$$
\frac{1}{} \operatorname{l}^{\text {WEAR POTENTIAL }}
$$

FREE ELECTRONS:

NON-DEGENERATE
for o given k, $\exists$ ! $k_{1}$ s. :
(1) $\varepsilon_{\hat{k}-k_{1}}=6$; $c_{k-k} \neq 0$

$$
\forall k \nmid k_{1} \Rightarrow G_{k-k}^{0} \neq E_{k-k_{1}}^{0^{2}}
$$

WEAKLY PERTURBED CASE:
$\cup \neq 0 \Rightarrow C_{k-k}=c_{k-k}(U)$ NOT very $f$ from $c_{k-k}$ case (I) NON DEGENERATE Suppose $\exists!K_{1} \operatorname{st}(1)$ Bliorefore, $\forall K \neq k_{1}$ :

$$
6_{k-k}^{0} \neq 8_{k-k_{1}}^{0}
$$

aud more pucisely $\left|\delta_{k-K}^{0}-E_{k-k_{1}}^{0}\right|>0$


How to obtain an expression for $c_{k}-k_{1}$ (approximate) aud
Hint 1 start from *
a) specify for $K_{1} \rightarrow$ impesisicil to find direct an expression for $c_{k}-k_{1}$

$\Rightarrow$ sobe boo $c_{k-k}\left(k \neq k_{1}\right)$ and dtain

$$
\text { (*) } \quad c_{k-k}^{(1)}=\frac{U_{k_{1}-k c k-k_{1}}}{\theta-\delta_{k-k}^{0}}+\theta\left(u^{2}\right)
$$

(2) Put (*) in a), after euliting also there

$$
\begin{aligned}
& \sum_{k^{\prime}}=\frac{\text { term }}{\operatorname{in} k_{1}}+\sum_{k \neq / k_{1}} \\
& \rightarrow \text { wlich } \\
& \text { gued } \\
& \text { since } O_{k_{1}-k_{1}}=?
\end{aligned}
$$

(3) Obtain:

$$
\left(\%-8_{k-k_{1}}\right) C_{k-k_{1}}=\sum_{k \neq k_{1}} \cup_{k-k_{1}} \frac{U_{k}-k c_{k-k_{1}}+\theta\left(0^{3}\right)}{\frac{\theta-G_{k-k}}{0}}
$$

(4) Diside by $c_{k-k_{1}} 70$ and dstains.

$$
\dot{\theta}=\frac{\sigma^{0}}{k-k_{1}}+\sum_{k}^{1} \frac{\left|U_{k-k_{1}}\right|^{2}}{\theta_{k-k_{1}}^{0} \theta_{k-k}^{0}}+\theta\left(U^{3}\right)
$$

COSe (II) DEGENERATE
Suppase $\left\{k_{1}, k_{2},\right\}$

$$
\begin{aligned}
& s t_{1} \mid 0_{k-k}^{0}-\theta_{i}^{0} \theta_{k-k_{j}} \approx \theta(U) \\
& \text { checeas }
\end{aligned}
$$

whereas

$$
\left|G_{k-k}^{0}-\varepsilon_{k-k_{i}}^{0}\right| \ggg \forall
$$



Same proceduce, but spliting $\sum_{k^{\prime}}$ 隹 as $\sum_{\left\{k_{i}\right\}^{t}} \sum_{K_{k} \not\left\{_{K}\right\}}$ laves $k^{\prime}$ terun $O(0)$ im(a)

$$
\Rightarrow \quad\left(\left(\dot{\zeta}-\zeta^{\rho}\right) c_{k-k_{i}} \cong \sum_{k_{j}} U_{k_{j}-k_{i}} c_{k-k_{j}}\right.
$$

