Alcune definizioni

- materia: tutto ciò che ha massa e occupa spazio
- fase: porzione di materia omogenea in ogni sua parte (cioè le sue proprietà chimiche e fisiche non dipendono dal punto in cui vengono misurate)
- solido: fase caratterizzata da volume e forma propri
- **liquido**: fase caratterizzata da volume proprio, ma non da forma propria (assume la forma del contenitore)
- gas: fase priva di volume e forma propri
- atomi: particelle (che per i nostri scopi possiamo considerare) indivisibili costituenti la materia. Esistono circa un centinaio di diversi tipi di atomi
- **molecole**: aggregati di due o più atomi legati fra loro in modo definito (omonucleari es O₂, eteronucleari H₂O)

- elemento: materia costituita da un solo tipo di atomi (H₂, C)
- **composto**: materia costituita da un unico tipo di molecola contenente due o più atomi di tipo diverso (NH₃, H₂O)
- miscele: materia costituita da più composti e/o elementi

omogenee (soluzioni): miscele in cui le proprietà chimico-fisiche non dipendono dal punto in cui vengono misurate

soluto/i: componenti di una soluzione presenti in concentrazione minore

solvente: componente di una soluzione presente in concentrazione largamente maggiore di quella di tutti gli altri

eterogenee: miscele in cui è possibile identificare porzioni aventi proprietà chimico-fisiche diverse

Proprietà fisiche e chimiche:

massa, volume, pressione, temperatura, indice di rifrazione, reattività...

• estensive: dipendono dalla quantità di materia.

Es. massa, volume, mole,

• intensive: non dipendono dalla quantità di materia.

Es. temperatura, concentrazione, densità

Densità ρ = massa / volume

Unità di misura: SI		Multipli e sottomultipli	
		pico-	x 10 ⁻¹² p
massa	kg	nano-	x 10 ⁻⁹ n
lunghezza	m	micro-	x 10-6 μ
tempo	S	milli-	x 10 ⁻³ m
temperatura	K	centi-	х 10 ⁻² с
quantità di sostanza corrente elettrica	mol A	deci-	x 10 ⁻¹ d
intensità luminosa	cd	etto-	x 10 ² h
		chilo-	x 10 ³ k
Unità di misura derivate		mega-	x 10 ⁶ M
Esempi:		giga-	x 10 ⁹ G
• area: m ² • volume: m ³		Tera	x 10 ¹² T

Unità di misura: Sistema Tradizionale

 $1 \text{ Å} = 10^{-10} \text{ m}$ Lunghezza Angstrom Litro $1 L = 10^{-3} m^3$ Volume Pressione (Pa = N m⁻²) **Atmosfera** 1 atm = 1.01325 x 10⁻⁵ Pa 1 bar = 10⁵ Pa Pressione Bar 1 u.m.a. = 1.66053873(13) x 10⁻²⁷ kg u.m.a. Massa 1 eV = 1.602176462(63) x 10⁻¹⁹ J elettronvolt Energia **Gradi Celsius o** T [°C] = T [K] – 273.15 Temperatura centigradi

Coerenza dimensionale

Tutte le equazioni che si scrivono devono essere coerenti nelle unità di misura

Volume =
$$\frac{1}{\text{densit}} \cdot \text{massa}$$

$$mL = \frac{1}{g} \cdot g$$

$$= \frac{mL}{g} \cdot g$$

$$= mL$$

Esempio 1 coerenza dimensionale

La densità a 298 K del mercurio è 13.51 g/mL. Quale volume occupano 48.00 g di metallo a 298 K?

Volume occupato da 48.00 g di Hg Volume = occupato da 1.00 g di Hg

Massa totale di Hg

= 1.00 / 13.51 (mL/g) x 48.00 g

Χ

 $= 3.55 \, \text{mL}$

Esempio 2 coerenza dimensionale

Una miscela contiene 12.5 g di cloruro di ammonio (NH₄Cl) e 27.3 g di nitrato di potassio (KNO₃). Qual è la percentuale di cloruro di ammonio rispetto alla massa totale della miscela?

percentuale di NH₄Cl rispetto alla massa totale massa di NH₄Cl massa della miscela

x 100

= 12.5 / (12.5 + 27.3) (g/g) x 100

= 31.4 %

Esempio 3 coerenza dimensionale

Una lega è costituita da ferro e rame. La percentuale in massa di ferro rispetto al totale è di 85.4%. Quanti Kg della lega contengono 0.76 Kg di rame?