NGS library construction using
fragmented/size selected DNA

There are several important considerations when
preparing libraries from DNA samples.

the amount of starting material
whether the application is for resequencing
or de novo sequencing



® | ibrary preparations can be susceptible to bias
resulting from genomes that contain unusually
high or low GC content

® approaches have been developed to address
these situations through careful selection of
polymerases for PCR amplification,
thermocycling, conditions and buffers



® | ibrary preparation from DNA samples for
sequencing
® whole genomes,

® targeted regions within genomes (for example exome
sequencing),

® ChIP-seq experiments,
® or PCR amplicons follows the same general workflow.

® Ultimately, for any application, the goal is to
make the libraries as complex as possible
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® Numerous kits for making sequencing libraries
from DNA are available commercially from a
variety of vendors.

® Kits are available for making libraries from
microgram down to picogram quantities of
starting material.

® However, one should keep in mind the general
principle that more starting material means less
amplification and thus better library complexity.



TruSeq DNA Sample Preparation

Figure 4: Adapter Ligation Results in Sequence-Ready
Constructs without PCR
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The End Repair Enzyme Mix contains an
optimized mixture of T4 DNA Polymerase and
Klenow Fragment to achieve highly effective
blunting of fragmented DNA, and T4
Polynucleotide Kinase (PNK) for efficient
phosphorylation of DNA ends.

5'-overhangs 3 -overhangs Blunt PCR product PCR product with 3'-dA overhangs
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® During the DNA end repair reaction,
fragmented DNA is converted into blunt-end
DNA containing a 5'-phosphate and 3'-hydroxyl
groups.

® The 5'->3' polymerase activity of the End
Repair Enzyme Mix fills-in §' protruded DNA
ends while 3'—-5' exonuclease activity removes
3'-overhangs.

® T4 PNK adds 5'-phosphates to ends of
unphosphorylated DNA fragments, such as
PCR products.



TruSeq DNA Sample Preparation
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- Library construction begins with either fragmented genomic DNA or double-
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= are created (Figure 4B) and an A-base is then added (Figure 4C) to prepare

for indexed adapter ligation (Figure 4D). Final product is created (Figure 4E),
which is ready for amplification on either the cBot or the Cluster Station.




Y-adapters illumina
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Ligate pre-annealed adapters, The 'L
adapter is terminated by a phosphothicate T
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o Geometric amplification of the assymetrical
PCR (Additional rounds) molecule. Both primers can initiate

synthesis.

- Primer 1: Equivalent to the forward strand of sequence L
smsnssmnnn® Primer 2: Equivalent to the complermentary strand of sequence R
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TruSeq® DNA PCR-Free Sample
Preparation Kit

For best results, follow the input recommendations. Quantify the input gDNA and assess
the gDNA quality before beginning library preparation.
For a 350 bp insert size, use 1 pg input gDNA.
For a 550 bp insert size, use 2 pg input gDNA.
Input amounts lower than those specified results in low yield and increased
duplicates.

Use the following recommendations to quantify input DNA:
Successful library preparation depends on accurate quantification of input DNA. To
verify results, use multiple methods.
Use fluorometric-based methods for quantification, such as Qubit or PicoGreen.
DNA quantification methods that rely on intercalating fluorescent dyes measure only
double-stranded DNA and are less subject to the presence of excess nucleic acids.
Do not use spectrophotometric-based methods, such as NanoDrop, which measure
the presence of nucleotides and can result in an inaccurate measurement of gDNA.
Quantification methods depend on accurate pipetting methods. Do not use pipettes
at the extremes of volume specifications. Make sure that pipettes are calibrated.



~— Figure 6: PCR-Free Protocol Eliminates Coverage =~
Gaps in GC-Rich Content

A

TruSien DM PCR- Free

Truieq DM

Increased coverage of TruSeq DNA PCR-Free libraries results in fewer
coverage gaps, demonstrated here in the GC-rich coding regions of the
RNPEPL1 promoter (A) and the CREBBP promoter (B). PCR-Free
sequence information is shown in the top panels of A and B, while
sequence data generated using TruSeq DNA protocol (with PCR) are
shown in the lower panels.




TruSeq® Nano DNA Sample

® The TruSeq Nano DNA protocol supports shearing by
Covaris ultrasonication, requiring 100 ng of input DNA
for an average insert size of 350 bp or 200 ng DNA for
an average insert size of 530 bp.
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DNA In a Human cell

If you know the number of base pairs in the
genome of your cell of interest, which is about 3
billion in the haploid human genome, you may
calculate as follows:

3x10%9 bp x 2 (diploid) x 660 (AVGed MW of 1
bp) x 1.67x10*-12pg ("weight in dalton”) =

6.6pg/ diploid primary cell.

lu~1,66x10"%g



PureGenome™ Low Input NGS Library
Construction Kit
lllumina NGS prep from as little as 50 pg of input DNA

The PureGenome™ Low Input NGS Library Construction Kit streamlines the process of generating indexed or
barcoded libraries for lllumina® HiSeq® sequencing from extremely low amounts of input DNA (from 50 pg
to 1 ng). This kit is well suited for applications such as ChIP-Seq (chromatin immunoprecipitation followed
by next generation sequencing) as well as other sequencing applications where input DNA is limited.
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The Ovation Ultralow System V2 produces significantly less adaptor dimers than competing kits.
The lack of adaptor dimers enables library construction even at very low inputs making this
system ideal for a range of inputs from 100 ng down to 10 pg.



Nextera®
DNA Sample Preparation Kits

® Easiest to Use

- Prepare sequencing-ready samples in 1.5 hours
with 15 minutes hands-on time

® | owest DNA Input

- Use just 50 ng DNA per sample, enabling use with
samples in limited supply



~~ Figure 2: Nextera Sample Preparation Biochemistry —
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Sequencing-Ready Fragment

Nextera chemistry simultaneously fragments and tags DNA in a single step.
A simple PCR amplification then appends sequencing adapters and sample
indexes to each fragment.
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~— Table 2: Representative Nextera Applications

Examples of Nextera Applications

Large-genome resequencing
Small-genome resequencing

Amplicon resequencing

Clone or plasmid sequencing
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Nextera XT

Figure 1: Nextera XT Sample Preparation Workflow

Prepare Input DNA (1 ng) Sequencing and Analysis

Forensic PCR Amplicons, Nextera XT Sample Prep Automated Sequencing
Small Genomes, Plasmids and Allele Calling

The combination of Nextera XT and rapid sequencing with the MiSeq System provides a complete DNA to data workflow in only 8 hours.



Focused investigation of key genes

With targeted resequencing, a subset of genes or
regions of the genome are isolated and
sequenced.

Targeted approaches using next-generation
sequencing (NGS) allow researchers to focus
time, expenses, and data analysis on specific
areas of interest.

Such targeted analysis can include the exome
(the protein-coding portion of the genome),
specific genes of interest (custom content),
targets within genes, or mitochondrial DNA.



Target enrichment:

Regions of interest are captured by hybridization
to biotinylated probes and then isolated by
magnetic pulldown. Target enrichment captures
20 kb—62 Mb regions, depending on the
experimental design.



Rapid Capture Exomes

Figure 1: Nextera Rapid Capture Workflow
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Target Capture Workflow
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Ampliseq

Since dideoxy (Sanger) sequencing was
developed over 30 years ago, amplicon
sequencing has been a mainstay of genome
analysis.

Now, with AmpliSeq™, it is possible to
simultaneously amplify, sequence and genotype
hundreds of genomic regions in a single project.



Ampliseq

By focusing next-generation DNA sequencing
(NGS) technologies on specific targets, tens to
hundreds of genetic markers can be quickly and
cost effectively identified or genotyped in large
populations.

video



lon AmpliSeq™ Target Selection Overview

[RNA only] Reverse transcribe the RNA
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Key technology features:

- RNA pre-calculated designs

- DNA gene designs . o
- “Standard” AmpliSeq designs DO X
- DNA hotspot designs R :“"’
P 9 ¥ A0 “*-- ™

+ 1-pool designs for SNP’s : “Calrfes?

- Designs for “Any Genome” @
» AgBio applications and more

» Design customization
* Sub-setting Y,
» Mix and match i
* Whitelist

- Support for Cell Free DNA (cfDNA) designs ﬁ_ﬁ b

* 140bp amplicon sizes now available ‘h Vs



lon AmpliSeq™ Panels

For DNA analysis and RNA
expression measurement

Human Identity Panel

Cancer Hotspot Panel

BRCA 1 & 2 Research
Panel

AML Research Panel

Human Ancestry Panel

Comprehensive
Cancer Panel

Hearing Loss Research
Panel

Cardio Research
Panel*

RNA Apoptosis Panel

Inherited Disease
Panel

CFTR Research Panel

Dementia Research
Panel

RNA Cancer Panel

RNA Fusion Lung
Cancer Research Panel

TP53 Research Panel

Colon & Lung Cancer
Research Panel




lon AmpliSeq™ Cancer Hotspot Panel v2

lon AmpliSeq” Cancer
Hotspot Panel vZ

Just one tube. Just 10 ng of DNA. Just one day.

As little as 10ng input
50 genes
207 amplicons

ABL1 EZHZ JAK3 PTEN
AKT1 FBXW7 IDH2 PTPN11
ALK FGFR1 KDR RB1
AFPC FGFR2 KIT RET
ATM FGFR3 KRAS SMAD4
BRAF FLT3 MET SMARCB1
CDH1 GNATI MLH1 SMO
COKNZA GNAS MFL SRC
CSFIR GNAG NOTCH1 STK11
CTNNB1 HNF1A NPM1 TP53
EGFR HRAS NRAS VHL
ERBBZ IDH1 PDGFRA

ERBB4 JAKZ PIK3CA




lon AmpliSeq™ Comprehensive Cancer Panel (CCP)

jon torrent

lon AmpliSeq”
Comprehensive Cancer Panel

Extensive survey of over 400 genes with only 40 ng of DNA

= Targets coding exons in 409

human oncogenes and tumor s
suppressor genes o

= ~16,000 amplicons b
» Detection of known COSMIC —

somatic mutations o




lon AmpliSeq™ Exome

« 293,903 primer pairs across 12 primer
pools

— >24,500-plex PCR!

— ~2.4 M PCRs per plate of 8 exomes!!
« Total DNA input as low as 50ng
« Covers >97% of CCDS (Release 12)

— >19,000 coding genes >198,000
coding exons (no UTRs, miRNAs, or
ncRNAS)

— ~85% of human disease-causing
variants found in coding regions or
splice junctions

Easy exome
sequencing

New lon AmpliSeq”™
Exomme RDY Kits

» Simplified workflows
» High uniformity

Amplicon size range 225-275 bp

« Average insert size is ~202 bp



lon AmpliSeq™ RNA Cancer Panel

50 genes, from 500 pg unfixed RNA, one tube

ABL1 EZH2 JAK3 PTEN AKT1
FBXW7 IDH2 PTPN11 ALK FGFR1
KDR RB1 APC FGFR2 KIT
 RET ATM FGFR3 | KRAS | SMAD4
" BRAF T FLI3 MET | SMARCB1 | CDHI
[ GNATT | MLHI SMO | CDKN2A | GNAS
MPL SRC CSFIR GNAQ NOTCHT1
STK11 CTNNB1 HNFIA NPM1 TP53
T EBER  HRAS NRAS VHL ERBB2
| IDH1 PDGFRA ERBBY JAK2 PIK3CA

Targeted

quantitative
expression
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lon AmpliSeq™ Transcriptome — Overview

- Comprehensive coverage of RefSeq - 20,802 genes targeted
« Single primer pool — simple workflow
 Reports at gene-level

- FFPE-compatible as little as 10 ng RNA

 Total RNA input from FFPE and other sources — no selection or
enrichment

» Assay design
» One amplicon per gene
+ ~150 bp amplicon size with ~110 bp insert size
 Crosses exon boundary where possible

Isoform 1
Gene < Isoform 2

lsoform 3

. Exon3 |




Benefits of Target Enrichment vs.
Amplicon Sequencing

Target Enrichment Amplicon Sequencing

Larger gene content, typically > 50 Smaller gene content, typically < 50

genes genes

More comprehensive profiling for all ldeal for analyzing single nucleotide

variant types variants and insertions/deletions
(indels)

More comprehensive method, but with  More affordable, easier workflow
longer hands-on time and turnaround
time



DNA Rearrangements and Markers Epigenetics it DHA-Protein Interactions
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LOW level DNA detection

Single-cell genomics can be used to identify and study circulating
tumor cells, cell-free DNA, microbes, uncultured microbes, for
preimplantation diagnosis, and to help us better understand
tissue-specific cellular differentiation.

DNA replication during cell division is not perfect; as a resullt,
progressive generations of cells accumulate unique somatic
mutations.

Consequently, each cell in our body has a unique genomic
signature, which allows the reconstruction of cell lineage trees
with very high precision.

These cell lineage trees can predict the existence of small
populations of stem cells. This information is important for fields
as diverse as cancer development preimplantation, and genetic
diagnosis.



Reviews

Blainey P. C. (2013) The future is now: single-cell
genomics of bacteria and archaea. FEMS
Microbiol Rev 37: 407-427

Lovett M. (2013) The applications of single-cell
genomics. Hum Mol Genet 22: R22-26

Shapiro E., Biezuner T. and Linnarsson S. (2013)
Single-cell sequencing-based technologies will
revolutionize whole-organism science. Nat Rev
Genet 14: 618-630



Low-Level DNA Detection

® MULTIPLE DISPLACEMENT AMPLIFICATION (MDA)

Multiple displacement amplification (MDA) is a method
commonly used for sequencing microbial genomes
due to its ability to amplify templates larger than 0.5
Mbp, but it can also be used to study genomes of
other sizes.

® |n this method, 3’-blocked random hexamer primers
are hybridized to the template, followed by synthesis
with Phi 29 polymerase.

® Phi 29 performs strand-displacement DNA synthesis,
allowing for efficient and rapid DNA amplification.
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MDA can generate 1-2 ug of DNA from single cell with genome
coverage of up to 99%.

General work flow of MDA:

® Sample preparation: Samples are collected and diluted in
the appropriate reaction buffer (Ca2+ and Mg2+ free).

® Condition: The MDA reaction with 29 polymerase is carried
out at 30 °C. The reaction usually takes about 2.5-3 hours.

® End of reaction: Inactivate enzymes at 65 °C before
collection of the amplified DNA products

® DNA products can be purified with commercial purification
kit.



DNA-PROTEIN INTERACTIONS

Chromatin remodeling is a dynamic process
driven by factors that change DNA-protein
iInteractions. These epigenetic factors can
Involve protein modifications, such as histone

methylation, acetylation, phosphorylation, and
ubiquitination.

Histone modifications determine gene activation
by recruiting regulatory factors and maintaining
an open or closed chromatin state. Epigenetic
factors play roles in tissue development,
embryogenesis, cell fate, immune response,



DNASE | HYPERSENSITIVE SITES
SEQUENCING (DNASE-SEQ)

Sequences bound by regulatory proteins are
protected from DNase | digestion. Deep
sequencing provides accurate representation of
the location of regulatory proteins in genome.




ATAC-seq

Assay for Transposase-Accessible Chromatin using sequencing

Cancer epigenome Identification of cellular

ATAC-seq identifies accessible profiling subtypes
regions by probing open chromatin with E 0 ®
hyperactive mutant ,1 @ @ @ Cell type A
that inserts sequencing adapters into @ = E o0 @ OCelltypeB

. E @® QCeltypeC
open regions of the genome. %@ © i iy

O, :
* t-SNE dimmension 1

ATAC-Seq has also been applied
to defining the genome-wide / \ E1E2 E3 E4

34
S Wl 1s———
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Chimp
Comparative epigenomics Enhancer usage analysis
during cell differentiation

chromatin accessibility landscape 4 C
in human cancers, sdlaln
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Chip-seq
In eukaryotic cells, the genome is highly organized
within the nucleus in a complex compact structure
known as chromatin. The basic unit of chromatin is
the nucleosome, which consists of 146 bp of DNA
wrapped around the four histone proteins arranged

as an octamer composed by two histone H2A-H2B
dimers and a histone 4 tetramer

Nucleosome “bead”
(8 histone molecules +
146 base pairs of DNA)



cromatina aperta

nucleosoma
DADIDID
P4

metilazione del DNA demetilazione del DNA
deacetilazione istonica acetilazione istonica

cromatina condensata


https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Transposase#Transposase_Tn5

Each histone protein contain the so called histone
fold structural motif, flanked by unstructured N-
and C-terminal tails, ranging from 15 (H2A) to
35 (H3) amino acids, that protrude from the
nucleosomal core




Histone modifications

Acetylation and
methylation of specic
lysine or arginine
residues Iin histones
H3 and H4 are
reversible and have
been associated to
gene transcription
regulation

Acetylation Deimincrtion

@ Methylation {5 Ubiquitination
) Phosphorylation
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H3K4, H3K36, and H3K79 methylations are
generally linked to active gene expression

H3K9, H3K27, and H4K20 di- and tri-methylations
have been associated with_gene silencing.

H3K4me2 and H3K4me3 have been both found
predominantly on active loci, although H3K4me3
Is associated with active genes, H3K4me2 can
be present also in inactive genes
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TruSeq® ChlIP Sample Preparation

Determining how protein—DNA interactions regulate gene expression

is essential for fully understanding many biological processes and
disease states. This epigenetic information is complementary to DNA
seguencing, genotyping, gene expression, and other forms of genomic
analysis. Chromatin immunoprecipitation sequencing (ChlP-Seq)
leverages next-generation sequencing (NGS) to quickly and efficiently
determine the distribution and abundance of DNA-bound protein
targets of interest across the genome. ChlP-5eq has become one of
the most widely applied NGS-based applications, enabling researchers
to reliably identify binding sites of a broad range of targets across the
entire genome with high resolution and without constraints.
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Histone H3 Polyclonal Antibody

https://www.thermofisher.com/antibody/product/Histone-H3-

Antibody-Polyclonal/PAS-17697
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https:/fwww.cellsignal.com/1/1/2390-monoclonal-antibody-histone-h3-d 1h2-xp-
rabbit-mab-uniprot-id-p68431-entrez-id-8350-4499 html



ChiPseq for histone modifications ChiPseq for DNA binding proteins
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https://www.youtube.com/watch?v=4NRkoj1WFyU



DNA + protein of interest (POI) Fragmented DNA Selection by antibody
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10 kb} 1 hg19
Scale chr10 30 121,340,000 | 121,345,000 | 121,350,000 | 121,355,000 |

Extended tag pileup from MACS version 1.4.2 20120305 for every 10 bp

IgControl_run1_treat_chr10
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HEPG2 MafK SC477 IgG-rab ChIP-Seq Signal from ENCODE/SYDH
HEPG MafK IgR

TruSeq ChIP Sample Preparation Kits enable the generation of libraries across a broad range of study designs. Above is peak data for a negative Ig control, the

transcription factor target MafK, and a reference peak for MafK from the ENCODE database. httpS //en W| k| ped |a . Org/W| k|/MAF K
10 kb} i hg19
Scale chri - | 179,855,000 | 179,860,000 | 179,865,000 | 179,870,000 | 179,875,000 | 179,880,000 | 179,885,000 |

Extended tag pileup from MACS version 1.4.2 20120305 for every 10 bp

H3K4me3
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410.6 _
H3K4Me3 Mark (Often Found Near Promoters) on 7 cell lines from ENCODE

Layered H3K4Me3

The peak results for the H3K4me3 target compare favorably with the ENCODE annotation data for this well characterized target, with a representative peak for the
histone mark target H3K4me3 and a corresponding ENCODE reference peak.
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Methods. 2012 Mov;58(3):268-76. doi: 10.1016/.ymeth. 2012.05.001. Epub 2012 May 29.

Hi-C: a comprehensive technique to capture the conformation of genomes.

Belton JM1, McCord RP, Gibcus JH, Maumova M, Zhan Y, Dekker J.

= Author information

1 Programs in Systems Biology and Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of
Massachusetts Medical School, Worcester, MA 01605, USA.

Abstract

We describe a method, Hi-C, to comprehensively detect chromatin interactions in the mammalian nucleus. This method is based on
Chromosome Conformation Capture, in which chromatin is crosslinked with formaldehyde, then digested, and re-ligated in such a way that only
DNA fragments that are covalently linked together form ligation products. The ligation products contain the information of not only where they
originated from in the genomic sequence but also where they reside, physically, in the 3D organization of the genome. In Hi-C, a biotin-labeled
nucleotide is incorporated at the ligation junction, enabling selective purification of chimeric DNA ligation junctions followed by deep sequencing.
The compatibility of Hi-C with next generation sequencing platforms makes it possible to detect chromatin interactions on an unprecedented
scale. This advance gives Hi-C the power to both explore the biophysical properties of chromatin as well as the implications of chromatin
structure for the biological functions of the nucleus. A massively parallel survey of chromatin interaction provides the previously missing dimension
of spatial context to other genomic studies. This spatial context will provide a new perspective to studies of chromatin and its role in genome
regulation in normal conditions and in disease.

Copyright © 2012. Published by Elsevier Inc.

https://www.jove.com/video/1869/hi-c-un-metodo-per-studiare-
larchitettura-tridimensionale-dei-genomi?language=ltalian



HiC for de novo assembly genome sequences
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Ghurye J, Pop M (2019) Modern technologies and algorithms for scaffolding assembled genomes. PLOS
Computational Biology 15(6): €1006994. https://doi.org/10.1371/journal.pcbi.1006994
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DNA Methylation

® DNA methylation and hydroxymethylation are
iInvolved in development, X-chromosome
inactivation, cell differentiation, tissue-specific
gene expression, plant epigenetic variation,
iImprinting, cancers, and diseases.

® NMethylation usually occurs at the 5’ position of
cytosines and plays a crucial role in gene
regulation and chromatin remodeling.
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Mature Reviews | Genetics

® The active agouti gene in mice
codes for yellow coat color.
When pregnant mice with the
active agouti gene are fed a
diet rich in methyl donors, the
offspring are born with the
agouti gene turned off. This
effect has been used as an
epigenetic biosensor for
nutritional and environmental
alterations on the fetal
epigenome.

Randy L. Jirtle and Michael K. Skinner
Nature Reviews Genetics 8, 253-262 (April 2007)

doi:10.1038/nrg2045



® \Most cytosine methylation occurs on cytosines
located near guanines, called CpG sites. These
CpG sites are often located upstream of
promoters, or within the gene body. CpG
islands are defined as regions that are
greater than 500 bp in length with greater
than 55% GC and an expected/observed
CpG ratio of > 0.65.

® \While cytosine methylation (5mC) is known as

a silencing r . NH, v 3nes, cytosine
hydroxymetlj /& /J\\ o L wn to be an
activatingm *# H |e expression

AnA e A ArA Cvtos Methylcytos Hydroxymethylcytosine g0 0 FYNIT A



BISULFITE SEQUENCING (BS-SEQ)

® Bisulfite sequencing (BS-Seq) or whole-
genome bisulfite sequencing (WGBS) is a well-
established protocol to detect methylated
cytosines in genomic DNA.

® |n this method, genomic DNA is treated with
sodium bisulfite and then sequenced, providing
single-base resolution of methylated cytosines
in the genome. Upon bisulfite treatment,
unmethylated cytosines are deaminated to

uracils which, upon sequencing, are converted
to thymidines.

® Simultaneously, methylated cvtosines resist



sep?) ST

Denaturation Conversion Desulphonation
Incubation at 95°C Incubation with sodium bisulfite [ncubation at high pH
fragments genomic DNA at 65°C and low pH (5-6) at room temperature for 15 min
deaminates cytosine residues removes the sulfite moeity,
in fragmented DNA gencrating uracil
NH, NH, OH o]
Fragmented NF NaHSO,, pH 5.0 NF +H.0, - NH, NZ OH HN
Genomic DNA — | ——— — — B |
Samples o N o N SON * NleSDaD "
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C
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)\ | ; E 5-mC and 5-hmC (not shown) are not susceptible
O N
H

to bisulfite conversion and remain intact

5-Methyleytosine (5-mC)

* Bisulfite converts unmethylated cytosines to thymidines, reducing
sequence complexity, which can make it difficult to create alignments

* SNPs where a cytosine is converted to thymidine will be missed
upon bisulfite conversion

» Bisulfite conversion does not distinguish between 5mC and 5hmC
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http://www.nature.com/nrg/journal/v8/n4/full/nrg2045.html

Sequence Rearrangements

A growing body of evidence suggests that somatic
genomic rearrangements, such as
retrotransposition and copy number variants
(CNVs), are relatively common in healthy
individuals.

Cancer genomes are also known to contain
numerous complex rearrangements. While
many of these rearrangements can be detected
during routine next-generation sequencing,
specific techniques are available to study
rearrangements such as transposable elements.



Transposable genetic elements (TEs) comprise a
vast array of DNA sequences with the ability to
move to new sites in genomes either directly by
a cut-and-paste mechanism (transposons) or

indirectly through an RNA intermediate
(retrotransposons).

TEs make up about 66-69% of the human
genome and play roles in ageing, cancers,
brain, development, embryogenesis, and
phenotypic variation in populations and
evolution. TEs played a major role in dynamic




Overall RC-seq methodology.
a JK Balillie et al. Nature 000, 1-4 (2011) doi:10.1038/nature10531
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Human genome resequencing.
Optical mapping

@
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1. Cells are _ 2. Single genomic
lysed to retrieve DNA molecules
genomic DNA are placed onto a
microfluidic
device
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3. Restriction
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DNA molecules at
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4. Each DNA molecule is stained with a
fluorescent dye. An optical map of single-
molecules are derived by measuring the
fluorescent intensity.

!

5. Overlapping of the multiple single-molecule maps gives us the consensus genomic optical map



1.0ng high-molecular-weight gDNA =
300 haploid copies of the genome
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10X genomics

. Y ceEnomICS

RESOLVING BIOLOGY
TO ADVANCE
HUMAN HEALTH

This is the Century of Biology.

Breakthroughs in the coming decades will transform the
world. We accelerate this progress by powering
fundamental research across the life sciences, including
oncology, immunology, and neuroscience.

View Products

Products Research Areas Resources Support Company Q

Spatial Gene Expression

; Our spatial product enables simultaneous

5= analysis of molecular and imaging data from
tissue slices. This is a multi-dimensional view

"f&;;i 5 of the hippocampus of a mouse brain.

Learn about our Spatial Gene Expression Product < >)

https://www.youtube.com/watch?v=XwBI13Q4ilo




10X genomics

SINGLE CELL TRANSCRIPTOMICS

SINGLE CELL GENOMICS

SINGLE CELL EPIGENOMICS

®
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Go beyond traditional gene
expression analysis to

.

Single Cell Immune Profiling

Simultaneously examine the
cellular context of the adaptive

Reveal genome heterogeneity
and understand clonal

Reveal chromatin accessibility
cell by cell to decipher gene

characterize cell populations, immune response in hundreds evolution regulatory mechanisms
cell types, cell states, and maore to tens of thousands of
lymphocytes
LINKED-READS GENOMICS SPATIAL GENE EXPRESSION
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enome Sequenci Exome Seguencing de novo Assembly >patial Gene Expression

Resolve phasing, structural
variants, and variants in
previously inaccessible parts of
the genome

Resolve genic phasing,
structural variation, and
variants in previously
inaccessible and complex
regions

Enable true diploid genome
assembly like never before

Understand gene expression
levels with morphological
context by performing mRNA
analysis on intact tissue
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