
INFORMATION
RETRIEVAL
Luca Manzoni 
lmanzoni@units.it

Lecture 3

mailto:lmanzoni@units.it

*NOW WITHOUT ASBESTOS

LECTURE OUTLINE

Data Structures  
for dictionaries

Postings Lists
and dictionary compression

How to update 
the index

NEW
DOCUM

ENTS

Counting
disk accesses

MAIN MEMORY AND EXTERNAL STORAGE

EXTERNAL STORAGE

• When analysing the complexity of algorithms each step is
considered as having the same cost.

• This is a reasonable assumption in many cases, especially if all the
data fit in the main memory.

• When accessing storage this assumption is stretched too thin: the
costs can be orders of magnitude greater than accessing the main
memory.

• Similar considerations holds when using the network.

FROM NANOSECONDS DI MILLISECONDS

TIMING OF SOME STANDARD OPERATIONS

execute typical instruction 1 ns

fetch from L1 cache memory 0.5 ns

branch misprediction 5 ns

fetch from L2 cache memory 7 ns

Mutex lock/unlock 25 ns

fetch from main memory 100 ns

send 2K bytes over 1Gbps network 20,000 ns

read 1MB sequentially from memory 250,000 ns

fetch from new disk location (seek) 8,000,000 ns

read 1MB sequentially from disk 20,000,000 ns

From http://norvig.com/21-days.html#answers

http://norvig.com/21-days.html#answers

COMPLEXITY: COUNTING DISK ACCESSES

• We should take into account the number of disk accesses.

• Some effects of this choice are:

• We might want to transfer data “in bulk”. Since each read is
costly, we want to read more than strictly necessary.

• While asymptotic results are important, we might want to be do
a finer analysis.

• Since the access to external storage is expensive, we might
decide to do more work “in memory” to minimise the number
of accesses (e.g., compress and decompress data).

DATA STRUCTURES FOR DICTIONARIES

HASH TABLES & TREES

HOW IS A DICTIONARY ACTUALLY REPRESENTED?

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

• It is necessary to search in a dictionary  
that can be quite large

• Something more efficient than a linear  
scan is needed

• Two main approaches:

• Hash tables

• Trees (binary trees, b-trees, tries, etc.)

A BRIEF RECAP

HASH TABLES

HASH  
FUNCTION

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

0

1

2

3

4

5

6

7

8

9

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDONED

ABANDON
ABANDONING

ABANDONMENT

SOME EXAMPLES

HASH FUNCTIONS

Traditional for integers: where is the size of the tableh(x) = x mod m m

How to manage strings? H E L L O

Component sum  
split the string into chunks and  
sum (or xor) them.

H E L L O

104 + 101 + 108 + 108 + 111 = 532

Polynomial accumulation  
consider each chunk as a coefficient of  
a polynomial, then evaluate it for a fixed  
value of the unknown

H E L L O

104 + 101x + 108x2 + 108x3 + 111x4

for x = 33 it evalues to 135639476

A BRIEF RECAP

HASH TABLES

• A hash function assign to each input (term) an integer number,
which is the position of the term in a table.

• Collisions: sometimes for two different inputs the hash function
returns the same value.

• Load factor: .

• Lower load factor: higher memory usage but less risk of collisions

• Higher load factor: lower memory usage but higher risk of
collisions

elements
size of the table

MANAGING COLLISIONS

HASH TABLES

• Open addressing. All entries are stored in the table, in case of
collision the first free slot according to some probe sequence is
found (e.g., linear or quadratic probing).

• Chaining. Each “cell” is a list of all entries with the same hash.

• Perfect hashing. For a fixed set it is possible to compute an
hashing function with no collisions.

• Other collision resolution techniques, like cuckoo hashing. It
shares some characteristic of perfect hashing while allowing
updates.

THE GOOD, THE BAD, AND THE UGLY

HASH TABLES

• Finding an element in a hash table requires expected time.

• In some cases (e.g., perfect hashing) this can also be the worst
case time.

• Adding new elements might require rehashing (i.e., reinsertion of
all elements into a bigger table) which is costly. This is needed to
keep the load factor low enough.

• Some kind of searches are not possible, like looking for a prefix.
In general anything that requires something different form the
exact term.

O(1)

A BRIEF RECAP

BINARY TREES

A binary tree is a tree in which  
each node has at most two  
children

Each node has an associated value  
(a term in our case)

A binary search tree has the property  
that the left subtree has only vales  
smaller than the value in the root and the right subtree only values
that are larger.

This means that, if the tree is balanced, search can happen in
 steps.O(log n)

AN EXAMPLE OF BINARY SEARCH TREE

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONMENT

ABANDONING

ABANDONED

THE GOOD, THE BAD, AND THE UGLY

BINARY TREES

Binary search trees solve most of the problems of hash tables:

• Insertion (and deletion) are not expensive.

• Searching a prefix is possible.

• As long as the tree is kept balanced, search il efficient.

• But binary trees do no play well with disk access.
accesses to the main storage might be costly.

• A way to reduce the number of disk accesses while still using
trees is via B-trees.

O(log n)

B-TREES

ABANDONAACHEN

A ABABA

ABANDONED ABANDONING ABANDONMENT

ABABAS ABACK ABADAN

B-trees can be seen as a generalisation of binary search trees in
which each node has between and children.a b

STRUCTURE OF A B-TREE NODE

a1 a2 a3 a4

The node can contain up to four values 
and five pointers to subtrees each respecting  
a “generalised” version of the BST property

x < a1 a1 < x < a2 a2 < x < a3 a3 < x < a4 x > a4

The size of a node is usually selected to be a “block”

AND NOT SIMPLY BINARY SEARCH TREES?

WHY B-TREES?

• If you have to search across elements then you need to go
through at most:

• nodes in a binary search tree.

• nodes in a B-tree, where is the size of the block.
Suppose , then .

• This number corresponds to the number of disk accesses, which
are the ones dominating the running time.

106

⌈log2(106)⌉ = 20

⌈logB(106)⌉ B
B = 100 ⌈log100(106)⌉ = 3

ALSO KNOWN AS PREFIX TREES

TRIES

A trie is a special kind of tree based on the idea of searching  
by looking at the prefix of a key

The key itself (the term in our case) provides the path along  
the edges of the trie

Access time: worst case where is the size of the key.  
This is optimal because we must read the key.

Insertion is still possible and efficient.

O(m) m

TRIES: AN EXAMPLE

A

ACHEN BA

BA CK DAN NDON

S
ED ING MENT

There isn’t key corresponding to the path from the root to this node

There is a key corresponding to the path from the root to this node

Where are the terms?
They are encoded 
in the paths from the  
root of the tree to a node

TRIES: PROS AND CONS

• Tries have access time that is as good as hash tables  
(the time for hash tables assumes a constant-length key)

• Differently from hash tables, there cannot be collisions.

• Insertion is still efficient.

• Search inside a range of key is very efficient.

• There can still be problems of too many accesses to disk.

• There ara variants of tries for external storage that mitigate the
problem

O(1)

DICTIONARY AND INDEX COMPRESSION

SPEED IMPLICATIONS

WHY COMPRESSION?

• We can compress two things: the dictionary and the postings

• Why using compression?

• To save disk space.

• To keep the entire dictionary in memory.

• To keep more data in the main memory.

• It might be faster to read less data from disk and decompress it
in memory than to read the non-compressed data.

HEAPS’ LAW

ESTIMATION OF THE NUMBER OF TERMS

M = kTb

In a collection with tokens the estimated size  
of the vocabulary is:

T

Typical values for are between and k 30 100

Usually, b ≈ 0.5

HEAPS’ LAW SUGGESTS THAT THE SIZE OF THE DICTIONARY  
INCREASES WITH THE SIZE OF THE COLLECTION

ZIPF’S LAW

DISTRIBUTION OF TERMS

cfi ∝
1
i

The -th most common term in a collection appears  

with a frequency proportional to :

i

cfi
1
i

In other words, frequency of terms decreases rapidly  
with the rank.

Equivalent formulation: for some constants  
 and for .

cfi = cik

c k = − 1

DICTIONARY AS FIXED-WIDTH ENTRIES

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

Pointer to postings list

0

250

167

229

23

119

22

1 2

226 229

326 353

271 284

70

261

359

187 192

ADVANTAGES AND DISADVANTAGES

DICTIONARY AS FIXED-WIDTH ENTRIES

• Each entry consists of an entry of characters and a pointer to
the postings list.

• Words of length at most can be stored.

• If we save a 40 characters string (i.e.,) then every entry will
require 40 characters, wasting a lot of space for short words.

m

m

m ≥ 40

DICTIONARY AS A SINGLE STRING

A AACHEN ABABA ABABAS ABACK ABADAN ABANDON ABANDONED ABANDONING ABANDONMENT

Pointer to term Pointer to postings list

0

250

167

229

23

119

22

1 2

226 229

326 353

271 284

DESCRIPTION AND ADVANTAGES

DICTIONARY AS A SINGLE STRING

• Each entry consists of a pointer to the term that is part of a
contiguous string and to the pointer to the postings list

• To know the end of the word it is necessary to look at the next
pointer.

• There is no wasted space for the strings…

• …but it is necessary to keep an additional pointer for each entry.

• We can reduce the space used for the pointers by using blocked
storage.

BLOCKED STORAGE

A AACHEN ABABA ABABAS ABACK ABADAN ABANDON ABANDONED

Pointer to term Pointer to postings list

0

250

167

229

23

119

22

1 2

226 229

326 353

271 284

1 6 5 6 5 6 7 9 ABANDONING10

Block of 4 terms

block 
(one pointer)

Is the length of a wordn

ADVANTAGES AND DISADVANTAGES

BLOCKED STORAGE

• Now only one every entries (the block size) has a pointer.

• The value of the others entries is determined by a linear scan of
the block.

• The addition of the length of the string is needed to know where
a string end.

• It is a trade-off between space and access time (which is increased
due to the linear scanning inside a block).

• We are still not using the fact that the words in the dictionary are
ordered alphabetically.

k

FRONT CODING

A ACHEN BABA S1 6 5 61 1 4 ABACK DAN NDON ED5 6 7 93 3 7

Block of 4 terms

Length of the prefix shared with the previous word

A 
AACHEN
ABABA
ABABAS

Block of 4 terms

ABACK
ABADAN
ABANDON
ABANDONED

In red the prefix shared by each word  
with the previous one in the block:

This works because the  
dictionary is ordered alphabetically,

thus many words share a prefix

ADVANTAGES AND DISADVANTAGES

FRONT CODING

• Used inside a block reduces the size of the dictionary.

• Uses the fact that the dictionary is ordered.

• Requires, in addition to the linear scanning, a decoding phase.

• As before a trade-off between reducing size and incrementing the
cost of retrieving a term.

AND THE USE OF VARIABLE BYTE CODES

POSTING FILE: ENCODING DIFFERENCES

A

AACHEN

ABABA

0

250

167

1 2

226 229

Can we use the fact that a postings list is ordered?

YES

If we have a sequence with for all ,  
we can also encode it as a sequence of differences  
of consecutive terms:

(a0, a1, a2, a3, …) ai < ai+1 i

(a0, a1 − a0, a2 − a1, a3 − a2, …)

AND THE USE OF VARIABLE BYTE CODES

POSTING FILE: ENCODING DIFFERENCES

A

AACHEN

ABABA

0

250

167

1 2

226 229

A

AACHEN

ABABA

0

250

167

1 1

59 3

Encoding gaps instead 
of DocIDs

AND THE USE OF VARIABLE BYTE CODES

POSTING FILE: ENCODING DIFFERENCES

A

AACHEN

ABABA

0

250

167

1 1

59 3

How can we recover this DocID?
167 + 59 + 3 = 229

In general, to recover the -th DocID in list we sum all the  
values up to the -th one:  

k
k

a0 +
k

∑
i=0

(ai − ai−1) = a0 + a1 − a0 + a2 − a1 + … = ak

MOTIVATIONS FOR ENCODING THE GAPS

POSTING FILE: ENCODING DIFFERENCES

• The DocID can be arbitrarily large…

• …but most of the gaps between two DocID will be small

• We can use variable byte codes to use less storage

• Still, recovering a DocID now is more complex.

• Most importantly, access to the list must be sequential: to recover
a DocID we need to read all the previous ones.

• But the algorithms for union and intersection access the list
sequentially.

ENCODE NUMBERS IN A VARIABLE NUMBER OF BYTES

VARIABLE BYTE CODES

0 1 0 0 1 0 0 0

One byte usually encodes different values28 = 256

26 + 23 = 72

0 1 0 0 1 0 0 0

We encode different values in the first seven bits  
the last bit is a continuation bit.  
If it is then we have completed reading the number  
otherwise we must continue to read the next byte

27 = 128

0

25 + 22 = 36

ENCODE NUMBERS IN A VARIABLE NUMBER OF BYTES

VARIABLE BYTE CODES

0 1 0 0 1 0 0 1

212 + 29 + 26 + 21 + 20 = 4675

1 0 0 0 0 1 1 0

0 1 0 0 1 0 0 1 0 0 0 0 1 1

of bytes Max value

1 127
2 16383

3 2097152

4 268435456

The most frequent terms will have small  
gaps in their postings lists.

Hence, we can store the size of most gaps  
in only a few bytes

UPDATING THE INDEX

HOW THE POSTINGS LISTS ARE ORGANISED ON DISK

STORING POSTINGS

• How are the postings stored on-disk?

• One file per postings list can lead to too many files for a
filesystem to manage efficiently

• One single large file containing all the postings can be better
(here we select this solution)

• In reality we can have a combination of both, with multiple large
files each storing part of the postings

FOR COLLECTIONS THAT CHANGE WITH TIME

DYNAMIC INDEXING

• How can we insert new documents (or delete old ones) in an
inverted index?

• We can rebuild the index:

• Not very efficient.

• Only useful when the number of changes is small.

• To keep the system online while reindexing we need to keep
the old index until new one is ready.

A MORE EFFICIENT SOLUTION

AUXILIARY INDEX

Main index

Auxiliary index: 
contains only 

new document

Invalidation bit vector: 
we save which documents  

has been deleted  
(one bit for each document)

Queries merge 
the results of 

the two indices

Filtering using the  
invalidation bit vector

+

CAN WE DO BETTER?

AUXILIARY INDEX

• When the auxiliary index becomes too big we need to merge it  
with the main index.

• We can improve the efficiency by keeping auxiliary
indices (each one of size double the previous one) where is the
total number for postings and the size of the smaller auxiliary
index.

• This increase the complexity of all algorithms used to answer
queries, so it is a trade-off.

log2(T/n)
T

n

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR
INDEX OF

SIZE n

“SLOT” FOR
INDEX OF

SIZE 2n

“SLOT” FOR
INDEX OF

SIZE 4n

The smaller index is kept in memory

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR
INDEX OF

SIZE n

“SLOT” FOR
INDEX OF

SIZE 2n

“SLOT” FOR
INDEX OF

SIZE 4n

When full it is copied to disk.
A new (empty) index of size is created in memoryn

INDEX OF
SIZE n

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR
INDEX OF

SIZE n

“SLOT” FOR
INDEX OF

SIZE 2n

“SLOT” FOR
INDEX OF

SIZE 4n

When it is full, since there is already an index of size  
saved on disk, it is merged with it to form an index of size .
A new (empty) index of size is created in memory

n
2n

n

INDEX OF
SIZE 2n

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR
INDEX OF

SIZE n

“SLOT” FOR
INDEX OF

SIZE 2n

“SLOT” FOR
INDEX OF

SIZE 4n

When full it is copied to disk. No merge is necessary (the “slot” is free)
A new (empty) index of size is created in memoryn

INDEX OF
SIZE 2n

INDEX OF
SIZE n

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR
INDEX OF

SIZE n

“SLOT” FOR
INDEX OF

SIZE 2n

“SLOT” FOR
INDEX OF

SIZE 4n

When it is full, since there is already an index of size  
saved on disk, it is merged with it to form an index of size .
Since there is already an index of size saved on disk,
it is merged with it to form an index of size
A new (empty) index of size is created in memory

n
2n

2n
4n

n

INDEX OF
SIZE 4n

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR
INDEX OF

SIZE n

“SLOT” FOR
INDEX OF

SIZE 2n

“SLOT” FOR
INDEX OF

SIZE 4n

When full it is copied to disk. No merge is necessary (the “slot” is free)
A new (empty) index of size is created in memoryn

INDEX OF
SIZE 4n

INDEX OF
SIZE n

Most merges are of small indices, even if sometimes a series of
more merge operations are necessary.

