Carrier densities in a two-dimensional semiconductor

Consider a 2 dimensional crystal at T = 0 with some full energy bands, the others being empty. The energy gap between the uppermost full energy band and the first empty one is $E_g = 1eV$. Let's treat this system as an intrinsic 2 dimensional semiconductor, neglecting the effect of impurities.

The energy dispersion at the top of the valence band is è

$$\epsilon_v(\mathbf{k}) = \epsilon_v - \frac{\hbar^2}{2m_v}(\mathbf{k} - \mathbf{k}^*)^2 + \dots$$

and at the bottom of the conduction band

$$\epsilon_c(\mathbf{k}) = \epsilon_c + \frac{\hbar^2}{2m_c}(\mathbf{k} - \mathbf{k}*)^2 + \dots$$

- 1. Calculate the energy density of states at the top of the valence band.
- 2. Calculate the energy density of states at the bottom of the conduction band.
- 3. Assume the non-degenerate regime and temperature K_BT much smaller of the bands width, in order to be able to use eqs. (28.12-13) of the textbook and the energy density of states obtained earlier. Calculate $N_c(T)$.
- 4. Calculate $P_v(T)$.
- 5. Knowing that $m_v = 0.38m_e$ and $m_c = 0.067m_e$, evaluate numerically $N_c(T) \in P_v(T)$ at room temperature $(T = 300 \,{}^{o}K)$.
- 6. Evaluate numerically the intrinsic carrier density $n_i(T)$ at room temperature.