
CHAPTER 8ConvectionConvection is a kind of fluid flow driven by internal buoyancy. Ingeneral, the buoyancy that drives convection derives from horizon-tal density gradients. In the mantle, the main sources of densitygradients are horizontal thermal boundary layers. Convection isdriven when the buoyancy (positive or negative) of a thermalboundary layer causes it to become unstable, so that fluid from itleaves the boundary of the fluid and rises or falls through theinterior of the fluid. This statement may seem to be labouring theobvious, but there has been a lot of confusion about the nature ofmantle convection, and much of this confusion can be avoided bykeeping these basic ideas clearly in mind.In general the buoyancy driving convection may be of thermalor compositional origin. We will be concerned mainly with thermalbuoyancy, but compositional buoyancy is also important in themantle. It is best to consider first thermal convection, that is con-vection driven by thermal buoyancy. Some aspects of composi-tional buoyancy will be considered in Chapter 14.Here I describe sources of buoyancy, give a simple example ofthermal convection, and show how there is an intimate relationshipbetween convection and the surface topography that it produces.This establishes some basic concepts that will be applied moreexplicitly to the mantle in subsequent chapters.In the course of doing this, I show how convection problemsscale, how the Rayleigh number encapsulates this scaling, why con-vection occurs only if the fluid is heated or cooled strongly enough,and how the mode of heating (from below or internally) governsthe nature of the thermal boundary layers. In principle there maybe two thermal boundary layers in a fluid layer, one at the top andone at the bottom, or there may be only one, depending on the waythe fluid is heated and cooled. 211



212 8 CONVECTION8.1 BuoyancyBuoyancy arises from gravity acting on density differences.Technically, buoyancy is used to describe a force. Thus it is notthe same as a density difference. Rather, it is the product of adensity difference, Ap, a volume, V, and the gravitational accelera-tion, g:B = -gVAp=-gAm (8.1.1)where Am is the mass anomaly due to a volume V with a densitydifference Ap = pv — p from its surroundings. The minus is usedbecause, in common usage, buoyancy is positive upwards, whereasgravity and weight are positive downwards. Thus for a densityexcess, Ap is positive and B is negative, that is downwards.It is buoyancy rather than just density difference that is impor-tant in convection. A large density difference within a small volumemay be unimportant. For example, you might expect intuitivelythat a steel ball-bearing, 1 cm in diameter, embedded in the mantlewould not sink rapidly to the core, despite a density difference ofover 100%. On the other hand, a plume head with a density con-trast of only about 1% would have a significant velocity if itsdiameter were 1000km, as we saw in Section 6.8.With thermal buoyancy, density differences arise from thermalexpansion. This is described byp = A,[1 - a(T - To)] (8.1.2)where p is density, a is the volume coefficient of thermal expansion,T is temperature, and p0 is the density at a reference temperatureTo. With a typically about 3 x 10~5/° C (Table 7.3), a temperaturecontrast of 1000 ° C gives rise to a density contrast of about 3%. Inthe lower mantle, where a may be only about 1 x 10~5/° C due tothe effect of pressure, the corresponding density difference wouldbe only about 1%.There are some density differences in the earth larger than thesethermal density differences, and these are due to differences inchemical or mineralogical composition. For example the oceaniccrust has a density of about 2.9 Mg/m3, compared with an uppermantle density of about 3.3 Mg/m3, so it has a density deficit ofabout 400kg/m3 or 12%. The total density change through themantle transition zone is about 15%. Much or all of this is believedto be due to pressure-induced phase transformations of the mineralassemblage (Chapter 5), and so it is not necessarily a source ofbuoyancy. However, locally all of the density differences associated



8.1 BUOYANCY 213with particular transformations may be operative because thedepth of the transformation is changed by temperature, as wasdiscussed in Chapter 5. Apart from this, if the density increasethrough the transition zone is not all due to phase transformations,the maximum that could be attributed to a difference between thecomposition of the upper mantle and the lower mantle is a smallpercentage, according to the seismological and material propertyconstraints discussed in Chapter 5.It is useful to have some idea of the magnitudes of buoyanciesof various objects. For example, a ball bearing would exert a buoy-ancy force of about — 0.02 N (taking buoyancy to be positiveupwards), while a plume head 1000 km in diameter with a tempera-ture difference of 300 ° C would have a buoyancy of about2 x 1020N. Subducted Hthosphere extending to a depth of 600 kmexerts a buoyancy of about —40  TN per metre of oceanic trench,that is per metre horizontally in the direction of strike of the sub-ducted slab.If the subducted hthosphere extended to the bottom of themantle, about 3000 km in depth, its buoyancy would be about—200TN/m. Comparing this with a plume head, it takes a pieceof subducted hthosphere about 1000 km wide and 3000 km deep toequal in magnitude the buoyancy of a plume head. While this maymake plume heads seem to be very important, you should bear inmind that the total length of oceanic trenches is over 30 000 km.Thus, while the buoyancy of a plume head is impressive, it is stillsmall compared to the total buoyancy of subducted hthosphere.The crustal component of subducted Hthosphere undergoes adifferent sequence of pressure-induced phase transformations thanthe mantle component, and as a result it is sometimes less denseand sometimes denser than the surrounding mantle, with the dif-ference usually no more than about 200kg/m3 (Section 5.3.4). Evenif it had the same density difference, say — 100kg/m3, extendingthroughout the mantle, its thickness is only about 7 km and itstotal contribution to slab buoyancy would be only about 20 TN/m, compared with the slab thermal buoyancy of —200  TN/m. Thissuggests that normally the crustal component of subducted htho-sphere does not substantially affect the slab buoyancy. However, ifthe subducted hthosphere is young, so that its negative thermalbuoyancy is small, the crustal buoyancy may be more important.This may have been more commonly true at earlier times in earthhistory. These possibilities will be taken up again in Chapter 14.The very large range of the magnitudes of buoyancies of thevarious objects just considered serves to emphasise that we must



214 8 CONVECTIONconsider the volume occupied by anomalous density, not just themagnitude of the density anomaly itself.8.2 A simple quantitative convection modelWe are now ready to consider a convection model that is simple inconcept but goes to the heart of plate tectonics and its relationshipwith mantle convection. The approach was first used by Turcotteand Oxburgh in 1967 [1]. At that time plate tectonics was only justbeginning to gain acceptance amongst geophysicists. I give a sim-plified version here. A more detailed version is given by Turcotteand Schubert [2], p. 279. I also acknowledge that it is only withinthe last five years or so that numerical models have become sub-stantially superior to Turcotte and Oxburgh's approximate analy-tical model. Such is the power of capturing the simple essence of aproblem.Consider plates on a viscous mantle, as sketched in Figure 8.1a.The plates comprise a thermal boundary layer, within which thetemperature changes from the surface temperature to the tempera-ture within the interior of the mantle. Because the plates are cold,they are denser and prone to sink: they have negative buoyancy. InFigure 8.1a, one plate is depicted as subducting, and we presumehere that it is sinking under its own weight. As the subducted partsinks, it drags along the surrounding viscous mantle with it. Themotion of the plate is resisted by the viscous stresses accompanying
Figure 8.1. (a) Sketch of flow driven by a subducting plate, (b) Idealisedform of the situation in (a).



8.2 A SIMPLE QUANTITATIVE CONVECTION MODEL 215this mantle flow. The viscous stresses are proportional to velocity.This permits an equilibrium to develop between the opposingforces: the velocity adjusts until the resistance balances the buoy-ancy.Our approach is based on the same principle as that used inChapter 6 when we considered flow down a pipe that is driven bythe fluid's own weight, and the rise of a buoyant sphere. In eachcase, there was a balance between a buoyancy force and a viscousresistance. The system achieves balance by adjusting its velocityuntil the viscous resistance balances the buoyancy. This balanceis stable, in the sense that a change in the velocity will induce animbalance of the forces that will quickly return the velocity to itsequilibrium value. However, we should remember that the motionsare so slow in the mantle that accelerations and momenta are quitenegligible, and the forces are essentially in balance at every instant,though their magnitudes may slowly change in concert.Let us make a simple dimensional estimate of the balancebetween buoyancy and viscous forces, in the same way as we didfor the buoyant sphere in Chapter 6. Here, because the two-dimen-sional sketch is assumed to be a cross-section through a structurethat extends in the third dimension, the forces will be calculated perunit length in the third dimension. Let us also simplify the geome-try into that depicted in Figure 8.1b.First consider the buoyancy of the lithosphere descendingdown the right side of the box. Assume that this lithosphere simplyturned and descended, preserving its thickness and temperatureprofile. From the basic formulas (8.1.1) and (8.1.2), the buoyancy isB = gDd- paATwhere ATMs the average difference in temperature between thedescending lithosphere and the fluid interior. This is approximatelyAT = —T12, where  Tv& the temperature of the interior fluid. (Weused the same approximation in estimating the subsidence ofoceanic lithosphere in Section 7.4). ThusB=-g-DdpaT/2 (8.2.1)If we want to evaluate this expression, we can independentlyestimate the values of all quantities except the thickness, d, of thelithosphere upon subduction. This is just the thickness of the layerthat has cooled by conduction of heat to the surface, as we con-sidered in Section 7.3. It is determined by the amount of time thesubducting piece of lithosphere spent at the surface. This time is



216 8 CONVECTIONt = D/v. According to the discussion of thermal diffusion inChapter 7, the thickness of the layer from which heat has diffusedis approximated byd = *J~Kt = JKD/V (8.2.2)where K is the thermal diffusivity. So we have an expression for d,but now it includes the still-unknown quantity v. We will see belowhow to deal with it.Now consider the viscous resistance. As with our rough esti-mate for a buoyant sphere (Section 6.8.1), we estimate the viscousstresses from a characteristic velocity gradient. In this case, thevelocity changes from v to —v across the dimensions of the box,so a representative velocity gradient is 2v/D. The resisting viscousstress a acting on the side of the descending slab is thena = IJL • 2v/DThis is a force per unit area. We get the force per unit length (in thethird dimension) by multiplying o by the vertical length, D, of theslab:R = Do = D- 2iiv/D = 2\iv (8.2.3)The buoyancy and resistance are balanced when B + R = 0.From (8.2.1) and (8.2.3), this occurs whenv = -g- DdpaT/Aii (8.2.4)This expression for v also involves d. We can combine Equations(8.2.2) and (8.2.4) to solve for the two unknowns v and d. The resultisUsing D = 3000 km, p = 4000 kg/m3, a = 2 x 10~5/° C, T =1400 ° C, /c=10~6m2/s and /x=102 2Pas, this yields v =2.8 x 10~9m/s = 90 mm/a. This is quite a good estimate of thevelocity of the faster plates.Other quantities can be estimated from these results. FromEquation (8.2.2), the thickness of the lithosphere is 33 km. This isof the same order of magnitude as the observed oceanic litho-sphere, though about a factor of two too small. If we had usedthe more accurate estimate of d = 2*J(kt) that is obtained from the



8.3 SCALING AND THE RAYLEIGH NUMBER 217error function solution for the cooling lithosphere (Equation(7.3.3)), we would have obtained 66 km. Also our estimate of thetime the lithosphere spent cooling at the surface is a bit small,because we assumed implicitly in Figure 8.1b that the plate isonly as wide as the mantle is deep, that is about 3000 km. At avelocity of 90 mm/a = 90 km/Ma, the plate will be only 33 Ma oldwhen it subducts. Observed lithosphere of this age is about 60 kmthick. If the box were longer, the plate would be older and thicker.This problem is left as an Exercise.The surface heat flux, q, can also be estimated from the tem-perature gradient through the boundary layer: q = KTId, where Kis the thermal conductivity. Using i^ = 3W/mK, this gives# = 130mW/m2. This compares with an observed heat flux ofabout 90mW/m2 for lithosphere of this age, and a mean heatflux of about 100mW/m2 for the whole sea floor.The point of these estimates is not that they are not very accu-rate, but that they are of the right order of magnitude. In theabsence of the simple theory developed above, one could notmake a sensible estimate even of the orders of magnitude to beexpected. Given the crudity of the approximations made, the agree-ment within about a factor of two is very good, perhaps better thanis really justified.The agreement of these estimates with observations suggeststhat we have a viable theory for mantle convection that explainswhy plates move at their observed velocities. Think about the sig-nificance of that statement for a moment. Plate tectonics is recog-nised as a fundamental mechanism driving geological processes.Within a few pages, with some simple physics and simple approx-imations, we have produced a theory that is consistent with someprimary observations of plate tectonics (their velocities, thicknessesand heat fluxes). We thus have a candidate theory for the under-lying mechanism for a very wide range of geological processes. Wewill be further testing the viability (and sufficiency) of this theorythrough much of the rest of this book.8.3 Scaling and the Rayleigh numberThe approximate theory just developed yields not only reasonablenumerical estimates of observed quantities, but also information onhow these quantities should scale. Thus, for example, according toEquation (8.2.5), if the viscosity were a factor of 10 lower at someearlier time in earth history, the plate velocities would not be 10times greater, but 10 = 4.6 times greater. Similarly, we can com-bine Equations (8.2.2) and (8.2.5) and deduce that



218 8 CONVECTIONd f - <••••  ( 8 - 3 - 1 }This implies that the boundary layer thickness would have been2.15 times less (15 km) and the heat flow 2.15 times higher(275mW/m2) with a viscosity 10 times lower.Equation (8.3.1) is written in this particular form to make amore general point. The left side involves a ratio of lengths, and it istherefore dimensionless. One can work through the dimensions ofthe right side and confirm that it is also dimensionless, as it shouldbe. This particular, rather arbitrary looking, collection of constantsactually encapsulates the scaling properties that we have justlooked at, and others besides. In fact it encapsulates many of thescaling properties of convection in a fluid layer in general, not justthe mantle convection we are concerned with here. For this reasonit has been recognised by fluid dynamicists as having a fundamentalsignificance for all forms of thermal convection. It was LordRayleigh who first demonstrated this, and this dimensionless com-bination (without the numerical factor) is known as the Rayleighnumber in his honour. It is usually written (8.3.2)For the mantle, using values used in the last section, we can esti-mate that Ra « 3 x 10 6.We can see explicitly the way in which the Rayleigh numberencapsulates the scaling properties by rewriting the above results interms of Ra. Thus, from Equation (8.3.1),d/D ~ Ra'1'3 (8.3.3)where '~' implies proportionality and 'of the order of. The ratiod/D is obviously dimensionless also, and we can view this ratio as away of scaling d, relative to a length scale that is characteristic ofthe problem, namely the depth of the fluid layer, D. Similarly, fromEquation (8.2.5)V(D/K) = V/V~ Ra2/3 (8.3.4)The dimensions of K are (Iength2/time), so the ratio K/D has thedimensions of velocity. We can thus regard V = K/D as a velocityscale characteristic of the problem. Then Equation (8.3.4) showshow the actual flow velocity v relates to the velocity scale V derived



8.3 SCALING AND THE RAYLEIGH NUMBER 219from the geometry of the problem and the properties of thematerial.Fluid dynamicists are enamoured of these dimensionless ratios,for the very good reason that they encapsulate important scalinginformation, and they have named lots of them after people. Thusthe combination VD/K is called the Peclet number, written Pe:Pe = vD/K = v/V (8.3.5)Then Equation (8.2.5) reduces to Pe ~ Ra2^. Using values fromthe last section, we can estimate that for the mantle Pe & 9000.I will not go through an exhaustive catalogue of these dimen-sionless numbers here, but a couple of further examples are worthnoting. First, it is instructive to combine the scaling quantities Vand D to define a characteristic time:tK = D/V = D2/K (8.3.6)From Chapter 7, this can be recognised as a diffusion time scale. Itis an estimate of the time it would take the fluid layer to coolsignificantly by thermal diffusion, that is by conduction, in theabsence of convection. Compare this with a time scale that ismore characteristic of the convection process: tv = D/v. This isthe time it takes the fluid to traverse the depth of the fluid layerat the typical convective velocity, v, so it can be called the transittime. From Equations (8.3.4) and (8.3.6),tv = D/v = tKRcT213 (8.3.7)If Ra = 3 x 106, then tv = 5 x 1 0 ~ \ . Thus if Ra is large, tv is muchsmaller than tK, reflecting the fact that, at high Rayleigh numbers,convection is a much more efficient heat transport mechanism thanconduction.Actually Equation (8.3.7) indicates that tK is not a very usefultime scale for convection processes, since it is a measure of thermalconduction. A better one would be that given by the second equal-ity in Equation (8.3.7). Thus we can define a time scale character-istic of convection astv = {D2/K)RCT213 (8.3.8)To complete this discussion of scaling for now, we will returnto the heat flux, estimated in the last section from q = KTId. UsingEquation (8.3.3), you can see that



220 8 CONVECTIONq = (KT/D)Ral/3 (8.3.9)Again you can recognise (KT/D) as a scaling quantity. In this caseit is the heat that would be conducted across the fluid layer (not theboundary layer) if the base were held at the temperature T and thesurface at T = 0. In other words, it is the heat that would be con-ducted in the steady state in the absence of convection. Denote thisas qK. The ratio q/qK is known as the Nusselt number, denoted asNu: Nu = q/qK = qD/KT (8.3.10)Then Equation (8.3.9) reduces toNu~Ra1/3 (8.3.11)Thus the Nusselt number is a direct measure of the efficiency ofconvection as a heat transport mechanism relative to conduction.For the mantle, Nu & 100. In other words, mantle convection isabout two orders of magnitude more efficient at transporting heatthan conduction would be.8.4 Marginal stabilityTraditional treatments of convection often begin with an analysisof marginal stability, which is the analysis of a fluid layer just at thepoint when convection is about to begin. This approach reflects thehistorical development of the topic, and the fact that the mathe-matics of marginal stability has yielded analytical solutions. Themantle is far from marginal stability, as we will see, and so I beganthe topic of convection differently, with the more directly relevant'finite amplitude' convection problem.Nevertheless the marginal stability problem gives us someimportant physical insights into convection and the Rayleigh num-ber. However, many treatments of it give long and intricate math-ematical derivations and do not always make the physics clear. Iwill err in the other direction, keeping the mathematics as simple aspossible and endeavouring to clarify the physics.The marginal stability problem arises from the fact that, for afluid layer heated uniformly on a lower horizontal boundary, thereis a minimum amount of heating below which convection does notoccur. If the temperature at the bottom is initially equal to thetemperature at the top, then of course there will be no convection.Now if the bottom temperature is slowly increased, still there will



8.4 MARGINAL STABILITY 221be no convection, until some critical temperature difference isreached, at which point slow convection will begin. At this point,the fluid layer has just become unstable and begins to overturn. Thetransition, just at the point of instability, is called marginal stabi-lity. Lord Rayleigh [3] was the first to provide a mathematicalanalysis of this. He showed that marginal stability occurs at acritical value of the Rayleigh number. The critical value dependson the particular boundary conditions and other geometric details,but is usually of the order of 1000. The mathematical analysis ofmarginal stability is reproduced by Chandrasekhar [4] and byTurcotte and Schubert [2] (p. 274).Consider the two layers of fluid sketched in Figure 8.2. Thelower layer is less dense, and the interface between them has a bulgeof height h and width w. Take h to be quite small. This bulge isbuoyant relative to the overlying fluid, and its buoyancy is approxi-matelyB=gApwhper unit length in the third dimension. Its buoyancy will make itgrow, so that its highest point rises with some velocity v = dh/dt,and its growth will be resisted by viscous stresses.The viscous resistance will have different forms, depending onwhether the width of the bulge is smaller or larger than the layerdepth D. If w <C D, the dominant shear resistance will be propor-tional to the velocity gradient v/w. The resisting force is thenRs = fj,(v/w)w = IJLV = fidh/dtwhere v/w is a characteristic strain rate and the subscript's' denotessmall w. Equating B and Rs to balance the forces yieldsdh gApw~dt~ [i 3.4.1)which has the solutionFigure 8.2. Sketch of two layers of fluid with the denser fluid above andwith an undulating interface that is unstable.



222 8 CONVECTIONh = hoexp(t/rs) (8.4.2)where h0 is a constant and*s=——  (8-4-3)In other words, the bulge grows exponentially with a time constantTS, because the interface is unstable: the lighter fluid wants to rise tothe top. This kind of instability is called the Rayleigh-Taylorinstability. It occurs regardless of the reason for the density differ-ence between the two fluids.Notice that TS gets smaller as w gets bigger. That is, broaderbulges grow more quickly. However, there is a limit to this: whenthe width of the bulge is comparable to the depth, D, of the fluidlayer, the top boundary starts to interfere with the flow and toincrease the viscous resistance. If w is much larger than D, thenthe dominant viscous resistance comes from horizontal shear flowwith velocity u along the layer. By conservation of mass, uD = vw.The characteristic velocity gradient of this shear flow is thenu/D = vw/D2. The resulting shear stress acts across the width wof the bulge, so the resisting force in this case isRi = IJL(U/D)W = IJLVW /Dwhere subscript T denotes large w. Balancing R{ and B then yields(S.4.4)at \iwwhich has the same form as Equation (8.4.1) except for the con-stants. It also has the same form of exponentially growing solution(Equation (8.4.2)), but with a different time scale T\: .4.5)gApD2Notice here that T\ gets bigger for larger w, whereas TS getssmaller, and their values are equal when w = D. We have consid-ered the two extreme cases w <C D and w » D. As w approaches Dfrom either side, the time scale of the growth of the instability getssmaller. This implies that the time scale is a minimum near w = D.In other words, a bulge whose horizontal scale is w = D is thefastest growing bulge, and its growth time scale is



8.4 MARGINAL STABILITY 223(8.4.6)where the subscript 'RT' connotes the Rayleigh-Taylor time scale.A more rigorous analysis that yields this result is given by Turcotteand Schubert [2] (p. 251). The implication of this result is that ifthere are random small deviations of the interface from being per-fectly horizontal, deviations that have a width comparable to thelayer depth will grow exponentially with the shortest time scale andwill quickly come to dominate. As a result, the buoyant layer willform into a series of rising blobs with a spacing of about 2w.Now let us consider the particular situation in which the den-sity difference is due to the lower layer having a higher temperaturebecause the bottom boundary of the fluid is hot. Then the densitydifference would be Ap = pa AT, where AT" is a measure of theaverage difference in temperature between the layers. Suppose firstthat the thermal conductivity of the fluid is high and the growth ofthe bulge is negligibly slow: then temperature differences would bequickly smeared out by thermal diffusion. In the process, the bulgewould be smeared out. After a time the temperature wouldapproach a uniform gradient between the bottom and top bound-aries, and the bulge would have ceased to exist.However, I showed above that the bulge grows because of itsbuoyancy. Evidently there is a competition between the buoyancyand the thermal diffusion. We can characterise this competition interms of the time scales of the two processes: TRT for the buoyantgrowth and xK for the thermal diffusion, whererK = D2/K (8.4.7)We can use D as a measure of the distance that heat must diffuse inorder to wipe out the fastest growing bulge. In order for the bulgeto grow, TRT will need to be significantly less than rK. FromEquations (8.4.6) and (8.4.7), this condition is (8.4.where c is a numerical constant and you can recognise the left-handside of Equation (8.4.8) as the Rayleigh number.This result tells us that there is indeed a value of the Rayleighnumber that must be exceeded before the thermal boundary layercan rise unstably in the presence of continuous heat loss by thermaldiffusion. If it cannot, there will be no thermal convection. Thus we



224 8 CONVECTIONhave derived the essence of Rayleigh's result. In this case, we do notget a very good numerical estimate of the critical value of theRayleigh number, since a rigorous stability analysis yieldsc & 1000, rather than c & 1.The quantitative value may not be very accurate, but we havebeen able to see that the controlling physics is the competitionbetween the Rayleigh-Taylor instability and thermal diffusion(the Rayleigh-Taylor instability involving an ever-changing bal-ance between buoyancy and viscous resistance). In fact, you cansee now that the Rayleigh number is just the ratio of the time scalesof these two processes:Ra = — (8.4.9)TRTThe mantle Rayleigh number is at least 3 x 106, well above thecritical value of about 1000. This indicates that the mantle is wellbeyond the regime of marginal stability. One way to look at this,using Equation (8.4.9), is that the thermal diffusion time scale isvery long, which means that heat does not diffuse very far in thetime it takes the fluid to become unstable and overturn. This meansthat the thermal boundary layers will be thin compared with thefluid layer thickness.Thin boundary layers were assumed without comment in thesimple theory of convection given in Section 8.2. That theory actu-ally is most appropriate with very thin boundary layers, that is atvery high Rayleigh numbers. For this reason it is known as theboundary layer theory of convection. Thus the marginal stabilitytheory applies just above the critical Rayleigh number, while theboundary layer theory applies at the other extreme of highRayleigh number.8.5 Flow patternsIn a series of classic experiments, Benard [5] observed that, in aliquid just above marginal stability, the convection flow formed asystem of hexagonal cells, like honeycomb, when viewed fromabove. Considerable mathematical effort was devoted subsequentlyto trying to explain this. It was presumed that it must imply thathexagonal cells are the most efficient at convecting heat. It turnedout that the explanation for the hexagons lay in the effect of surfacetension in the experiments, and specifically on differences in surfacetension accompanying differences in temperature. Surface tension



8.6 HEATING MODES AND THERMAL BOUNDARY LAYERS 225was important because Benard's liquid layers were only 1 mm orless in thickness.There is an important lesson here. If a factor like the tempera-ture-dependence of surface tension could so strongly influence thehorizontal pattern, or 'planform', of the convection, then the fluidmust not have a strong preference for a particular planform; that is,different planforms must not have much influence on the efficiencyof the convection. The implication is that, in other situations, otherfactors influencing the material properties of the fluid in the bound-ary layers might also have a strong influence on planform.Pursuing this logic, if the top and bottom thermal boundarylayers in a fluid layer should have material properties that aredistinctly different from each other, then each may tend to drivea distinctive pattern of convection. What then will be the resultingbehaviour? The possibility of the different thermal boundary layerstending to have different planforms is not made obvious in stan-dard treatments of convection. Whether it occurs depends both onthe physical properties of the fluid and on the mode of heating,which we will look at next.In the mantle, a hot boundary layer does have distinctly differ-ent mechanical properties from a cold boundary layer, and the twoseem to behave quite differently. As well, the cold boundary layerin the earth is laterally heterogeneous, containing continents and soon, and it develops other heterogeneities in response to deforma-tion: it breaks along faults. The effects of material properties onflow patterns are major themes of the next three chapters, whichfocus on the particular case of the earth's mantle.8.6 Heating modes and thermal boundary layersTextbook examples of convection often show the case of a layer offluid heated from below and cooled from above. In this case there isa hot thermal boundary layer at the bottom and a cool thermalboundary layer at the top (Figure 8.3a). If, as well, the Rayleighnumber is not very high, the resulting pattern of flow is such thateach of the thermal boundary layers reinforces the flow driven bythe other one. In other words the buoyant upwellings rise betweenthe cool downwellings, so that a series of rotating 'cells' is formedwhich are driven in the same sense of rotation from both sides. Thiscooperation between the upwellings and downwellings disguises thefact that the boundary layers are dynamically separate entities. It ispossible that they might drive different flow patterns, as I intimatedin the last section. It is also possible that one of the thermal bound-ary layers is weak or absent.



226
(c) INSULATINGCOLD TemperatureHOTFigure 8.3. Sketches illustrating how the existence and strength of a lowerthermal boundary layer depend on the way in which the fluid layer isheated.For example, a fluid layer might be heated from within byradioactivity. If there is no heat entering the base, perhaps becauseit is insulating, then there will be no hot thermal boundary at thebottom. If the fluid layer is still cooled from the top, the onlythermal boundary layer will be the cool one at the top (Figure8.3b). In fact this was assumed, without comment, in the simpletheory of convection presented in Section 8.2. In this case, the coolfluid sinking from the top boundary layer still drives circulation,but the upwelling is passive. By this I mean that although the fluidflows upwards between the downwellings (Figure 8.3b), it is notbuoyant relative to the well-mixed interior fluid. It is merelybeing displaced to make way for the actively sinking cold fluid.Although this may seem to be a trivial point here, it has beenvery commonly assumed, for example, that because there is clearlyupwelling occurring under midocean ridges, the upwelling mantlematerial is hotter than normal and thus buoyant and 'actively'upwelling. We will see evidence in Chapter 10 that this is usuallynot true. A lot of confusion about the relationship between mantleconvection and continental drift and plate tectonics can be avoidedby keeping this simple point clearly in mind.



8.6 HEATING MODES AND THERMAL BOUNDARY LAYERS 227More generally, the heat input to the fluid layer might be acombination of heat entering from below and heat generated within(by radioactivity, in the case of the mantle), and states intermediatebetween those of Figures 8.3a and 8.3b will result (Figure 8.3c).Suppose, as implied in Figure 8.3a, that the temperature of thelower boundary is fixed. If there is no internal heating, then thetemperature profile will be like that shown to the right of Figure8.3a. If there is no heating from below, the internal temperaturewill be the same as the bottom boundary, as shown to the right ofFigure 8.3b. If there is some internal heating, then the internaltemperature will be intermediate, as in Figure 8.3c. As a result,the top thermal boundary layer will be stronger (having a largertemperature jump across it) and the lower thermal boundary layerwill be correspondingly weaker. The mantle seems to be in such anintermediate state, as we will see.The point is illustrated by numerical models in Figure 8.4. Theleft three panels are frames from a model with a prescribed bottomtemperature and no internal heating. You can see both cool sinkingcolumns and hot rising columns. The right three panels are from aninternally heated model, and only the upper boundary layer exists.Downwellings are active, as in the bottom-heated model, but theupwellings are passive, broad and slow. Away from downwellings,isotherms are nearly horizontal, and the fluid is stably stratified.This is because the coolest fluid sinks to the bottom, and is then218.3 Ma 349.6 Ma441.9 Ma536.7 Ma 587.0 Ma738.7 Ma TemperatureFigure 8.4. Frames from numerical models, illustrating the differencesbetween convection in a layer heated from below (left-hand panels) and in alayer heated internally (right-hand panels). (Technical specifications of thesemodels are given in Appendix 2.)



228 8 CONVECTIONslowly displaced upwards by later cool fluid as it slowly warms byinternal heating.Figure 8.4 illustrates two other important points. First, the flowis unsteady. This is characteristic of convection at high Rayleighnumbers in constant-viscosity fluids. It is because the heating is sostrong that the boundary layers become unstable before they havetravelled a distance comparable to the depth of the fluid, which isthe width of cells that allows the most vertical limbs while alsominimising the viscous dissipation. Incipient instabilities in thetop boundary layer are visible in the middle right panel of Figure8.4. By the last panel they have developed into full downwellings.Second, the two thermal boundary layers in the left sequenceare behaving somewhat independently, especially on the left side ofthe panels. In fact in the bottom panel an up welling and a down-welling are colliding. This illustrates the point made earlier thateach boundary layer is an independent source of buoyancy, andthey may interact only weakly. This becomes more pronounced athigher Rayleigh numbers.8.6.1 Other Rayleigh numbers [Advanced]We have so far specified the thermal state of the convecting fluid interms of temperatures prescribed for each boundary. However, inFigures 8.3b and 8.4 (right panels) the bottom boundary is specifiedas insulating, that is as having zero heat flux through it, and theheating is specified as being internal. The temperature is not speci-fied ahead of time. It is evident that this model is specified in termsof heat input, rather than in terms of a temperature differencebetween the boundaries. How then can the Rayleigh number bedefined?The philosophy of the dimensional estimates used in this chap-ter is that representative quantities are used. With appropriatechoices, order-of-magnitude estimates will (usually) result. TheRayleigh number defined by Equation (8.3.2) is defined in termsof such representative quantities. This suggests that we look forrepresentative and convenient measures in different situations.We lack a representative temperature difference for the situa-tion in Figure 8.3b, but we can assume that a heat flux, q, is spe-cified. One way to proceed is to derive a quantity from q that hasthe dimensions of temperature; for example, we can use the tem-perature difference, ATq, across the layer that would be required toconduct the specified heat flux, q:



8.6 HEATING MODES AND THERMAL BOUNDARY LAYERS 229ATq = qD/KWe can then define a new Rayleigh number asgpaD3ATq gpaqD4This Rayleigh number is useful in any situation in which it is theheat input rather than a temperature difference that is specified.It is possible in principle that some heat, say qh, is specified atthe base, and some is specified to be generated internally. If theinternal heating is uniform, and generated at the rate H per unitvolume of fluid, then the rate of internal heat generation per unitarea of the layer surface is HD. The total heat input will then beq = qh + HDAlthough in a laboratory setting it is not easy to prescribe a heatflux, it is easy in numerical experiments and it is useful to make theconceptual distinction between the two kinds of bottom thermalboundary layer: prescribed temperature and prescribed heat flux.The Rayleigh numbers Rq (Equation (8.6.1)) and Ra (Equation(8.3.2)) are distinct quantities with different numerical values, as wewill see, and this is why different symbols are used here for them.However they are also related. Recall that the Nusselt number, Nu,was defined as the ratio of actual heat flux, q, to the heat flux, qK,that would be conducted with the same temperature differenceacross the layer (Equation (8.3.10)). In the case considered earlier,it was qK that was specified ahead of time and q that was deter-mined by the behaviour of the fluid layer. Here it is the reverse.However we can still use this definition of Nu. Thus, if the actualtemperature difference across the layer that results from the con-vection process is A T, then qK = KA T/D andNu = q/qK = ATq/AT (8.6.2)Thus here the Nusselt number gives the ratio of the temperaturedifference, ATq, that would be required to conduct the heat flux qthrough the layer, to the actual temperature difference in the pre-sence of convection.Similarly, although A T is not known ahead of time here, it canstill be used conceptually to define the Rayleigh number Ra(Equation (8.3.2)). It is then easy to see the relationship betweenRa and Rq:



230 8 CONVECTIONIn the earlier discussion of scaling, we found that Nu ~ Ral/3, soi?? ~ Ra4/3. Thus if i?a has the value 3 x 106 estimated earlier, forexample, then Rq will be about 4.3 x 108. Thus Rq is numericallylarger than Ra. Nevertheless it is a convenient way to characterisecases where it is the heat flux that is specified, rather than thetemperature difference. You must of course be careful aboutwhich definition of Rayleigh number is being used in a given con-text, as they have different scaling properties as well as differentnumerical values.This discussion illustrates the general point that differentRayleigh numbers may be defined in different contexts. There isnothing profound about this, it is merely a matter of adopting adefinition that is convenient and relevant for the context, so that itencapsulates the scaling properties of the particular situation.For the earth's mantle, however, there is a complication. Anappropriate way of specifying the heat input into models of themantle is through a combination of internal heating from radio-activity and a prescribed temperature at the base. Although thevalue of the temperature at the base of the mantle is not wellknown, the liquid core is believed to have a low viscosity, so thatit would keep the temperature quite homogeneous. This means thecore can be viewed as a heat bath imposing a uniform temperatureon the base of the mantle. This combination of a heating rate and aprescribed uniform bottom temperature is not covered by either ofthe Rayleigh numbers Ra or Rq, so there is not a convenient apriori thermal prescription of mantle models. In the mantle it isthe heat output, at the top surface that is well-constrained. Thismeans that some trial and error may be necessary to obtain modelsthat match the observed heat output of the mantle.8.7 Dimensionless equations [Advanced]The equations governing convection are often put into dimension-less form, that is they are expressed in terms of dimensionless vari-ables. This is done to take advantage of the kind of scalingproperties that we have been looking at, because one solutioncan then be scaled to a variety of contexts. There are differentways in which this can be done. We have seen an example of thisalready, in the different Rayleigh numbers that can be defined,depending on the way the fluid is heated. Other alternatives aremore arbitrary. For example, two different time scales are com-



8.7 DIMENSIONLESS EQUATIONS 231monly invoked, and others are possible. Since these alternatives arenot usually presented systematically, I will do so here.The equations governing the flow of a viscous incompressiblefluid were developed in Chapter 6 (Equation (6.6.3)), and the equa-tion governing heat flow with advection, diffusion and internal heatgeneration was developed in Chapter 7 (Equation (7.8.2)). Thefollowing dimensional forms of these equations are convenienthere.In Equation (8.7.1), the buoyancy force Bt (positive upwards), iswritten in terms of the density and the gravity vector gt (positivedownwards). In Equation (8.7.2), the first derivative, T)T/T)t, isknown as the total derivative, and its definition is implicit in thefirst identity of that equation. A is the internal heat production perunit time, per unit volume.Three scaling quantities suffice to express these equations indimensionless form: a length, a temperature difference and atime. For length, an appropriate choice is usually D, the depth ofthe convection fluid layer. Using this, we can define dimensionlessposition coordinates, xt, for example, such thatxl = Dx{where I have changed notation: the prime denotes a dimensionalquantity and unprimed quantities are dimensionless, unless specifi-cally identified as a dimensional scaling quantity, like D.For temperature, we have seen in the last section two possiblechoices:AT = ATT = (Tb - Ts) (8.7.3)AT = ATq = qD/K (8.7.4)For the moment, I will retain the general notation AT to coverboth of these possibilities.A time scale that is often used is the thermal diffusion timescale of Equation (8.3.6): tK = D2/K. Another one sometimes used is



232 8 CONVECTIONtK/Ra. A third possibility emerged from the earlier discussion ofscaling, namely the transit time tv = 1,^/Ra2^ (Equations (8.3.7),(8.3.8)). Here I will carry all three possibilities by using a generaltime scale tn, whereh = tK = D2/Kt2 = tJRa (8.7.5)t3 = tv = tJRa2'3Dimensional scales can be derived from D, AT and tn forviscous stress, buoyancy and heat generation rate as follows.Viscous stress is viscosity times velocity gradient, so an appropriatescale is ii{D/tn)/D = fi/tn. Buoyancy per unit volume isgAp = gpoaAT. Using these scales in Equation (8.7.1) yieldsli fdrij_dP\ =Dtn \dxt dxjthat iŝ - ¥-  = RF(Pgi) (8.7.6)oXj ax,where RF denotes a dimensionless combination of constants in theforce balance equations: (8.7.7)Similarly, for Equation (8.7.2) we need a scale for heat genera-tion. The heat flux scale identified earlier (Equations (8.3.9) and(8.3.10)) is qK, the heat flux that would be conducted with the sametemperature difference. The heat generation rate per unit volumethat corresponds to this is qK/D = KAT/D2. Then Equation(8.7.2) becomesRemembering that K/pCP = K, this can be writtenD7^— = Rn(V2T + A) (8.7.8)



8.8 TOPOGRAPHY GENERATED BY CONVECTION 233where i?H denotes a dimensionless combination in the heatequation:* H = | f (8.7.9)Equations (8.7.6) and (8.7.8) are dimensionless versions of theflow and heat equations, and they involve the two dimensionlessratios RF and Rn. The three choices of time scale proposed inEquations (8.7.5) then yieldtn = t1: R F = Ra i ? H = 1 (8.7.10a)tn = t2: RF = l Rn = l/Ra (8.7.10b)tn = t3 : RF = Ra1'3 Rn = l/Rci2'3 (8.7.10c)The choice of time scale is mainly a matter of convenience. Withthe choice t3, one dimensionless time unit will correspond approxi-mately with a transit time, regardless of the Rayleigh number, andit will be easier to judge the progress of a numerical calculation. Onthe other hand, the choice between ATT and ATg depends on themode of heating of the fluid. The notation thus refers to a moresubstantial difference in the model than convenience, and morecare must be taken to ensure the proper interpretation of resultsof calculations.8.8 Topography generated by convectionThe topography generated by convection is of crucial importanceto understanding mantle convection, since the earth's topographyprovides some of the most important constraints on mantle con-vection. Here I present the general principle qualitatively. Theparticular features of topography to be expected for mantleconvection, and their quantification and comparison with observa-tions, will be given in following Chapters. We have already coveredone important example in Chapter 7, the subsidence of the seafloor.The central idea is that buoyancy does two things: it drivesconvective flow and it vertically deflects the horizontal surfaces ofthe fluid layer. Because the buoyancy is (in the thermal convectionof most interest here) of thermal origin, there are intimate relation-ships between topography, fluid flow rates and heat transport rates.



234 8 CONVECTIONThe principle is illustrated in Figure 8.5. This shows a fluidlayer with three buoyant blobs, labelled (a), (b) and (c). Blob (a)is close to the top surface and has lifted the surface. The surfaceuplift is required by Newton's laws of motion. If there were noforce opposing the buoyancy of the blob, the blob would continu-ously accelerate. Of course there are viscous stresses opposing theblob locally, but these only shift the problem. The fluid adjacent tothe blob opposes the blob, but then this fluid exerts a force on fluidfurther out. In other words, the viscous stresses transmit the forcethrough the fluid, but do not result in any net opposing force. Thiscomes from the deflected surface.There is, in Figure 8.5, blob (a), a simple force balance: theweight of the topography balances the buoyancy of the blob.Geologists might recognise this as an isostatic balance. Anotherway to think of it is that the topography has negative buoyancy,due to its higher density than the material it has displaced (air orwater, in the case of the mantle). Recalling the definition ofbuoyancy given earlier (Equation (8.1.1)), this implies that theexcess mass of the topography equals the mass deficiency of theblob.As I have already stressed, there is in this very viscous systeman instantaneous force balance, even though the blob is moving.Such topography has sometimes been referred to as 'dynamic topo-graphy', but this terminology may be confusing, because it maysuggest that momentum is involved. It is not. The balance is a static(strictly, a quasi-static), instantaneous balance. The 'dynamic' ter-minology derives from the term 'dynamic stresses', which meansthe stresses due to the motion, which are the viscous stresses. Whilethis terminology may be technically correct, it is not very helpful,because it may obscure the fact that there is a simple force balance0Figure 8.5. Sketch of the effects of buoyant blobs on the surfaces of a fluidlayer. The layer surfaces are assumed to be free to deflect vertically, with aless dense fluid (e.g. air or water) above, and a more dense fluid (e.g. thecore) below.



8.8 TOPOGRAPHY GENERATED BY CONVECTION 235involved, and it may make the problem seem more complicatedthan it really is.Blob (b) in Figure 8.5 is near the bottom of the fluid layer.It causes the bottom surface of the fluid to deflect. This isbecause the viscous stresses caused by the blob are larger closeto the blob than far away, so the main effect is on the nearbybottom surface. I have implicitly assumed in Figure 8.5 thatthere is a denser fluid below the bottom surface, such as thecore under the mantle. In this case, the topography causes denser(core) material to replace less dense (mantle) material. Thus itgenerates a downward compensating force, or negative buoy-ancy, just as does topography on the top surface. This forcebalances the buoyancy of blob (b).Does blob (b) cause any deflection of the top surface? Yes,there will be a small deflection over a wide area of the surface.Blob (c) makes this point more explicitly: it is near the middle ofthe layer, and it deflects both the top and the bottom surfaces bysimilar amounts. In this case, we can see that the force balance isactually between the positive buoyancy of the blob and the twodeflected surfaces. In fact this will always be true, even for blobs(a) and (b), but I depicted them close to one surface or the other tosimplify the initial discussion, since this makes the deflection of onesurface negligible.To summarise the principle, buoyancy in a fluid layer deflectsboth the top and the bottom surfaces of the fluid (supposing they aredeformable), and the combined weight of the topographies balancesthe internal buoyancy. The amount of deflection of each surfacedepends on the magnitude of the viscous stresses transmitted toeach surface. This depends on the distance from the buoyancy tothe surface. It also depends on the viscosity of the intervening fluid,a point that will be significant in following chapters.Now apply these ideas to the thermal boundary layers we wereconsidering above. The top thermal boundary layer is cooler anddenser than the ambient interior fluid, so it is negatively buoyantand pulls the surfaces down. Because it is adjacent to the top fluidsurface, it is this surface that is deflected the most. There will be, toa good approximation, an isostatic balance between the massexcess of the thermal boundary layer and the mass deficiency ofthe depression it causes. The result is sketched in Figure 8.6 in aform that is like that of the mantle. The topography on the left ishighest where the boundary layer is thinnest. Away from this inboth directions, the surface is depressed by the thicker boundarylayer.
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Figure 8.6. Sketch of two types of topography on the top surface of aconvecting fluid layer. The top thermal boundary layer cools, thickens andsubsides by thermal contraction as it moves away from the spreading centreat left, leaving a topographic high where it is thin. The bottom thermalboundary layer generates no topography on the top surface until materialfrom it rises to the top, where it raises the top surface (upwelling on right).On the other hand, the bottom thermal boundary layer isadjacent to the bottom surface of the fluid, and generates topo-graphy there (Figure 8.6). It does not generate significanttopography on the top surface except where a buoyant columnhas risen to the top of the fluid layer. There the top surface islifted. Thus it is possible for the bottom thermal boundary layerto generate topography on the top surface, but only after materialfrom it has risen to the top.There is an important difference between the two topographichighs in Figure 8.6. The high on the left has no 'active' upwellingbeneath it: it is high because the surface on either side of it hassubsided, because of the negative buoyancy of the top thermalboundary layer. In contrast, the high on the right does have an'active', positively buoyant upwelling beneath it that has lifted it up.You will see in the following chapters that the forms of con-vection driven by the two mantle boundary layers are different. Asa result, the forms of topography they generate are recognisablydifferent. Because buoyancy is directly involved both in the topo-graphy and in the convection, the observed topography of the earthcontains important information about the forms of convectionpresent in the mantle.Even better, the topography contains quantitative informationabout the fluxes of buoyancy and heat involved. This is most read-ily brought out in the mantle context, where the topographic formsare distinct and lend themselves to extracting this information.However, it should by now be no surprise to you that such infor-mation is present, given the intimate involvement of buoyancy,convection and topography.



8.10 EXERCISES 2378.9 References1. D. L. Turcotte and E. R. Oxburgh, Finite amplitude convection cellsand continental drift, / . Fluid Mech. 28, 29-42, 1967.2. D. L. Turcotte and G. Schubert, Geodynamics: Applications ofContinuum Physics to Geological Problems, 450 pp., Wiley, NewYork, 1982.3. Lord Rayleigh, On convective currents in a horizontal layer of fluidwhen the higher temperature is on the under side, Philos. Mag. 32,529-46, 1916.4. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,Oxford University Press, Oxford, 1961.5. H. Benard, Les tourbillons cellulaires dans une nappe liquide trans-portant de la chaleur par convection en regime permanent, Ann. Chim.Phys. 23, 62-144, 1901.8.10 Exercises1. Use Equations (8.1.1) and (8.1.2) to evaluate the buoyancyof the following. These are meant to be rough estimates, sodo not calculate results to more than one or two significantfigures.(a) A ball bearing 1 cm in diameter and with density7.7Mg/m3 in mantle of density 3.3Mg/m3.(b) A plume head with a radius of 500 km and temperatureexcess of 300 ° C in a mantle of density 3.3 Mg/m3 andthermal expansion coefficient 3 x 10~5/° C.(c) A sheet of subducted lithosphere 100 km thick extendingto a depth of (i) 600 km, (ii) 3000 km. Calculate a buoyancyper metre in the horizontal direction of the oceanic trench.Assume the slab temperature varies linearly through itsthickness from 0 ° C to the mantle temperature of 1300 ° C;you need only consider its mean temperature deficit.Assume other parameters as above.(d) Suppose part of the slab just considered includedoceanic crust 7 km thick with a density in the mantle of 3.2Mg/m3. Calculate its contribution to the slab buoyancy.2. Repeat the derivation of the approximate formula (8.2.5)for the convection velocity in the model of Figure 8.1, butthis time assume that the cell length, L, is not the same asits depth, D. You will need to consider the horizontal andvertical velocities, u and v, to be different, and to relatethem using conservation of mass. You will also need toinclude two terms in the viscous resistance, one



238 8 CONVECTIONproportional to the velocity gradient 2u/D and oneproportional to 2v/L. The answer can be expressed in theform of Equation (8.2.5) with the addition of a factorinvolving (L/D). Using values from the text, compare thevelocity when L = D = 3000 km and when L = 14000 km,the maximum width of the Pacific plate.


