Condensed Matter Physics I

(M. Peressi)

Exercises - Drude Model

Hint: normally the Ashcroft-Mermin book uses CGS units; however, it can be convenient to use MKS(SI) units in presence of eqs. containing the resistivity (use ρ in Ω -meters, m in Kg, n in electrons/ m^3 , e in Coulomb.

Exercise 1

1. Consider typical values of the magnetic field (H(Earth) \approx 0.5 Gauss; H(lab) \approx 1-10 T). Evaluate the product $\omega_c \tau$, where ω_c is the cyclotron frequency and τ the electron relaxation time. On average, can an electron in a metal make many revolutions between collisions or not?

Exercise 2

1. Give a numerical estimate of the mean electronic velocity in case of a current density of 0.1 A/mm² flowing in a copper wire ($n_{el} = 8.47 \ 10^{22} \ \text{cm}^{-3}$). [$v=7 \ 10^{-4} \ \text{cm/s}$]

Exercise 3

Consider Al at room temperature. Its electron density is $n=18.1 \cdot 10^{22}/cm^3$ and its electrical resistivity is $\rho=2.45~\mu\Omega\cdot cm$.

- 1. Find its electron relaxation time τ and electron mean free path ℓ in the Drude model. [τ =8.01 10^{-15} s; ℓ = 9 Å]
- 2. Consider AC conductivity. At which frequency w the real part of the conductivity $\sigma(\omega)$ will be 1/10 of its zero-frequency value? [$\nu = \omega/2\pi = 59.7 \ 10^{12} \ \mathrm{Hz}$]

Exercise 4

Sodium (Na) in standard temperature and pressure conditions is a metal with BCC structure, density of about 0.97 g cm^{-3} and mass number = 23.

- 1. Calculate the atomic density (number of atoms per unit volume) of solid sodium. [n_{at} =2.54 10²² cm⁻³]
- 2. Calculate the electron density. [$n_{el}=n_{at}$]
- 3. Calculate the plasma frequency. [ω_p =8.99 10¹⁵ s⁻¹]
- 4. If the electron gas is treated as a classical one, which is the average kinetic energy of an electron at $T=0^{\circ}$ K? and at room temperature? [0; 3.88 10^{-2} eV]
- 5. Given the resistivity in DC at room temperature, ρ = 4.2 $\mu\Omega$ cm, calculate the relaxation time τ . [τ =3.3 10^{-14} s]