GENOMICA APPLICATA

I The Human Genome



Intro
I

1 Understanding

the organization,
variation,

and expression of the human genome is central to the
principles of genomic and precision medicine.



1 The comparison of individual genomes underlies the

conclusion that virtually every individual has his
or her own unique constitution of gene products




The «chemical individuality»
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The «chemical individuality»
B

Eur . Pediatr. 1986 Apr;145(1-2):2-5.

"Inborn errors of metabolism"” and "chemical individuality", two ideas of Sir Archibald Garrod
briefly revisited 50 years after his death.

Burgio GR.

Abstract

Two ideas of Sir A. Garrod, "chemical individuality” (1902) and "inborn errors of metabolism” (1908) have proved fundamental for the
development of medical knowledge. The latter idea was more fortunate than the former which, however has been extremely heuristic.
On the other hand the two ideas are not entirely independent of each other: in fact, a third Garrodian concept, "inborn factors in
disease”, represents a significant link between them. "Inborn errors of metabolism” revived the laws of genetics and opened the way to
interpretation of the molecular diseases with all their inherent practical modern implications (neonatal screening, prenatal diagnosis,
and in perspective, genetic engineering). "Chemical individuality" still constitutes a valid premise for knowledge of biological
individuality (in other words, the "biological ego") fundamentally programmed for conservation of self and for continuous discrimination
of self versus non-self.



Variation in the human genome
N

71 Variation in the human genome has long been the

cornerstone of the field of human genetics, and its
study led to the establishment of the medical
specialty of medical genetics.

Comprehensive genomic profiling

found found

O EDE




Genetics or Genomics
I

7 While these terms seem similar, they in fact describe

quite distinct (though frequently overlapping)
approaches in biology and in medicine.

1 Having said that, there are inconsistencies in the
way the terms are used, even by those who work in

the field.



Genetics or Genomics
e

11 The field of genetics is the scientific study of

heredity and of the genes that provide the physical,
biological, and conceptual bases for heredity and
inheritance.

1 To say that something—a trait, a disease, a code, or
an information—is “genetic” refers to its basis in
genes and in DNA.



Genetics or Genomics
I

1 Heredity refers to the familial phenomenon whereby

traits (including clinical traits) are transmitted from
generation to generation, due to the transmission of
genes from parent to child.




Genetics or Genomics
I

1 Genomics is the scientific study of a genome or

genomes.

1 A genome is the complete DNA sequence, referring
to the entire genetic information of a gamete, an
individual, a population, or a species.



Genetics or Genomics
I

1 “Genomics” gave birth to a series of other “-omics”

that refer to the comprehensive study of the full
complement of genome products

proteins (hence, proteomics),
transcripts (transcriptomics), or

metabolites (metabolomics).



Genetics or Genomics
I

71 By analogy with genetics

Mitotic chromosome

and genomics, epigenetics
and epigenomics refer to
the study of factors that
affect gene (or, more
globally, genome)
function, but without an
accompanying change

genes or the genome.



Genetics or Genomics
I

1 Genomic Medicine refers to the use of large-scale

genomic information and to consideration of the full
extent of an individual’s genome and other “omes”
in the practice of medicine and medical decision
making.



Genetics or Genomics
e

Examples:

-1 gene expression profiling to characterize
tumors or to define prognosis in cancer

1 genotyping variants in the set of genes
involved in drug metabolism or action to
determine an individual’s correct therapeutic
dosage



Genetics or Genomics
e

Examples:

11 scanning the entire genome for millions of
variants that influence one’s susceptibility to
disease

1 analyzing multiple protein or RNA biomarkers
to detect exposure to potential pathogens



Genetics or Genomics
I

Examples:

71 Monitor therapy

0 predictive information in presymptomatic
individuals



Characteristics of the Reference

Human Genome

71 The typical human genome consjsts of

approximately 3 billion (3X 10 ) base pairs of
DNA,

11 24 types of nuclear chromosomes (22 autosomes,
plus the sex chromosomes, X and Y)

1 the smaller mitochondrial chromosome



Characteristics of the Reference

Human Genome

Length of the human genome (base 3,096,649,726
pairs)

Number of known protein-coding genes 20,441
Average gene density (number of 6.6

genes/Mb)

Number of ncRNA genes 22,219

Number of known short sequence variants 156,148,362

Number of known structural variants 4,485,861

From Ensembl, database GRCh38, version
85.38 (accessed August 201 6).



Organizzazione del genoma

B sequenza codificante

altamente
- sequenza non codificante

conservata
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How much of our genome Is

- functionally significant?

« There seemed to be pervasive transcription of the genome, and 80.4% of the
human genome was claimed (ENCODE data) to participate in at least one
RNA-associated or chromatin-structure-associated event in at least one cell

type.

. However, the possible conclusion that much of our genome might be
functionally significant has been strongly resisted by many evolutionary
biologists.

. Part of the difficulty in interpreting the ENCODE data is that much of the
80.4% figure comes from the observed representation of RNA transcripts, but
many RNAs are produced at such low levels that they might alternatively
represent transcriptional background ‘noise.’



Spectrum of resolution
N

0 Individual chromosomes can best be visualized and
studied at metaphase in dividing cells, and
karyotyping of patient chromosomes has been a
valuable and routine clinical laboratory
procedure for a half century, albeit at levels of

resolution that fall well short of most pathologic
DNA variants
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Spectrum of resolution

e
1 The ultimate resolution comes from direct

sequence analysis, and an increasing number
of new technologies have facilitated
comparisons of individual genomes with the
reference human genome sequence



Spectrum of resolution in

- chromosome and ﬁenome dnqlxsis
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Genes in the Human Genome
I

— the human genome contains an estimated 20,000

protein-coding genes

71 there are some genes, including clinically
relevant genes, that are currently undetected



Genes in the Human Genome
I

o In addition to being relatively sparse in the genome,

genes are distributed quite nonrandomly along the
different human chromosomes.

1 Some chromosomes are relatively gene-rich, while
others are quite gene-poor, ranging from
approximately 3 genes/Mb of DNA to more than

20 genes/Mb



Gene distribution in the human

« Close to 7% of the nuclear genome Is
located Iin constitutive heterochromatin that
remains highly condensed throughout the
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N
« Genome sequencing showed that gene
and exon density in the euchromatic
regions can vary enormously.

« SOome chromosomes are gene-rich, such
as chromosomes 19 and 22; others are
gene-poor, notably the Y chromosome
(which makes only 31 different proteins
that mostly function in male determination).

« Within a chromosome, the pattern of
alternating dark and light bands reflects
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Coding and Noncoding Genes

1 There are a number of different types of gene in
the human genome.

Most genes known or thought to be clinically relevant
are protein coding

additional genes whose functional product appears to
be the RNA itself
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Variation in the Human Genome
I

- Any given individual carries 4=5 million sequence

variants that are known to exist in multiple forms
(i.e., are polymorphic) in our species.

1 each and every base pair in the human genome is
expected to vary in someone somewhere around the
globe.



Variation in the Human Genome

I
1 Types of Variation

any two randomly selected individuals have sequences
that are 99.9% identical

1 The majority of these differences involve simply
a single unit in the DNA code and are referred
to as single-nucleotide polymorphisms (SNPs)



Variation in the Human Genome
I

1 The remaining variation consists of insertions or
deletions (in/dels) of (usually) short sequence
stretches, variation in the number of copies of

repeated elements or inversions in the order of
sequences at a particular locus in the genome



Variation in the Human Genome
e,

(<3hromosomal \;ariation

%arge-scale strgctural variation

Intermediate-scale structural variation
—

§etroelemen§ insertions
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Variation in the Human Genome
e,

1 Schematic
representation of
different types of
structural
polymorphism in the
human genome,
leading to deletions,
duplications,
inversions, and CNV
changes relative to
the reference
arrangement.

A B C D

Reference

AlBl|C|C|D
Segmental Duplication—Biallelic CNV (C)2

AlYB|IC|C|C|D
Multiallelic CNV (C)o-n

AWBIC | DID|D|DjC|D|C|D|C|D
Complex CNV (D)4(CD)3

AN C|B|D

Inversion (CB)




Common Variation in the Human Genome

Type of Variation Size Range (approx.)* Effect(s) in Biology and Medicine

Single-nucleotide polymorphisms 1bp Nonsynonymous — functional change in encoded protein?

Others — potential regulatory variants?

Most —no effect? ("neutral”)

Copy number variants (CNVs) 10 kb to 1 Mb Gene dosage variation — functional consequences?Most —no effect or uncertain effect
Insertion/deletion polymorphisms (in/dels) | 1 bpto 1 Mb In coding sequence: frameshift mutation? — functional change

Most —uncertain effects
Inversions Few bp to 100 kb ? break in gene sequence

? long-range effect on gene expression
? indirect effects on reproductive fitness

Most —no effect? (“neutral”)

Segmental duplications 10 kb to >1 Mb Hotspots for recombination — polymorphism (CNVs)




Variation in the Human Genome
I

0 http://www.internationalgenome.org /about/
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Variation in Individual Genomes
e,

the 1000 Genomes Project concluded that each

genome carries

[ 100 or more likely loss-of-function mutations

4 10,000 nonsynonymous changes

500,000 variants that overlap known gene
regulatory regions.




Variation in Individual Genomes
e,

thousands of genes in the human genome are
highly tolerant to many mutations that appear likely
to result in a loss of function

(b) Loss of function: Null/amorphic mutation Null alleles produce no functional product.
Homozygous null organisms have mutant

"_3'“°§"‘1‘1’ H_o:oro;y go_uo (amorphic) phenotype due to absence of the
Alleles T . gene product. Heterozygous organisms produce
—— V—— less functional gene product than homozygous
Products None ﬁ wild-type organisms and may have mutant

phenotype. See text for discussion of dominant
versus recessive mutations.

Amorphic = no functionl

(c) Loss of function: Leaky/hypomorphic mutation
Homozygous Heterozygous

Alleles __;‘i = — i\ — i Leaky mutant alleles produce a small amount
! of wild-type gene product. Homozygous
Prod organisms have a mutant (hypomorphic)
ucts R phenotypo' o wmgoua organisms may
also

Hypomorphic = less function I




De NOVO MUTATION

 studies have shown that any individual carries an
estimated 30—70 new mutations per genome that were
not present in the genomes of his or her parents.

* generation of a new length variant depends on
recombination, rather than on errors in DNA synthesis to
generate a new base pair

 the measured rate of formation of new CNVSs Is orders
of magnitude higher than that of base substitutions



Variation in Individual Genomes
I

the number of SNPs described for our species is
still iIncomplete

each genome carries thousands of
nonsynonymous SNPsS

These measurements underscore the potential
Impact of gene and genome variation on human
biology and on medicine.



Examples of tandemly repetitive coding DNA and clustered gene families.
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Examples of tandemly repetitive coding DNA and clustered gene families.
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Our large nuclear genome is the outcome of
periodic changes that have occurred over very long
timescales during evolution:

« rare whole-genome duplication

« Intermittent chromosome rearrangements,

. localized DNA duplications,

« DNA duplication followed bydispersal to other
genome locations, and loss of DNA sequences.



« Nevertheless, highly
repetitive DNA sequences
that are derived from
transposons (mobile DNA
elements; see below) plus
the repetitive DNA families
found in heterochromatin
account for more than 50%
of our genome

altamente | M sequenza codificante
conservata sequenza non codificante
6,7% 12% 3-4%
45% 44%
DNA eterocromatinico
scarsamente T .
conservata ripetizioni trasposoniche
altre (per lo pit sequenze uniche)



Segmental duplications
OO
» about 5% of our euchromatin DNA consists
of neighboring duplicated segments that
are more than 1 kb long and show more

than 90% sequence identity.
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Patterns of intrachromosomal and
interchromosomal duplication (=10 kb;
=295%). The graphic shows a genome-wide
view of intrachromosomal (blue, with
connecting lines) and interchromosomal (red
bars) segmental duplications.

Unique regions (=50 kb and <10 Mb) of the
genome encompassed by intrachromosomal
duplications (295% sequence identity and
=10 kb) are shown as gold bars. Such
regions are typically associated with
recurrent chromosomal structural
rearrangements associated with genetic
disease.




Twenty-four of these regions (labeled A to X) correspond to known
genomic disorders: (A) Gaucher disease, (B) familial juvenile
nephronophthisis, (C) fascioscapulo- humeral muscular dystrophy,
(D) spinal muscular atrophy, (E) congenital adrenal hyperplasia lll,
(F) Williams-Beuren syndrome, (G) glucocorticoid-remediable
aldosteronism, (H) Prader-Willi syndrome, (1) Angelman syndrome,
(J) polycystic kidney disease, (K) Charcot-Marie-Tooth disease type
1A, (L) hereditary neuropathy with liability to pressure palsies, (M)
Smith-Magenis syndrome, (N) neurofibromatosis, (O) pituitary
dwarfism, (P) cat eye syndrome, (Q) DiGeorge/velocardiofacial
syndrome, (R) ichthyosis, (S) Hunter syndrome
(mucopolysaccharidosis type 1), (T) red-green color blindness, (U)
Emery-Dreifuss muscular dystrophy, (V) incontinentia pigmenti, (W)
hemophilia A, and (X) azoospermia (AZFc region).



Examples of multi-gene families

GENE FAMILY
[3-Globin

COPY NUMBER

6 (includes one pseudogene)

GENOME ORGANIZATION

clustered within 50 kb at chromosome 11p15 (see Figure 2.12C)

Class I human leukocyte antigen
(HLA)

17 (includes many pseudogenes and gene fragments)

clustered over 2 Mb at 6p21.3

Neurofibromatosis type |

1 functional gene; 8 unprocessed pseudogenes

functional gene, NF1, at 17q11.2; pseudogenes dispersed to
pericentromeric regions on several other chromosomes

Ferritin heavy chain

1 functional gene; 27 processed pseudogenes®

functional gene, FTH1, at 11q13; pseudogenes dispersed over
multiple chromosome locations

U6 snRNA

49 genes; 800 processed pseudogenes?

scattered on many chromosomes




Variation in Individual Genomes
e
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The significance of gene duplication and

reﬁetitive coding DNA
]

Dosage

Duplication of genes can be advantageous simply
pecause It allows more gene product to be made.
ncreased gene dosage iIs an advantage for genes
that make products needed in large amounts In
cells—we have hundreds of virtually identical copies
of genes that make individual ribosomal RNAs and
iIndividual histone proteins, for example.




The significance of gene duplication and

reﬁetitive coding DNA
]

Novel genetic variants

Once a gene or exon has duplicated, there are
initially two copies with identical sequences. When
that happens, the constraints on changing the
sequence Imposed by Darwinian natural selection
may be applied to one of the two sequences only.
The other sequence Is free from normal constraints
to maintainthe original function; it can diverge In
sequence over many millions of years to produce a
different but related genetic variant.
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(A) Nonprocessed pseudogenes
derive from gene duplication and
are located on the same
chromosome as the parental gene
from which they are derived . (B)
Processed pseudogenes arise by
retrotransposition and are located
on a different chromosome than
the parental gene. (C) Unitary
pseudogenes derive from
mutations of the parental gene,
which is in turn lost. Blue boxes
and lines, parental (pa) gene and
MRNA; gray boxes and lines,
pseudogene (pg) gene and RNA;
orange dots and boxes, mutations;
yellow arrow, unrelated promoter.
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Transposon-based repeats in the human genome
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« LINES (long interspersed nuclear elements). Full-
length LINES are 6—8 kb long and can encode a
reverse transcriptase, but many LINE repeats are
truncated and the average size is close to 1 kb.
There are three distantly related LINE families in the
human genome, of which the most numerous is the
LINE-1 (also called L1) family. The only human LINE
elements that are currently capable of transposition
are a small subset (about 80—-100 copies) of the full-
length LINE-1 repeats.
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« SINES (short interspersed nuclear elements). Full-length
SINEs range from 100 to 300 bp in length. About 70% of
SINES belong to the Alu repeat family, which has close to
1.5 million coplies.

« The Alu repeats are primate-specific and seem to have
evolved from cDNA copies of 7SL RNA (a component of
the signal recognition particle), which has an internal
promoter sequence. Alu sequences are often transcribed
(by adjacent promoters) but cannot make proteins.
Nevertheless, some Alu repeats can transpose and rely
on neighboring elements, such as LINE elements, to
produce the reverse transciptase required for making
cDNA copies.
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« Retrovirus-like LTR elements. Full-length
retrovirus-like elements (sometimes called
human endogenous retroviruses or HERVS) are
6—11 kb long. In addition to containing long
terminal repeats (LTRs) they may contain
seguences resembling the key retroviral genes,
Including the pol gene that encodes reverse
transcriptase, but there is little evidence of
actively transposing human HERVSs.




Retrotransposons can mediate
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Variation in Individual Genomes
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Copy Number Variation
N

Over the past decade, a number of important studies have
focused on the prevalence of structural variants in the
genome,

collectively account for far more variation in genome
sequence (expressed in terms of the amount of genomic
DNA affected) than do SNPs



Copy number variation

N
Global variation in copy number in the
human genome

Richard Redon', Shumpei Ishikawa®", Karen R. Fitch®, Lars Feuk™®, George H. Perry’, T. Daniel Andrews',

Heike Fiegler', Michael H. Shapero®, Andrew R. Carson®®, Wenwei Chen*, Eun Kyung Cho’, Stephanie Dallaire’,
Jennifer L. Freeman’, Juan R. Gonzalez®, Ménica Gratacés®, Jing Huang*, Dimitrios Kalaitzopoulos',

Daisuke Komura®, Jeffrey R. MacDonald’, Christian R. Marshall*®, Rui Mei*, Lyndal Montgomery',

Kunihiro Nishimura®, Kohji Okamura™®, Fan Shen®, Martin J. Somerville’, Joelle Tchinda’, Armand Valsesia',
Cara Woodwark', Fengtang Yang', Junjun Zhang’, Tatiana Zerjal', Jane Zhang®, Lluis Armengol?,

Donald F. Conrad'®, Xavier Estivill®'!, Chris Tyler-Smith', Nigel P. Carter', Hiroyuki Aburatani*'?, Charles Lee”"?,
Keith W. Jones®, Stephen W. Scherer™® & Matthew E. Hurles'

Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have
constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations
with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two
complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative
genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or
adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs
contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs
encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and
evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy
number among populations. We also demonstrate the utility of this resource for genetic disease studies.

http://www.nature.com/nature/journal/va44/n/118/abs/nature0s329.ntmi



Amilasi

2 forme isoenzimatiche
—alfa-amilasi salivare o ptialina
alfa-amilasi pancreatica

Rottura idrolitica dei polisaccaridi

Amilopectina
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*|l gene per I'amilasi salivare AMY1 e presente in copia multipla nel genoma
* il numero di copie varia tra gli individui e tra le popolazioni
e corrisponde all’'espressione della proteina nella saliva

- - a) Numero di copie del gene in diversi individui
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http://www.nature.com/ng/journal/v39/n10/abs/ng2123.html

IImJ




