Richiami di geotecnica - 2

rev. 02.10.2018

I testi e le figure che seguono sono stati estratti, con alcune modifiche, da uno o più dei seguenti testi, a cui si rimanda per chiarimenti e approfondimenti:

- Bowles J. E., FONDAZIONI PROGETTO E ANALISI, McGraw-Hill, Milano, 1991
- Colombo P., Colleselli F., ELEMENTI DI GEOTECNICA, Zanichelli, Bologna, 2004
- Facciorusso J., Madiai C., Vannucchi G. DISPENSE DI GEOTECNICA, Dipartimento di Ingegneria Civile Sezione Geotecnica, Università degli Studi di Firenze, 2006 e relativo materiale le lezioni
- Lancellotta R., Costanzo D., Foti S., PROGETTAZIONE GEOTECNICA SECONDO L'EUROCODICE 7 (UNI EN 1997) E LE NORME TECNICHE PER LE COSTRUZIONI (NTC 2008), Hoepli Ed., Milano, 2011
- Lancellotta R., Calavera J., FONDAZIONI, McGraw-Hill, Milano, 2003

COMPORTAMENTO MECCANICO DEI TERRENI

Essendo il terreno un materiale *multifase*, il suo comportamento meccanico (compressibilità, resistenza), in seguito all'applicazione di un sistema di sollecitazioni esterne o, più in generale, ad una variazione delle condizioni esistenti, dipende <u>dall'interazione tra le diverse fasi</u>.

Lo studio di questa interazione può essere affrontato seguendo due tipi di approccio:

 si analizza il comportamento della <u>singola particella</u> e si determina la risposta di un elemento di terreno a partire dalla modellazione del comportamento di un insieme di particelle;

Il metodo è talmente complesso da risultare di fatto inutilizzabile per le applicazioni ingegneristiche.

 si analizza il <u>comportamento globale del mezzo</u>: un terreno <u>saturo</u> viene assimilato <u>a due mezzi continui</u> (uno solido, l'altro fluido) che occupano lo stesso volume.

È necessario stabilire una <u>legge di interazione tra le fasi</u>, ovvero tra i due continui (solido e fluido) che occupano lo stesso volume di terreno.

Tale legge è il *principio delle tensioni efficaci* (*Terzaghi, 1923*) che si compone di due parti:

Prima parte (definizione di tensione efficace)

"Le tensioni in ogni punto di una sezione attraverso una massa di terreno possono essere calcolate dalle <u>tensioni principali totali</u> σ_1 , σ_2 e σ_3 che agiscono in quel punto. Se i pori del terreno sono pieni d'acqua ad una pressione u, le tensioni principali totali possono scomporsi in due parti. Una parte, u, agisce nell'acqua e nella fase solida in tutte le direzioni con eguale intensità, ed è chiamata <u>pressione neutra</u> (o pressione di pori).

Le differenze $\sigma_1' = \sigma_1 - u$, $\sigma_2' = \sigma_2 - u$, e $\sigma_3' = \sigma_3 - u$ rappresentano un incremento rispetto alla pressione neutra ed hanno sede esclusivamente nella fase solida del terreno. Questa frazione della tensione totale principale sarà chiamata tensione principale efficace".

Seconda parte (principio delle tensioni efficaci)

"Ogni effetto misurabile di una variazione dello stato di tensione, come la compressione, la distorsione e la variazione di resistenza al taglio <u>è attribuibile</u> <u>esclusivamente a variazioni delle tensioni efficaci</u>".

Osservazioni

- Terzaghi non attribuisce alcun significato fisico alle tensioni principali efficaci, ma le definisce semplicemente come differenza tra tensioni principali totali e pressione neutra (interstiziale);
- le tensioni principali efficaci non sono dunque direttamente misurabili, ma possono essere desunte solo attraverso la contemporanea conoscenza delle tensioni principali totali e della pressione interstiziale;
- III. il principio delle tensioni efficaci è una <u>relazione di carattere empirico</u>, sebbene sia stato finora sempre confermato dall'evidenza sperimentale

Per studiare il comportamento meccanico di un terreno saturo ci si riferisce <u>a due</u> <u>mezzi continui sovrapposti e mutuamente interagenti</u>, e si definiscono in ogni punto il tensore delle *tensioni totali* (desumibile dalle azioni esterne), il tensore delle *pressioni interstiziali* (isotropo) e, per differenza, il tensore delle *tensioni efficaci*.

$$\int_{\sigma' = \sigma - u}$$

Implicazioni

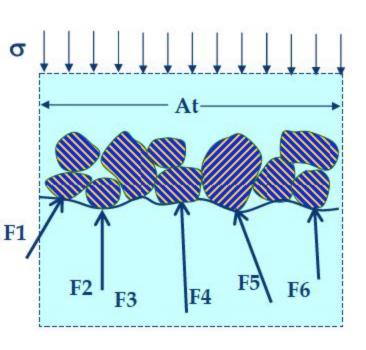
- una variazione di tensione efficace comporta una variazione di resistenza;
- resistenza;

 II. se non vi è variazione di tensione efficace non varia la resistenza;
- III. condizione necessaria e sufficiente affinché si verifichi una variazione di stato tensionale efficace è che la struttura del terreno si deformi, la deformazione può essere volumetrica, oppure di taglio o entrambe;
 IV. una variazione di volume è sempre accompagnata da una variazione di
- V. una variazione di tensione efficace non comporta necessariamente una variazione di volume;

 $\Delta \sigma' \iff \Delta(Resistenza)$

$$\Delta\sigma' \qquad \Delta(\epsilon_{\rm v}) \ o \ \Delta(\epsilon_{\rm s}) \ o \ \Delta(\epsilon_{\rm v}) + \Delta(\epsilon_{\rm s})$$
 Variazione di volume, $\Delta(\epsilon_{\rm v})$, ma non di forma $\Delta(\epsilon_{\rm s})$ ma non di volume ($\Delta(\epsilon_{\rm v})$ = 0)

Interpretazione fisica (I Parte)



u (pressione dell'acqua nei pori)

A (area dei contatti intergranulari)

A, (area della superficie trasversale)

$$F_{t,v} = \sum F_{i,v} + u (A_t - A_c)$$

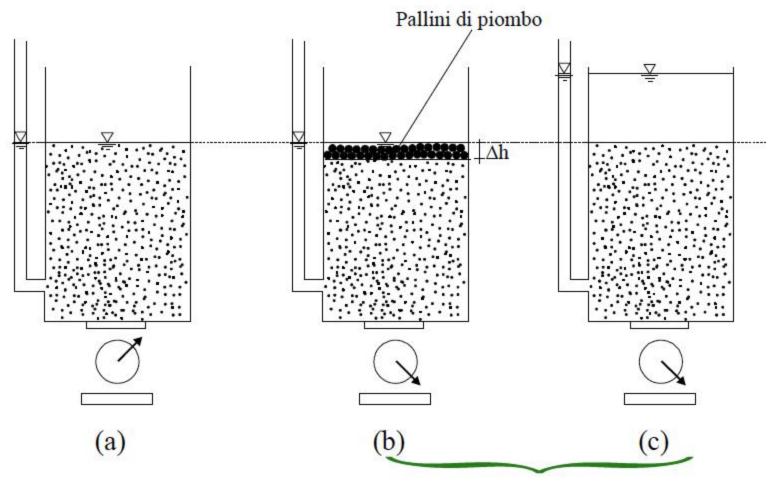
$$\sigma = (F_{t,v}/A_t) = \sum F_{i,v}/A_t + u (1 - A_c/A_t)$$

Posto $\sigma' = \sum F_{i,v}/A_t$ ed essendo $A_c << A_t$

\Rightarrow si ha: $\sigma = \sigma' + u$

N.B.: σ', rappresenta la somma delle forze intergranulari riferita all'area totale, A., e non la pressione in corrispondenza delle aree di contatto, che sarebbe pari a : Σ F_{i,v}/A_c e quindi molto maggiore di σ' (essendo A_c<<A₊)

Evidenze sperimentali



Condizione iniziale

Incremento di tensione totale $\Delta \sigma$

$$\Delta \sigma = \Delta \sigma' \in \Delta u = 0$$

$$\Delta \sigma = \Delta \sigma' e \Delta u = 0$$
 $\Delta \sigma = \Delta u e \Delta \sigma' = 0$

TENSIONI GEOSTATICHE

La conoscenza dello <u>stato tensionale iniziale</u> in sito è un punto di partenza fondamentale per la soluzione di qualunque problema di natura geotecnica.

<u>In assenza di carichi esterni applicati</u>, le tensioni iniziali in sito sono rappresentate dalle tensioni geostatiche (o litostatiche) ovvero <u>le tensioni presenti nel terreno allo stato</u> naturale, indotte dal peso proprio.

Le <u>tensioni geostatiche</u> dipendono da molti fattori:

- + geometria del deposito
- + condizioni della falda
- natura del terreno (granulometria e mineralogia, stato di addensamento o di consistenza, omogeneità, isotropia)
- storia tensionale

Per storia tensionale si intende la sequenza di tensioni, in termini di entità e durata, che hanno interessato il deposito dall'inizio della sua formazione fino alle condizioni attuali.

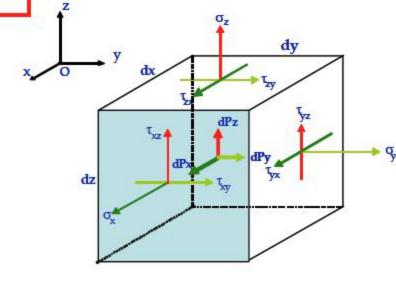
 dP_x , dP_y , dP_z = componenti delle forze di volume

CONVENZIONE:

Nella Meccanica dei Terreni sono assunte positive:

- I le tensioni normali di compressione e le tensioni tangenziali che danno origine ad una coppia antioraria;
- ii le diminuzioni di volume e di lunghezza

EQUAZIONI INDEFINITE DI EQUILIBRIO ALLA TRASLAZIONE



EQUAZIONI INDEFINITE DI EQUILIBRIO ALLA ROTAZIONE

$$\begin{aligned} &\frac{\partial \sigma_{x}}{\partial x} \, dx \cdot dy \cdot dz + \frac{\partial \tau_{yx}}{\partial y} \, dx \cdot dy \cdot dz + \frac{\partial \tau_{zx}}{\partial z} \, dx \cdot dy \cdot dz + dP_{x} = 0 \\ &\frac{\partial \sigma_{y}}{\partial y} \, dx \cdot dy \cdot dz + \frac{\partial \tau_{xy}}{\partial x} \, dx \cdot dy \cdot dz + \frac{\partial \tau_{zy}}{\partial z} \, dx \cdot dy \cdot dz + dP_{y} = 0 \\ &\frac{\partial \sigma_{z}}{\partial z} \, dx \cdot dy \cdot dz + \frac{\partial \tau_{xz}}{\partial x} \, dx \cdot dy \cdot dz + \frac{\partial \tau_{yz}}{\partial y} \, dx \cdot dy \cdot dz + dP_{z} = 0 \end{aligned}$$

$$\begin{cases} \tau_{xy} = \tau_{yx} \\ \tau_{zx} = \tau_{xz} \\ \tau_{zy} = \tau_{yz} \end{cases}$$

STATO TENSIONALE ASSIAL-SIMMETRICO

Nell'ipotesi di:

- piano di campagna orizzontale ed infinitamente esteso
- uniformità orizzontale delle proprietà del terreno
- → eventuale falda orizzontale, in condizioni di equilibrio idrostatico

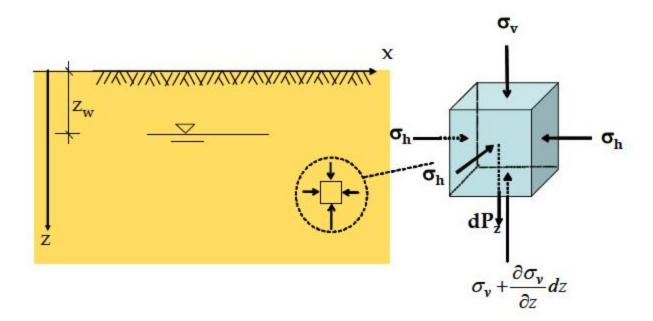
si realizza per ragioni di simmetria uno stato tensionale assial-simmetrico rispetto all'asse z.

In ogni punto il piano orizzontale e <u>tutti i piani verticali sono piani principali</u>. <u>Le</u> <u>tensioni orizzontali sono tra loro uguali, in tutte le direzioni.</u>

$$\sigma_{x} = \sigma_{y} = \sigma_{h}$$
; $\sigma_{z} = \sigma_{v}$; $\tau_{xy} = \tau_{yz} = \tau_{zx} = 0$

Inoltre risulta: $dP_x = dP_y = 0$

<u>Caso particolare</u>: se le tre tensioni principali sono tra loro uguali, lo stato tensionale si definisce <u>isotropo</u> (acqua interstiziale).



Equazioni indefinite di equilibrio per il terreno

$$\begin{cases} \frac{\partial \sigma_{x}}{\partial x} dx \cdot dy \cdot dz + \frac{\partial \tau_{yx}}{\partial y} dx \cdot dy \cdot dz + \frac{\partial \tau_{zx}}{\partial z} dx \cdot dy \cdot dz + dP_{x} = 0 \\ \frac{\partial \sigma_{y}}{\partial y} dx \cdot dy \cdot dz + \frac{\partial \tau_{xy}}{\partial x} dx \cdot dy \cdot dz + \frac{\partial \tau_{zy}}{\partial z} dx \cdot dy \cdot dz + dP_{y} = 0 \\ \frac{\partial \sigma_{z}}{\partial z} dx \cdot dy \cdot dz + \frac{\partial \tau_{xz}}{\partial x} dx \cdot dy \cdot dz + \frac{\partial \tau_{yz}}{\partial y} dx \cdot dy \cdot dz + dP_{z} = 0 \end{cases}$$

 $dP_z = -\gamma dx dy dz$

$$\begin{split} &\sigma_x = \sigma_y = \sigma_h \ ; \\ &\sigma_z = \sigma_v ; \\ &\tau_{xy} = \tau_{yz} = \tau_{zx} = 0 \end{split}$$

$$\begin{cases} \frac{\partial \sigma_{v}}{\partial z} = \gamma \\ \frac{\partial \sigma_{h}}{\partial x} = \frac{\partial \sigma_{h}}{\partial y} = 0 \end{cases}$$

TENSIONI VERTICALI

Tensioni verticali totali

Integrando la 1ª equazione:

$$\frac{\partial \sigma_{v}}{\partial z} = \gamma$$
 \Longrightarrow $\sigma_{v}(z) = \int_{0}^{z} \gamma(z) dz$

Nell'ipotesi di:

- → deposito omogeneo (γ costante con la profondità)
- \rightarrow assenza di carichi verticali sul piano di campagna ($\sigma_{v} = 0$ per z = 0)
- superficie piezometrica coincidente col piano di campagna (z_w = 0)

$$\sigma_{vo}(z) = \gamma_{sat} \cdot z$$

dove γ_{sat} = peso di volume saturo del terreno

superficie piezometrica non coincidente col piano di campagna:

$$\sigma_{vo}(z) = \gamma_{sat} \cdot (z - z_w) + \gamma \cdot z_w$$

$$\sigma_{vo}(z) = \gamma_{sat} z + \gamma_w \cdot H_w$$

nell'ipotesi di terreno stratificato:

$$\sigma_{vo}(z) = \sum_{i} \gamma_{i} \cdot \Delta z_{i}$$

PRESSIONI INTERSTIZIALI

In condizioni di falda in quiete, la pressione dell'acqua, u, può essere ricavata una volta nota la posizione della superficie piezometrica.

Definizione:

La superficie piezometrica è il luogo dei punti in cui la pressione dell'acqua è uguale alla pressione atmosferica, (u_a) .

<u>Convenzionalmente si assume $u_a = 0$ </u>, per cui, all'interno di un deposito reale:

- u > 0 sotto la superficie piezometrica
- u < 0 sopra la superficie piezometrica (risalita capillare nei terreni coesivi)

N.B. Essendo la determinazione dei valori u < 0 molto incerta, si assume u = 0 al di sopra della superficie piezometrica.

In ciascun punto al di sotto della superficie piezometrica, e in assenza di moto di filtrazione (<u>condizioni idrostatiche</u>), la pressione dell'acqua, <u>uguale</u> <u>in tutte le direzioni</u> (*stato tensionale isotropo*), è pari a:

a) Falda al di sotto del piano di campagna
$$u(z) = 0 \qquad \text{per} \qquad 0 \le z \le z_w \\ u(z) = \gamma_w \cdot (z - z_w) \quad \text{per} \qquad z \ge z_w$$

b) Falda al di sopra del piano di campagna
$$u(z) = \gamma_w \cdot (z+H)$$

$$I = \gamma_w \cdot (z+H)$$

$$I = \gamma_w \cdot (z+H)$$

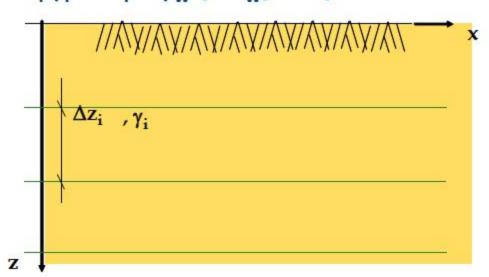
Tensioni verticali efficaci

La tensione efficace verticale si ricava per differenza, una volta nota la pressione interstiziale, utilizzando il principio delle tensioni efficaci:

$$\sigma'_{v0} = \sigma_{v0} - u$$

In definitiva le tensioni efficaci verticali risultano:

$$\sigma'_{vo}(z) = \sigma_{vo} - u = \sigma_{vo} = \Sigma_i \gamma_i \cdot \Delta z_i$$
 per $z < z_w$
 $\sigma'_{vo}(z) = \sigma_{vo} - u = \Sigma_i \gamma_i \cdot \Delta z_i - \gamma_w \cdot (z - z_w)$ per $z \ge z_w$



Tensioni orizzontali

Integrando la 2ª equazione:
$$\frac{\partial \sigma_h}{\partial x} = \frac{\partial \sigma_h}{\partial v} = 0$$
 \Longrightarrow $\sigma_h = cost (\forall x, \forall y)$

OSS. Dalle equazioni di equilibrio non si ha nessuna informazione utile sul valore della tensione orizzontale, pertanto è necessario ricorrere ad <u>evidenze</u> sperimentali

L'osservazione condotta sperimentalmente su depositi di differente origine e composizione, ha evidenziato che il valore di σ'_h dipende:

- dalla geometria del deposito,
- dalle condizioni della falda,
- > dalla natura del terreno

come la tensione verticale

e <u>inoltre</u>:

> dalla storia tensionale del deposito

Influenza della storia tensionale sulle tensioni orizzontali

a) Si consideri il caso di <u>sedimentazione in ambiente lacustre</u> su un'area molto estesa in direzione orizzontale:

$$\sigma_{v}$$
 cresce, u rimane costante $\Delta \sigma'_{v} = \Delta \sigma_{v}$

Linea di compressione vergine (NCL)

$$\varepsilon_{z} = \frac{\Delta H}{H_{0}}; \quad \varepsilon_{x} = \varepsilon_{y} = 0 \text{ per ragioni di simmetria} \qquad \Longrightarrow \varepsilon_{v} = \varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} = \varepsilon_{z} = \frac{\Delta H}{H_{0}}$$

$$\varepsilon_{v} = \frac{\Delta V}{V_{0}} = \frac{(V_{v0} + V_{s}) - (V_{v1} + V_{s})}{V_{v0} + V_{s}} = \frac{V_{v0} / V_{s} - V_{v1} / V_{s}}{V_{v0} / V_{s} + V_{s} / V_{s}} = \frac{e_{0} - e_{1}}{1 + e_{0}} = \frac{\Delta e}{1 + e_{0}} \qquad \Longrightarrow \qquad \frac{\Delta H}{H_{0}} = \frac{\Delta e}{1 + e_{0}}$$

Per convenzione $\varepsilon_v > 0$ quando V diminuisce, cioè $\Delta V = V_{in} - Vf_{in}$

In tale situazione di <u>deformazioni orizzontali impedite</u> (consolidazione monodimensionale) l'incremento delle tensioni efficaci orizzontali è proporzionale al corrispondente incremento delle tensioni efficaci verticali, secondo un coefficiente detto coefficiente di spinta a riposo:

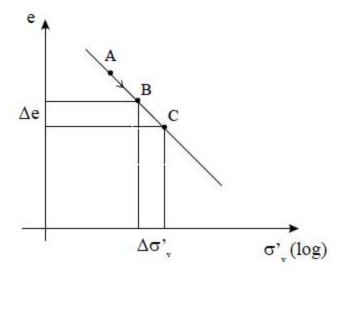
$$K_o = \frac{\sigma'_{ho}}{\sigma'_{vo}}$$

Durante la fase di deposizione del materiale, tale coefficiente <u>rimane costante</u> al variare della tensione efficace verticale raggiunta e <u>dipende solo dalla natura del terreno</u>.

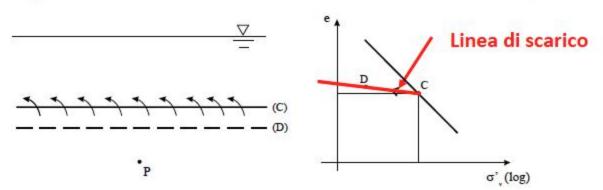
 $\sigma'_{v}(B) = \sigma'_{p}$ $\sigma'_{v}(C) = \sigma'_{p}$

$$K_0(A) = K_0(B) = K_0(C)$$

Quando la tensione efficace verticale geostatica, σ'_{vo} , coincide con la tensione efficace verticale massima, σ'_p (pressione di preconsolidazione) sopportata dal deposito in quel punto durante la sua storia, si parla di terreno normalconsolidato (NC) $\sigma'_v(A) = \sigma'_p$



b) Supponiamo ora che alla fase di sedimentazione segua una fase di erosione (scarico):



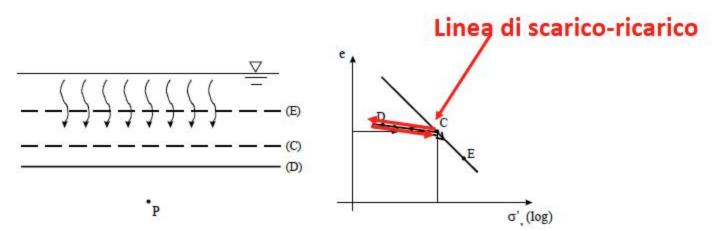
In tal caso la tensione efficace verticale geostatica, σ'_{vo} , è <u>inferiore</u> alla tensione efficace verticale massima, σ'_{p} sopportata dal deposito in quel punto durante la sua storia, si parla di *terreno sovraconsolidato* (OC) $\sigma'_{v}(D) < \sigma'_{p}(C)$

L'entità della sovraconsolidazione è rappresentata dal grado di sovraconsolidazione, \bigcirc $OCR = \frac{\sigma'_p}{\sigma'_{v0}}$

Al procedere dello scarico tensionale il coefficiente di spinta a riposo, $K_o(OC)$, aumenta al diminuire della tensione efficace verticale raggiunta (ovvero all'aumentare di OCR)

$$\rightarrow$$
 $K_0(C) < K_0(D);$ $OCR(C) < OCR(D)$

c) Supponiamo ora che alla fase di erosione segua una fase di sedimentazione (ricarico):



Al procedere del ricarico tensionale (fino al raggiungimento della pressione di preconsolidazione $\sigma'_{p} = \sigma'_{v}(C)$ il coefficiente di spinta a riposo, $K_{0}(OC)$, diminuisce all'aumentare della tensione efficace verticale raggiunta (ovvero al diminuire di OCR)

$$\qquad \qquad \qquad \bigcirc \\$$

$$\Longrightarrow$$
 $K_0(D) > K_0(C);$

OCR(D) > OCR(C)

In definitiva il calcolo delle tensioni efficaci orizzontali è subordinato alla conoscenza del coefficiente di spinta a riposo:

$$\sigma'_{h0} = K_0 \sigma'_{v0}$$

Il valore della tensione orizzontale totale, σ_{h0} , può essere ricavato sfruttando il principio delle pressioni efficaci (ricordando che la pressione dell'acqua, u, è un tensore sferico, isotropo): $u_h = u_v = u$

$$\sigma_{h0} = \sigma'_{h0} + u$$

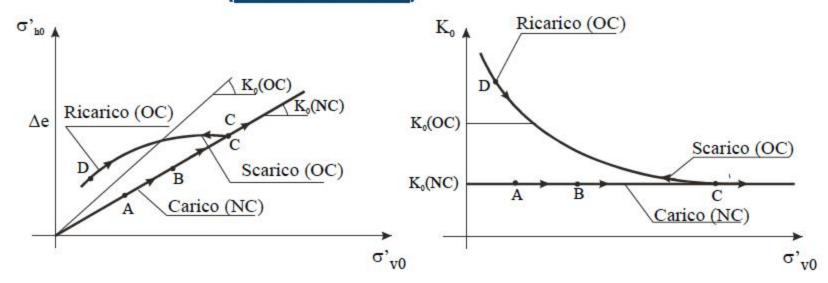
Riassumendo, sotto opportune ipotesi semplificative (p.c. orizzontale,ecc...) è possibile definire completamente lo stato tensionale geostatico all'interno di un deposito (che normalmente coincide con lo stato tensionale iniziale), noti:

- il peso di volume sopra e sotto falda,
- > la posizione della superficie piezometrica,
- > il coefficiente di spinta a riposo

COEFFICIENTE DI SPINTA A RIPOSO

Il coefficiente di spinta a riposo K_0 , dipende dunque :

- ☐ dal tipo di terreno
- dalla tensione efficace verticale presente in sito e, quindi, dal grado di sovraconsolidazione (per i terreni OC)



K_o , può essere valutato a partire:

- dai risultati di alcune prove in sito
- per mezzo di <u>relazioni empiriche</u> a partire da parametri di più semplice determinazione (p. es. D_R per i terreni a grana grossa o I_P per terreni a grana fine).

TERRENI NORMALCONSOLIDATI (NC)

K₀ per i terreni normalconsolidati, K₀(NC), non dipende dalla tensione efficace verticale raggiunta ma solo dalla natura del terreno; varia generalmente tra 0.4 e 0.8; in genere si hanno valori più bassi per terreni granulari, più alti per limi e argille.

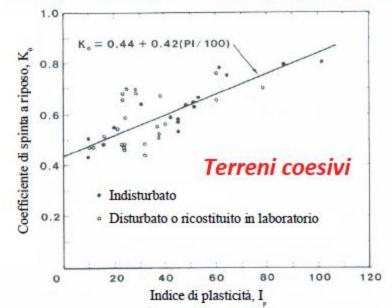
In generale, per tutti i tipi di terreno, viene spesso utilizzata la seguente

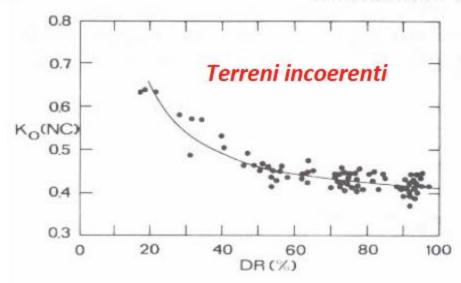
relazione di Jaky semplificata:

$$K_0 \cong \text{1-} \; \text{sin} \; \phi'$$

N.B. per terreni NC \longrightarrow $K_0 < 1$)

dove ϕ' è l'angolo di resistenza al taglio.





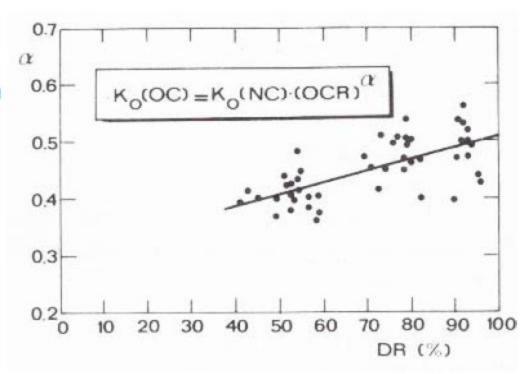
TERRENI SOVRACONSOLIDATI (OC)

K_o per terreni sovraconsolidati, K_o(OC) può raggiungere valori anche maggiori di 1, e può essere stimato mediante una relazione del tipo:

$$K_0$$
 (OC) = K_0 (NC)· OCR α = (1-sen ϕ ') · OCR α

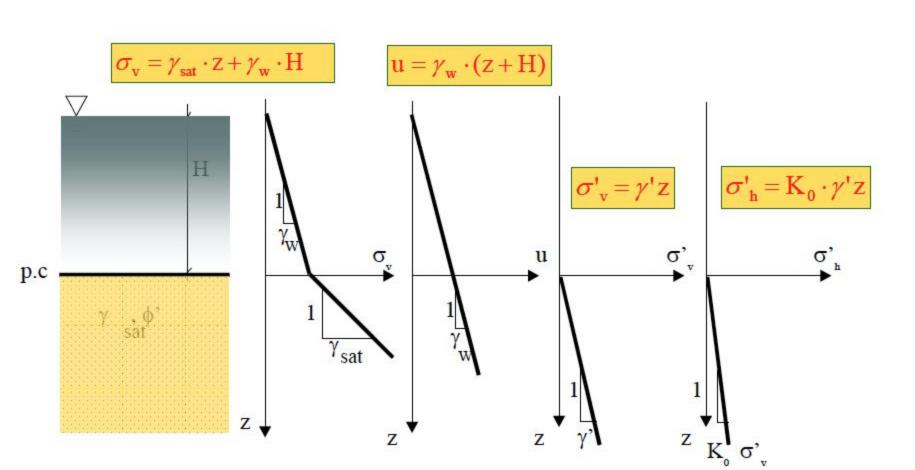
dove α = coefficiente empirico legato alla natura del terreno:

- per terreni coesivi viene spesso assunto $\alpha \cong 0.5$ oppure si ricorre a correlazioni del tipo $\alpha = a \cdot I_p^{-b}$, in cui a risulta una funzione decrescente di I_p
- per terreni incoerenti esistono alcune relazioni empiriche di letteratura tra α e D_R

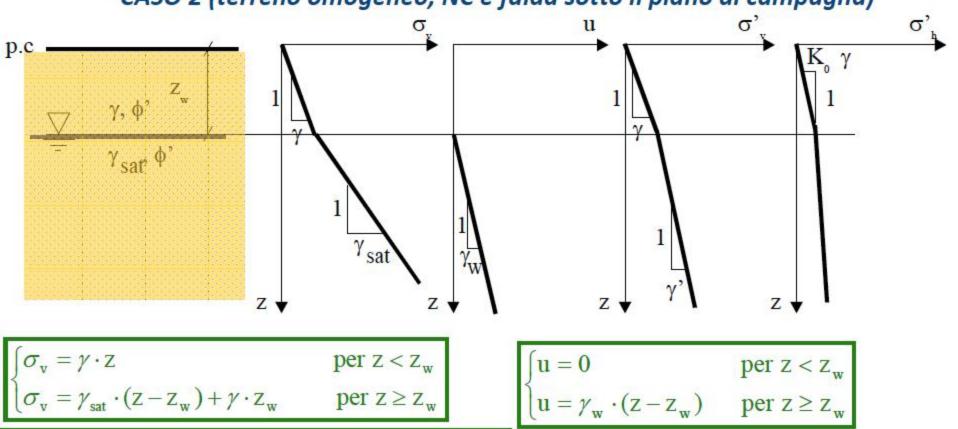


PROFILO DELLE TENSIONI GEOSTATICHE

CASO 1 (terreno omogeneo, NC e falda sopra il piano di campagna)



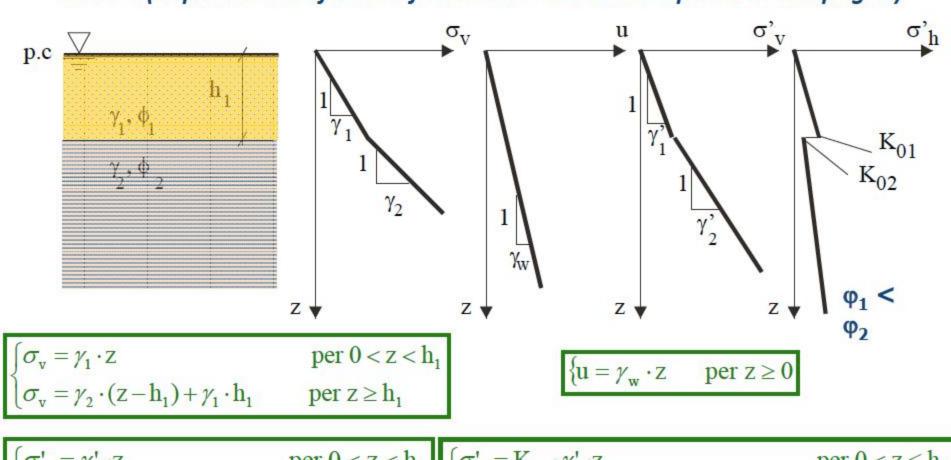
CASO 2 (terreno omogeneo, NC e falda sotto il piano di campagna)



$$\begin{cases} \sigma_{v} = \gamma \cdot z & \text{per } z < z_{w} \\ \sigma_{v} = \gamma_{\text{sat}} \cdot (z - z_{w}) + \gamma \cdot z_{w} & \text{per } z \geq z_{w} \end{cases} \begin{cases} u = 0 & \text{per } z < z_{w} \\ u = \gamma_{w} \cdot (z - z_{w}) & \text{per } z \geq z_{w} \end{cases}$$

$$\begin{cases} \sigma'_{v} = \gamma \cdot z & \text{per } z < z_{w} \\ \sigma'_{v} = \gamma_{\text{sat}} \cdot (z - z_{w}) + \gamma \cdot z_{w} - \gamma_{w} \cdot (z - z_{w}) & \text{per } z \geq z_{w} \\ \sigma'_{v} = \gamma_{\text{sat}} \cdot (z - z_{w}) + \gamma \cdot z_{w} - \gamma_{w} \cdot (z - z_{w}) & \text{per } z \geq z_{w} \\ = (\gamma_{\text{sat}} - \gamma_{w})(z - z_{w}) + \gamma \cdot z_{w} = \gamma'(z - z_{w}) + \gamma \cdot z_{w} \end{cases} \begin{cases} \sigma'_{h} = K_{0} \cdot \gamma \cdot z & \text{per } z < z_{w} \\ \sigma'_{h} = K_{0} \cdot \gamma'(z - z_{w}) + K_{0} \cdot \gamma \cdot z_{w} & \text{per } z \geq z_{w} \end{cases}$$

CASO 3 (deposito stratificato e falda coincidente con il piano di campagna)



$$\begin{cases} \sigma'_{v} = \gamma'_{1} \cdot z & \text{per } 0 < z < h_{1} \\ \sigma'_{v} = \gamma'_{2} \cdot z - (\gamma_{2} - \gamma_{1}) \cdot h_{1} & \text{per } z \ge h_{1} \end{cases} \begin{cases} \sigma'_{h} = K_{01} \cdot \gamma'_{1} \cdot z & \text{per } 0 < z \le h_{1} \\ \sigma'_{h} = K_{02} \cdot \gamma'_{2} \cdot z - K_{02} \cdot (\gamma_{2} - \gamma_{1}) \cdot h_{1} & \text{per } z \ge h_{1} \end{cases}$$

OSSERVAZIONI

- 1. L'andamento delle tensioni verticali (totali) è continuo e cresce linearmente con la profondità, con pendenze diverse in strati caratterizzati da peso di volume differenti (per effetto dello stato di saturazione o delle differenti caratteristiche geotecniche)
- L'andamento delle pressioni interstiziali è continuo e cresce linearmente con la profondità, a
 partire dal livello di falda verso il basso, mentre si assume nullo al di sopra
- 3. L'andamento delle tensioni verticali (efficaci) è continuo e cresce linearmente con la profondità, con pendenze diverse in strati caratterizzati da peso di volume differenti (per effetto dello stato di saturazione o delle differenti caratteristiche geotecniche) o nell'attraversare la superficie di falda
- 4. Le tensioni orizzontali (efficaci e totali) hanno un andamento lineare crescente all'interno di ciascun strato omogeneo, mentre presentano discontinuità in corrispondenza del contatto tra strati di differenti caratteristiche geotecniche
- Un <u>abbassamento del livello di falda</u> (quando tale livello rimane al di sotto del piano di campagna) comporta <u>un incremento delle tensioni efficaci</u> (e quindi un incremento della resistenza ed una compressione del terreno con conseguente cedimento)