Electrons in crystals I test - 4 November 2008 (2 hours)

Exercise: Free electrons

Sodium (Na) in standard temperature and pressure conditions is a metal with BCC structure, density of about 0.97 g cm⁻³, mass number = 23 and Fermi energy E_F =3.24 eV.

- 1. Calculate the Fermi temperature T_F .
- 2. Calculate the Fermi velocity v_F and the kinetic energy at $T=0^{\circ}$ K.
- 3. Calculate the kinetic energy variation at room temperature (Hint: Sommerfeld expansion)
- 4. If the electron gas is instead treated as a classical one, which is the kinetic energy at $T=0^{\circ}$ K? and at room temperature?
- 5. Using the given Fermi energy, calculate the free electron density n.
- 6. Calculate the atomic density (number of atoms per unit volume) of solid sodium and the average free electrons per atom. Is it the result you were expecting?
- 7. From the electron density calculated in (5.), calculate the plasma frequency.
- 8. Given the resistivity in DC at room temperature, $\rho = 4.2 \ \mu\Omega$ cm, calculate the relaxation time τ and the electron mean free path ℓ .
- 9. At which frequency the *real* part of the conductivity in AC will be 1/5 of its zero-frequency value?

Exercise: Crystalline structures

- 1. Determine the atomic density in the crystalline planes (001), (110) and (111) in the FCC structure as a function of the lattice parameter (side of the cubic cell) a_0 .
- 2. Given that Cu has a FCC structure with $a_0=3.61$ Å, calculate explicitly the atomic density in the (110) plane.
- 3. Calculate the packing fraction of FCC structure.

Exercise: Miller indices, distances among crystalline structures, diffraction

- 1. Calculate the interplanar distance of the families of planes (100), (110), (111) and (211) of a cubic crystal as a function of the lattice paramter a_0 .
- 2. Consider $a_0 = 2.62$ Å. Determine the Bragg angle corresponding to the reflection from the families of planes (100), (110), (111) and (211), for an incident wavelength $\lambda = 1.54$ Å.
- 3. Knowing that with the same λ , the Bragg reflection angle from the (110) planes in Fe (BCC structure) is 22°, calculate the Fe lattice parameter.

Exercise: Diffraction from a linear biatomic chain

Consider a linear chain of atoms ABABA...AB, with bond length A-B equal to a/2 and atomic form factors f_A and f_B for A and B atoms respectively. The incident X-ray beam is perpendicular to the linear chain.

- 1. Show that the condition of costructive interference is $n\lambda = a\cos\theta$, where θ is the angle between the diffracted beam and the atomic chain.
- 2. Show that the intensity of the diffracted beam (under conditions of constructive interference) is proportional to $|f_A f_B|^2$ for n odd and $|f_A + f_B|^2$ for n even.
- 3. Discover and comment what happens for $f_A = f_B$.