression, we can independently
estimate the values of all quantities except the thickness, d, of the
lithosphere upon subduction. This is just the thickness of the layer
that has cooled by conduction of heat to the surface, as we con-
sidered in Section 7.3. It is determined by the amount of time the
subducting piece of lithosphere spent at the surface. This time is
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t = D/v. According to the discussion of thermal diffusion in
Chapter 7, the thickness of the layer from which heat has diffused
is approximated by

d =kt = \/kD/v (8.2.2)

where « is the thermal diffusivity. So we have an expression for d,
but now it includes the still-unknown quantity v. We will see below
how to deal with it.

Now consider the viscous resistance. As with our rough esti-
mate for a buoyant sphere (Section 6.8.1), we estimate the viscous
stresses from a characteristic velocity gradient. In this case, the
velocity changes from v to —v across the dimensions of the box,
so a representative velocity gradient is 2v/D. The resisting viscous
stress o acting on the side of the descending slab is then

o=pn- 2v/D

This is a force per unit area. We get the force per unit length (in the
third dimension) by multiplying o by the vertical length, D, of the
slab:

R=Do=D 2uv/D=2uv (8.2.3)

The buoyancy and resistance are balanced when B+ R =0.
From (8.2.1) and (8.2.3), this occurs when

v=—g- DdpaT /4 (8.2.4)

This expression for v also involves d. We can combine Equations
(8.2.2) and (8.2.4) to solve for the two unknowns v and d. The result

18
2/3
T
V= D(M) (8.2.5)
4u

Using D =3000km, p =4000 kg/m®, «a=2x107°/°C, T =
1400°C, «=10"° mz/s and pu= 10 Pas, this yields v =
2.8 x 107 m/s = 90mm/a. This is quite a good estimate of the
velocity of the faster plates.

Other quantities can be estimated from these results. From
Equation (8.2.2), the thickness of the lithosphere is 33 km. This is
of the same order of magnitude as the observed oceanic litho-
sphere, though about a factor of two too small. If we had used
the more accurate estimate of d = 2./(k?) that is obtained from the
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error function solution for the cooling lithosphere (Equation
(7.3.3)), we would have obtained 66 km. Also our estimate of the
time the lithosphere spent cooling at the surface is a bit small,
because we assumed implicitly in Figure 8.1b that the plate is
only as wide as the mantle is deep, that is about 3000 km. At a
velocity of 90 mm/a = 90 km/Ma, the plate will be only 33 Ma old
when it subducts. Observed lithosphere of this age is about 60 km
thick. If the box were longer, the plate would be older and thicker.
This problem is left as an Exercise.

The surface heat flux, g, can also be estimated from the tem-
perature gradient through the boundary layer: ¢ = K7T'/d, where K
is the thermal conductivity. Using K =3W/mK, this gives
g = 130mW/m?>. This compares with an observed heat flux of
about 90mW/m? for lithosphere of this age, and a mean heat
flux of about 100 mW/m? for the whole sea floor.

The point of these estimates is not that they are not very accu-
rate, but that they are of the right order of magnitude. In the
absence of the simple theory developed above, one could not
make a sensible estimate even of the orders of magnitude to be
expected. Given the crudity of the approximations made, the agree-
ment within about a factor of two is very good, perhaps better than
is really justified.

The agreement of these estimates with observations suggests
that we have a viable theory for mantle convection that explains
why plates move at their observed velocities. Think about the sig-
nificance of that statement for a moment. Plate tectonics is recog-
nised as a fundamental mechanism driving geological processes.
Within a few pages, with some simple physics and simple approx-
imations, we have produced a theory that is consistent with some
primary observations of plate tectonics (their velocities, thicknesses
and heat fluxes). We thus have a candidate theory for the under-
lying mechanism for a very wide range of geological processes. We
will be further testing the viability (and sufficiency) of this theory
through much of the rest of this book.

8.3 Scaling and the Rayleigh number

The approximate theory just developed yields not only reasonable
numerical estimates of observed quantities, but also information on
how these quantities should scale. Thus, for example, according to
Equation (8.2.5), if the viscosity were a factor of 10 lower at some
carlier time in earth history, the plate velocities would not be 10
times greater, but 10%? = 4.6 times greater. Similarly, we can com-
bine Equations (8.2.2) and (8.2.5) and deduce that
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7) = (8.3.1)

dicpn

(0)3 gpaTD’

This implies that the boundary layer thickness would have been
2.15 times less (15km) and the heat flow 2.15 times higher
(275 mW/m?) with a viscosity 10 times lower.

Equation (8.3.1) is written in this particular form to make a
more general point. The left side involves a ratio of lengths, and it is
therefore dimensionless. One can work through the dimensions of
the right side and confirm that it is also dimensionless, as it should
be. This particular, rather arbitrary looking, collection of constants
actually encapsulates the scaling properties that we have just
looked at, and others besides. In fact it encapsulates many of the
scaling properties of convection in a fluid layer in general, not just
the mantle convection we are concerned with here. For this reason
it has been recognised by fluid dynamicists as having a fundamental
significance for all forms of thermal convection. It was Lord
Rayleigh who first demonstrated this, and this dimensionless com-
bination (without the numerical factor) is known as the Rayleigh
number in his honour. It is usually written

_ g,oozTD3
i

Ra (8.3.2)

For the mantle, using values used in the last section, we can esti-
mate that Ra ~ 3 x 10°.

We can see explicitly the way in which the Rayleigh number
encapsulates the scaling properties by rewriting the above results in
terms of Ra. Thus, from Equation (8.3.1),

d/D ~ Ra '3 (8.3.3)

where ‘~’ implies proportionality and ‘of the order of’. The ratio
d/D is obviously dimensionless also, and we can view this ratio as a
way of scaling d, relative to a length scale that is characteristic of
the problem, namely the depth of the fluid layer, D. Similarly, from
Equation (8.2.5)

u(D/k) =v/V ~ Ra*? (8.3.4)

The dimensions of « are (length®/time), so the ratio «/D has the
dimensions of velocity. We can thus regard V' = «/D as a velocity
scale characteristic of the problem. Then Equation (8.3.4) shows
how the actual flow velocity v relates to the velocity scale V" derived
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from the geometry of the problem and the properties of the
material.

Fluid dynamicists are enamoured of these dimensionless ratios,
for the very good reason that they encapsulate important scaling
information, and they have named lots of them after people. Thus
the combination vD/«k is called the Peclet number, written Pe:

Pe=vD/k=v/V (8.3.5)

Then Equation (8.2.5) reduces to Pe ~ Ra*”>. Using values from
the last section, we can estimate that for the mantle Pe =~ 9000.

I will not go through an exhaustive catalogue of these dimen-
sionless numbers here, but a couple of further examples are worth
noting. First, it is instructive to combine the scaling quantities V'
and D to define a characteristic time:

te=D/V =D/« (8.3.6)

From Chapter 7, this can be recognised as a diffusion time scale. It
is an estimate of the time it would take the fluid layer to cool
significantly by thermal diffusion, that is by conduction, in the
absence of convection. Compare this with a time scale that is
more characteristic of the convection process: 7, = D/v. This is
the time it takes the fluid to traverse the depth of the fluid layer
at the typical convective velocity, v, so it can be called the transit
time. From Equations (8.3.4) and (8.3.6),

t,=D/jv=tRa > (8.3.7)

If Ra =3 x 10°, then ¢, = 5 x 10~°¢,. Thus if Ra is large, 7, is much
smaller than ¢, reflecting the fact that, at high Rayleigh numbers,
convection is a much more efficient heat transport mechanism than
conduction.

Actually Equation (8.3.7) indicates that 7, is not a very useful
time scale for convection processes, since it is a measure of thermal
conduction. A better one would be that given by the second equal-
ity in Equation (8.3.7). Thus we can define a time scale character-
istic of convection as

t, = (D*/k)Ra > (8.3.8)
To complete this discussion of scaling for now, we will return

to the heat flux, estimated in the last section from ¢ = K7T'/d. Using
Equation (8.3.3), you can see that
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g = (KT/D)Rd'"? (8.3.9)

Again you can recognise (K7 /D) as a scaling quantity. In this case
it is the heat that would be conducted across the fluid layer (not the
boundary layer) if the base were held at the temperature 7" and the
surface at 7'= 0. In other words, it is the heat that would be con-
ducted in the steady state in the absence of convection. Denote this
as qg. The ratio ¢/qx is known as the Nusselt number, denoted as
Nu:

Nu=gq/qy = qD/KT (8.3.10)
Then Equation (8.3.9) reduces to
Nu~ Ra'? (8.3.11)

Thus the Nusselt number is a direct measure of the efficiency of
convection as a heat transport mechanism relative to conduction.
For the mantle, Nu ~ 100. In other words, mantle convection is
about two orders of magnitude more efficient at transporting heat
than conduction would be.

8.4 Marginal stability

Traditional treatments of convection often begin with an analysis
of marginal stability, which is the analysis of a fluid layer just at the
point when convection is about to begin. This approach reflects the
historical development of the topic, and the fact that the mathe-
matics of marginal stability has yielded analytical solutions. The
mantle is far from marginal stability, as we will see, and so I began
the topic of convection differently, with the more directly relevant
“finite amplitude’ convection problem.

Nevertheless the marginal stability problem gives us some
important physical insights into convection and the Rayleigh num-
ber. However, many treatments of it give long and intricate math-
ematical derivations and do not always make the physics clear. 1
will err in the other direction, keeping the mathematics as simple as
possible and endeavouring to clarify the physics.

The marginal stability problem arises from the fact that, for a
fluid layer heated uniformly on a lower horizontal boundary, there
is a minimum amount of heating below which convection does not
occur. If the temperature at the bottom is initially equal to the
temperature at the top, then of course there will be no convection.
Now if the bottom temperature is slowly increased, still there will
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be no convection, until some critical temperature difference is
reached, at which point slow convection will begin. At this point,
the fluid layer has just become unstable and begins to overturn. The
transition, just at the point of instability, is called marginal stabi-
lity. Lord Rayleigh [3] was the first to provide a mathematical
analysis of this. He showed that marginal stability occurs at a
critical value of the Rayleigh number. The critical value depends
on the particular boundary conditions and other geometric details,
but is usually of the order of 1000. The mathematical analysis of
marginal stability is reproduced by Chandrasekhar [4] and by
Turcotte and Schubert [2] (p. 274).

Consider the two layers of fluid sketched in Figure 8.2. The
lower layer is less dense, and the interface between them has a bulge
of height /2 and width w. Take % to be quite small. This bulge is
buoyant relative to the overlying fluid, and its buoyancy is approxi-
mately

B=gApwh

per unit length in the third dimension. Its buoyancy will make it
grow, so that its highest point rises with some velocity v = dk/0d¢,
and its growth will be resisted by viscous stresses.

The viscous resistance will have different forms, depending on
whether the width of the bulge is smaller or larger than the layer
depth D. If w <« D, the dominant shear resistance will be propor-
tional to the velocity gradient v/w. The resisting force is then

R, = p(v/w)w = pv = uoh/ot

where v/w is a characteristic strain rate and the subscript ‘s’ denotes
small w. Equating B and R, to balance the forces yields

/ A
on g pwh

a u

(8.4.1)

which has the solution

D Ao

| I
w

Figure 8.2. Sketch of two layers of fluid with the denser fluid above and
with an undulating interface that is unstable.
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h = hygexp(t/t,) (8.4.2)
where /1, is a constant and

__ M
gApw

(8.4.3)

Ty

In other words, the bulge grows exponentially with a time constant
7., because the interface is unstable: the lighter fluid wants to rise to
the top. This kind of instability is called the Rayleigh-Taylor
instability. It occurs regardless of the reason for the density differ-
ence between the two fluids.

Notice that 7, gets smaller as w gets bigger. That is, broader
bulges grow more quickly. However, there is a limit to this: when
the width of the bulge is comparable to the depth, D, of the fluid
layer, the top boundary starts to interfere with the flow and to
increase the viscous resistance. If w is much larger than D, then
the dominant viscous resistance comes from horizontal shear flow
with velocity u along the layer. By conservation of mass, uD = vw.
The characteristic velocity gradient of this shear flow is then
u/D = vw/D?. The resulting shear stress acts across the width w
of the bulge, so the resisting force in this case is

R, = p(u/Dyw = pow*/D?

where subscript ‘I’ denotes large w. Balancing R; and B then yields

2
on _gAprD”, (8.4.4)
at uw

which has the same form as Equation (8.4.1) except for the con-
stants. It also has the same form of exponentially growing solution
(Equation (8.4.2)), but with a different time scale z;:

W

= 8.4.5
ZApD? (8.4.5)

T

Notice here that 1, gets bigger for larger w, whereas 7, gets
smaller, and their values are equal when w = D. We have consid-
ered the two extreme cases w < D and w 3> D. As w approaches D
from either side, the time scale of the growth of the instability gets
smaller. This implies that the time scale is a minimum near w = D.
In other words, a bulge whose horizontal scale is w =D 1is the
fastest growing bulge, and its growth time scale is
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"
= 8.4.6
TRT gApD ( )

where the subscript ‘RT’ connotes the Rayleigh—-Taylor time scale.
A more rigorous analysis that yields this result is given by Turcotte
and Schubert [2] (p. 251). The implication of this result is that if
there are random small deviations of the interface from being per-
fectly horizontal, deviations that have a width comparable to the
layer depth will grow exponentially with the shortest time scale and
will quickly come to dominate. As a result, the buoyant layer will
form into a series of rising blobs with a spacing of about 2w.

Now let us consider the particular situation in which the den-
sity difference is due to the lower layer having a higher temperature
because the bottom boundary of the fluid is hot. Then the density
difference would be Ap = pa AT, where AT is a measure of the
average difference in temperature between the layers. Suppose first
that the thermal conductivity of the fluid is high and the growth of
the bulge is negligibly slow: then temperature differences would be
quickly smeared out by thermal diffusion. In the process, the bulge
would be smeared out. After a time the temperature would
approach a uniform gradient between the bottom and top bound-
aries, and the bulge would have ceased to exist.

However, I showed above that the bulge grows because of its
buoyancy. Evidently there is a competition between the buoyancy
and the thermal diffusion. We can characterise this competition in
terms of the time scales of the two processes: tpt for the buoyant
growth and t, for the thermal diffusion, where

1. = D*/k (8.4.7)

We can use D as a measure of the distance that heat must diffuse in
order to wipe out the fastest growing bulge. In order for the bulge
to grow, tpr will need to be significantly less than t,. From
Equations (8.4.6) and (8.4.7), this condition is

=Ra>c (8.4.8)

where ¢ 1s a numerical constant and you can recognise the left-hand
side of Equation (8.4.8) as the Rayleigh number.

This result tells us that there is indeed a value of the Rayleigh
number that must be exceeded before the thermal boundary layer
can rise unstably in the presence of continuous heat loss by thermal
diffusion. If it cannot, there will be no thermal convection. Thus we

223



224

8 CONVECTION

have derived the essence of Rayleigh’s result. In this case, we do not
get a very good numerical estimate of the critical value of the
Rayleigh number, since a rigorous stability analysis yields
¢ ~ 1000, rather than ¢ ~ 1.

The quantitative value may not be very accurate, but we have
been able to see that the controlling physics is the competition
between the Rayleigh—Taylor instability and thermal diffusion
(the Rayleigh-Taylor instability involving an ever-changing bal-
ance between buoyancy and viscous resistance). In fact, you can
see now that the Rayleigh number is just the ratio of the time scales
of these two processes:

T,
« 8.4.9
— (8.4.9)

Ra =

The mantle Rayleigh number is at least 3 x 10°, well above the
critical value of about 1000. This indicates that the mantle is well
beyond the regime of marginal stability. One way to look at this,
using Equation (8.4.9), is that the thermal diffusion time scale is
very long, which means that heat does not diffuse very far in the
time it takes the fluid to become unstable and overturn. This means
that the thermal boundary layers will be thin compared with the
fluid layer thickness.

Thin boundary layers were assumed without comment in the
simple theory of convection given in Section 8.2. That theory actu-
ally is most appropriate with very thin boundary layers, that is at
very high Rayleigh numbers. For this reason it is known as the
boundary layer theory of convection. Thus the marginal stability
theory applies just above the critical Rayleigh number, while the
boundary layer theory applies at the other extreme of high
Rayleigh number.

8.5 Flow patterns

In a series of classic experiments, Benard [5] observed that, in a
liquid just above marginal stability, the convection flow formed a
system of hexagonal cells, like honeycomb, when viewed from
above. Considerable mathematical effort was devoted subsequently
to trying to explain this. It was presumed that it must imply that
hexagonal cells are the most efficient at convecting heat. It turned
out that the explanation for the hexagons lay in the effect of surface
tension in the experiments, and specifically on differences in surface
tension accompanying differences in temperature. Surface tension
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was important because Benard’s liquid layers were only 1 mm or
less in thickness.

There is an important lesson here. If a factor like the tempera-
ture-dependence of surface tension could so strongly influence the
horizontal pattern, or ‘planform’, of the convection, then the fluid
must not have a strong preference for a particular planform; that is,
different planforms must not have much influence on the efficiency
of the convection. The implication is that, in other situations, other
factors influencing the material properties of the fluid in the bound-
ary layers might also have a strong influence on planform.

Pursuing this logic, if the top and bottom thermal boundary
layers in a fluid layer should have material properties that are
distinctly different from each other, then each may tend to drive
a distinctive pattern of convection. What then will be the resulting
behaviour? The possibility of the different thermal boundary layers
tending to have different planforms is not made obvious in stan-
dard treatments of convection. Whether it occurs depends both on
the physical properties of the fluid and on the mode of heating,
which we will look at next.

In the mantle, a hot boundary layer does have distinctly differ-
ent mechanical properties from a cold boundary layer, and the two
seem to behave quite differently. As well, the cold boundary layer
in the earth is laterally heterogeneous, containing continents and so
on, and it develops other heterogeneities in response to deforma-
tion: it breaks along faults. The effects of material properties on
flow patterns are major themes of the next three chapters, which
focus on the particular case of the earth’s mantle.

8.6 Heating modes and thermal boundary layers

Textbook examples of convection often show the case of a layer of
fluid heated from below and cooled from above. In this case there is
a hot thermal boundary layer at the bottom and a cool thermal
boundary layer at the top (Figure 8.3a). If, as well, the Rayleigh
number is not very high, the resulting pattern of flow is such that
each of the thermal boundary layers reinforces the flow driven by
the other one. In other words the buoyant upwellings rise between
the cool downwellings, so that a series of rotating ‘cells’ is formed
which are driven in the same sense of rotation from both sides. This
cooperation between the upwellings and downwellings disguises the
fact that the boundary layers are dynamically separate entities. It is
possible that they might drive different flow patterns, as I intimated
in the last section. It is also possible that one of the thermal bound-
ary layers is weak or absent.
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Figure 8.3. Sketches illustrating how the existence and strength of a lower
thermal boundary layer depend on the way in which the fluid layer is
heated.

For example, a fluid layer might be heated from within by
radioactivity. If there is no heat entering the base, perhaps because
it is insulating, then there will be no hot thermal boundary at the
bottom. If the fluid layer is still cooled from the top, the only
thermal boundary layer will be the cool one at the top (Figure
8.3b). In fact this was assumed, without comment, in the simple
theory of convection presented in Section 8.2. In this case, the cool
fluid sinking from the top boundary layer still drives circulation,
but the upwelling is passive. By this I mean that although the fluid
flows upwards between the downwellings (Figure 8.3b), it is not
buoyant relative to the well-mixed interior fluid. It is merely
being displaced to make way for the actively sinking cold fluid.

Although this may seem to be a trivial point here, it has been
very commonly assumed, for example, that because there is clearly
upwelling occurring under midocean ridges, the upwelling mantle
material is hotter than normal and thus buoyant and ‘actively’
upwelling. We will see evidence in Chapter 10 that this is usually
not true. A lot of confusion about the relationship between mantle
convection and continental drift and plate tectonics can be avoided
by keeping this simple point clearly in mind.
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More generally, the heat input to the fluid layer might be a
combination of heat entering from below and heat generated within
(by radioactivity, in the case of the mantle), and states intermediate
between those of Figures 8.3a and 8.3b will result (Figure 8.3c).
Suppose, as implied in Figure 8.3a, that the temperature of the
lower boundary is fixed. If there is no internal heating, then the
temperature profile will be like that shown to the right of Figure
8.3a. If there is no heating from below, the internal temperature
will be the same as the bottom boundary, as shown to the right of
Figure 8.3b. If there is some internal heating, then the internal
temperature will be intermediate, as in Figure 8.3c. As a result,
the top thermal boundary layer will be stronger (having a larger
temperature jump across it) and the lower thermal boundary layer
will be correspondingly weaker. The mantle seems to be in such an
intermediate state, as we will see.

The point is illustrated by numerical models in Figure 8.4. The
left three panels are frames from a model with a prescribed bottom
temperature and no internal heating. You can see both cool sinking
columns and hot rising columns. The right three panels are from an
internally heated model, and only the upper boundary layer exists.
Downwellings are active, as in the bottom-heated model, but the
upwellings are passive, broad and slow. Away from downwellings,
isotherms are nearly horizontal, and the fluid is stably stratified.
This is because the coolest fluid sinks to the bottom, and is then

218.3 Ma 349.6 Ma

587.0 Ma

738.7 Ma

0.0 Temperature 2840. 0.0 Temperature 2840.

Figure 8.4. Frames from numerical models, illustrating the differences
between convection in a layer heated from below (left-hand panels) and in a
layer heated internally (right-hand panels). (Technical specifications of these
models are given in Appendix 2.)
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slowly displaced upwards by later cool fluid as it slowly warms by
internal heating.

Figure 8.4 illustrates two other important points. First, the flow
is unsteady. This is characteristic of convection at high Rayleigh
numbers in constant-viscosity fluids. It is because the heating is so
strong that the boundary layers become unstable before they have
travelled a distance comparable to the depth of the fluid, which is
the width of cells that allows the most vertical limbs while also
minimising the viscous dissipation. Incipient instabilities in the
top boundary layer are visible in the middle right panel of Figure
8.4. By the last panel they have developed into full downwellings.

Second, the two thermal boundary layers in the left sequence
are behaving somewhat independently, especially on the left side of
the panels. In fact in the bottom panel an upwelling and a down-
welling are colliding. This illustrates the point made earlier that
each boundary layer is an independent source of buoyancy, and
they may interact only weakly. This becomes more pronounced at
higher Rayleigh numbers.

8.6.1 Other Rayleigh numbers [Advanced |

We have so far specified the thermal state of the convecting fluid in
terms of temperatures prescribed for each boundary. However, in
Figures 8.3b and 8.4 (right panels) the bottom boundary is specified
as insulating, that is as having zero heat flux through it, and the
heating is specified as being internal. The temperature is not speci-
fied ahead of time. It is evident that this model is specified in terms
of heat input, rather than in terms of a temperature difference
between the boundaries. How then can the Rayleigh number be
defined?

The philosophy of the dimensional estimates used in this chap-
ter is that representative quantities are used. With appropriate
choices, order-of-magnitude estimates will (usually) result. The
Rayleigh number defined by Equation (8.3.2) is defined in terms
of such representative quantities. This suggests that we look for
representative and convenient measures in different situations.

We lack a representative temperature difference for the situa-
tion in Figure 8.3b, but we can assume that a heat flux, ¢, is spe-
cified. One way to proceed is to derive a quantity from ¢ that has
the dimensions of temperature; for example, we can use the tem-
perature difference, AT, across the layer that would be required to
conduct the specified heat flux, ¢:
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AT, =gD/K
We can then define a new Rayleigh number as

g,oozD3 AT, _ g,oan4
Kl Kk

g (8.6.1)

This Rayleigh number is useful in any situation in which it is the
heat input rather than a temperature difference that is specified.
It is possible in principle that some heat, say ¢y, is specified at
the base, and some is specified to be generated internally. If the
internal heating is uniform, and generated at the rate H per unit
volume of fluid, then the rate of internal heat generation per unit
area of the layer surface is HD. The total heat input will then be

q=q,+ HD

Although in a laboratory setting it is not easy to prescribe a heat
flux, it is easy in numerical experiments and it is useful to make the
conceptual distinction between the two kinds of bottom thermal
boundary layer: prescribed temperature and prescribed heat flux.

The Rayleigh numbers R, (Equation (8.6.1)) and Ra (Equation
(8.3.2)) are distinct quantities with different numerical values, as we
will see, and this is why different symbols are used here for them.
However they are also related. Recall that the Nusselt number, Nu,
was defined as the ratio of actual heat flux, ¢, to the heat flux, g,
that would be conducted with the same temperature difference
across the layer (Equation (8.3.10)). In the case considered earlier,
it was gg that was specified ahead of time and ¢ that was deter-
mined by the behaviour of the fluid layer. Here it is the reverse.
However we can still use this definition of Nu. Thus, if the actual
temperature difference across the layer that results from the con-
vection process is AT, then gy = KAT/D and

Nu=q/qx = AT, /AT (8.6.2)

Thus here the Nusselt number gives the ratio of the temperature
difference, AT, that would be required to conduct the heat flux ¢
through the layer, to the actual temperature difference in the pre-
sence of convection.

Similarly, although AT is not known ahead of time here, it can
still be used conceptually to define the Rayleigh number Ra
(Equation (8.3.2)). It is then easy to see the relationship between
Ra and R;:
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Ry Ly _y (8.6.3)
Ra AT " >

In the earlier discussion of scaling, we found that Nu ~ R4 3, SO

R, ~ Rd*?. Thus if Ra has the value 3 x 10° estimated earlier, for
example, then R, will be about 4.3 x 10%. Thus R, 1s numerically
larger than Ra. Nevertheless it is a convenient way to characterise
cases where it is the heat flux that is specified, rather than the
temperature difference. You must of course be careful about
which definition of Rayleigh number is being used in a given con-
text, as they have different scaling properties as well as different
numerical values.

This discussion illustrates the general point that different
Rayleigh numbers may be defined in different contexts. There is
nothing profound about this, it is merely a matter of adopting a
definition that is convenient and relevant for the context, so that it
encapsulates the scaling properties of the particular situation.

For the earth’s mantle, however, there is a complication. An
appropriate way of specifying the heat input into models of the
mantle is through a combination of internal heating from radio-
activity and a prescribed temperature at the base. Although the
value of the temperature at the base of the mantle is not well
known, the liquid core is believed to have a low viscosity, so that
it would keep the temperature quite homogeneous. This means the
core can be viewed as a heat bath imposing a uniform temperature
on the base of the mantle. This combination of a heating rate and a
prescribed uniform bottom temperature is not covered by either of
the Rayleigh numbers Ra or R/, so there is not a convenient a
priori thermal prescription of mantle models. In the mantle it is
the heat output, at the top surface that is well-constrained. This
means that some trial and error may be necessary to obtain models
that match the observed heat output of the mantle.

8.7 Dimensionless equations [Advanced|

The equations governing convection are often put into dimension-
less form, that is they are expressed in terms of dimensionless vari-
ables. This is done to take advantage of the kind of scaling
properties that we have been looking at, because one solution
can then be scaled to a variety of contexts. There are different
ways in which this can be done. We have seen an example of this
already, in the different Rayleigh numbers that can be defined,
depending on the way the fluid is heated. Other alternatives are
more arbitrary. For example, two different time scales are com-



8.7 DIMENSIONLESS EQUATIONS

monly invoked, and others are possible. Since these alternatives are
not usually presented systematically, I will do so here.

The equations governing the flow of a viscous incompressible
fluid were developed in Chapter 6 (Equation (6.6.3)), and the equa-
tion governing heat flow with advection, diffusion and internal heat
generation was developed in Chapter 7 (Equation (7.8.2)). The
following dimensional forms of these equations are convenient
here.

S g 8.7.1
o, o, i = pg; ( )

DT ar aT 2 A
—=—+v—=«kVT+— 8.7.2
D:r ot v ax; * +pCP ( )

In Equation (8.7.1), the buoyancy force B; (positive upwards), is
written in terms of the density and the gravity vector g; (positive
downwards). In Equation (8.7.2), the first derivative, D7/Dz, is
known as the total derivative, and its definition is implicit in the
first identity of that equation. 4 is the internal heat production per
unit time, per unit volume.

Three scaling quantities suffice to express these equations in
dimensionless form: a length, a temperature difference and a
time. For length, an appropriate choice is usually D, the depth of
the convection fluid layer. Using this, we can define dimensionless
position coordinates, x;, for example, such that

.xl' — D.xl'

where 1 have changed notation: the prime denotes a dimensional
quantity and unprimed quantities are dimensionless, unless specifi-
cally identified as a dimensional scaling quantity, like D.

For temperature, we have seen in the last section two possible
choices:

AT = ATy =(T, — T) (8.7.3)

AT = AT, = gD/K (8.7.4)

For the moment, I will retain the general notation AT to cover
both of these possibilities.

A time scale that is often used is the thermal diffusion time
scale of Equation (8.3.6): 7, = D?/«k. Another one sometimes used is
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t./Ra. A third possibility emerged from the earlier discussion of
scaling, namely the transit time 7, = 7, /Ra*> (Equations (8.3.7),
(8.3.8)). Here I will carry all three possibilities by using a general
time scale ¢,,, where

th=t, =D/«
ty = t./Ra (8.7.5)
t; =1, =1t./Ra*"?

Dimensional scales can be derived from D, AT and ¢, for
viscous stress, buoyancy and heat generation rate as follows.
Viscous stress is viscosity times velocity gradient, so an appropriate
scale is u(D/t,)/D = pu/t,. Buoyancy per unit volume is
gAp = gpoaAT. Using these scales in Equation (8.7.1) yields

V7 ) — oA .
D1, ( o, o, gAp(pg:)
that is
8Tl" JP
a—j — - = Rp(pg) (8.7.6)
xX;  Ox;

where Ry denotes a dimensionless combination of constants in the
force balance equations:

_ gApDt,
I

Ry (8.7.7)

Similarly, for Equation (8.7.2) we need a scale for heat genera-
tion. The heat flux scale identified ecarlier (Equations (8.3.9) and
(8.3.10)) is gk, the heat flux that would be conducted with the same
temperature difference. The heat generation rate per unit volume
that corresponds to this is gx/D = KAT/D?. Then Equation
(8.7.2) becomes

AT (DT AT KAT
=) = (VP T) + (s )4
t, \ Dt D? pCpD?

Remembering that K/pCp = «, this can be written

DT
E:RH(VZTJFA) (8.7.8)
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where Ry denotes a dimensionless combination in the heat
equation:

ki,

Ry="%

(8.7.9)

Equations (8.7.6) and (8.7.8) are dimensionless versions of the
flow and heat equations, and they involve the two dimensionless
ratios Ry and Ry. The three choices of time scale proposed in
Equations (8.7.5) then yield

tn = tl : RF = Ra RH =1 (87103)
1, =13: Rp = Rd"® Ry =1/Rd*> (8.7.10¢)

The choice of time scale is mainly a matter of convenience. With
the choice 73, one dimensionless time unit will correspond approxi-
mately with a transit time, regardless of the Rayleigh number, and
it will be easier to judge the progress of a numerical calculation. On
the other hand, the choice between AT and AT, depends on the
mode of heating of the fluid. The notation thus refers to a more
substantial difference in the model than convenience, and more
care must be taken to ensure the proper interpretation of results
of calculations.

8.8 Topography generated by convection

The topography generated by convection is of crucial importance
to understanding mantle convection, since the earth’s topography
provides some of the most important constraints on mantle con-
vection. Here 1 present the general principle qualitatively. The
particular features of topography to be expected for mantle
convection, and their quantification and comparison with observa-
tions, will be given in following Chapters. We have already covered
one important example in Chapter 7, the subsidence of the sca
floor.

The central idea is that buoyancy does two things: it drives
convective flow and it vertically deflects the horizontal surfaces of
the fluid layer. Because the buoyancy is (in the thermal convection
of most interest here) of thermal origin, there are intimate relation-
ships between topography, fluid flow rates and heat transport rates.
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The principle is illustrated in Figure 8.5. This shows a fluid
layer with three buoyant blobs, labelled (a), (b) and (c). Blob (a)
is close to the top surface and has lifted the surface. The surface
uplift is required by Newton’s laws of motion. If there were no
force opposing the buoyancy of the blob, the blob would continu-
ously accelerate. Of course there are viscous stresses opposing the
blob locally, but these only shift the problem. The fluid adjacent to
the blob opposes the blob, but then this fluid exerts a force on fluid
further out. In other words, the viscous stresses transmit the force
through the fluid, but do not result in any net opposing force. This
comes from the deflected surface.

There is, in Figure 8.5, blob (a), a simple force balance: the
weight of the topography balances the buoyancy of the blob.
Geologists might recognise this as an isostatic balance. Another
way to think of it is that the topography has negative buoyancy,
due to its higher density than the material it has displaced (air or
water, in the case of the mantle). Recalling the definition of
buoyancy given earlier (Equation (8.1.1)), this implies that the
excess mass of the topography equals the mass deficiency of the
blob.

As I have already stressed, there is in this very viscous system
an instantaneous force balance, even though the blob is moving.
Such topography has sometimes been referred to as ‘dynamic topo-
graphy’, but this terminology may be confusing, because it may
suggest that momentum is involved. It is not. The balance is a static
(strictly, a quasi-static), instantaneous balance. The ‘dynamic’ ter-
minology derives from the term ‘dynamic stresses’, which means
the stresses due to the motion, which are the viscous stresses. While
this terminology may be technically correct, it is not very helpful,
because it may obscure the fact that there is a simple force balance

Figure 8.5. Sketch of the effects of buoyant blobs on the surfaces of a fluid
layer. The layer surfaces are assumed to be free to deflect vertically, with a
less dense fluid (e.g. air or water) above, and a more dense fluid (e.g. the
core) below.
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involved, and it may make the problem seem more complicated
than it really is.

Blob (b) in Figure 8.5 is near the bottom of the fluid layer.
It causes the bottom surface of the fluid to deflect. This is
because the viscous stresses caused by the blob are larger close
to the blob than far away, so the main effect is on the nearby
bottom surface. I have implicitly assumed in Figure 8.5 that
there is a denser fluid below the bottom surface, such as the
core under the mantle. In this case, the topography causes denser
(core) material to replace less dense (mantle) material. Thus it
generates a downward compensating force, or negative buoy-
ancy, just as does topography on the top surface. This force
balances the buoyancy of blob (b).

Does blob (b) cause any deflection of the top surface? Yes,
there will be a small deflection over a wide area of the surface.
Blob (c) makes this point more explicitly: it is near the middle of
the layer, and it deflects both the top and the bottom surfaces by
similar amounts. In this case, we can see that the force balance is
actually between the positive buoyancy of the blob and the two
deflected surfaces. In fact this will always be true, even for blobs
(a) and (b), but I depicted them close to one surface or the other to
simplify the initial discussion, since this makes the deflection of one
surface negligible.

To summarise the principle, buoyancy in a fluid layer deflects
both the top and the bottom surfaces of the fluid (supposing they are
deformable), and the combined weight of the topographies balances
the internal buoyancy. The amount of deflection of each surface
depends on the magnitude of the viscous stresses transmitted to
each surface. This depends on the distance from the buoyancy to
the surface. It also depends on the viscosity of the intervening fluid,
a point that will be significant in following chapters.

Now apply these ideas to the thermal boundary layers we were
considering above. The top thermal boundary layer is cooler and
denser than the ambient interior fluid, so it is negatively buoyant
and pulls the surfaces down. Because it is adjacent to the top fluid
surface, it is this surface that is deflected the most. There will be, to
a good approximation, an isostatic balance between the mass
excess of the thermal boundary layer and the mass deficiency of
the depression it causes. The result is sketched in Figure 8.6 in a
form that is like that of the mantle. The topography on the left is
highest where the boundary layer is thinnest. Away from this in
both directions, the surface is depressed by the thicker boundary
layer.
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Figure 8.6. Sketch of two types of topography on the top surface of a
convecting fluid layer. The top thermal boundary layer cools, thickens and
subsides by thermal contraction as it moves away from the spreading centre
at left, leaving a topographic high where it is thin. The bottom thermal
boundary layer generates no topography on the top surface until material
from it rises to the top, where it raises the top surface (upwelling on right).

On the other hand, the bottom thermal boundary layer is
adjacent to the bottom surface of the fluid, and generates topo-
graphy there (Figure 8.6). It does not generate significant
topography on the top surface except where a buoyant column
has risen to the top of the fluid layer. There the top surface is
lifted. Thus it is possible for the bottom thermal boundary layer
to generate topography on the top surface, but only after material
from it has risen to the top.

There is an important difference between the two topographic
highs in Figure 8.6. The high on the left has no ‘active’ upwelling
beneath it: it is high because the surface on either side of it has
subsided, because of the negative buoyancy of the top thermal
boundary layer. In contrast, the high on the right does have an
‘active’, positively buoyant upwelling beneath it that has lifted it up.

You will see in the following chapters that the forms of con-
vection driven by the two mantle boundary layers are different. As
a result, the forms of topography they generate are recognisably
different. Because buoyancy is directly involved both in the topo-
graphy and in the convection, the observed topography of the earth
contains important information about the forms of convection
present in the mantle.

Even better, the topography contains quantitative information
about the fluxes of buoyancy and heat involved. This is most read-
ily brought out in the mantle context, where the topographic forms
are distinct and lend themselves to extracting this information.
However, it should by now be no surprise to you that such infor-
mation is present, given the intimate involvement of buoyancy,
convection and topography.
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8.10 Exercises

1.

Use Equations (8.1.1) and (8.1.2) to evaluate the buoyancy
of the following. These are meant to be rough estimates, so
do not calculate results to more than one or two significant
figures.

(a) A ball bearing 1 cm in diameter and with density
7.7Mg/m’® in mantle of density 3.3 Mg/m".

(b) A plume head with a radius of 500 km and temperature
excess of 300 °C in a mantle of density 3.3 Mg/m® and
thermal expansion coefficient 3 x 107°/°C.

(c) A sheet of subducted lithosphere 100 km thick extending
to a depth of (i) 600 km, (ii) 3000 km. Calculate a buoyancy
per metre in the horizontal direction of the oceanic trench.
Assume the slab temperature varies linearly through its
thickness from 0 °C to the mantle temperature of 1300 °C;
you need only consider its mean temperature deficit.
Assume other parameters as above.

(d) Suppose part of the slab just considered included
oceanic crust 7 km thick with a density in the mantle of 3.2
Mg/m?. Calculate its contribution to the slab buoyancy.

Repeat the derivation of the approximate formula (8.2.5)
for the convection velocity in the model of Figure 8.1, but
this time assume that the cell length, L, is not the same as
its depth, D. You will need to consider the horizontal and
vertical velocities, # and v, to be different, and to relate
them using conservation of mass. You will also need to
include two terms in the viscous resistance, one
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proportional to the velocity gradient 2u/D and one
proportional to 2v/L. The answer can be expressed in the
form of Equation (8.2.5) with the addition of a factor
involving (L/D). Using values from the text, compare the
velocity when L = D = 3000km and when L = 14000 km,
the maximum width of the Pacific plate.



