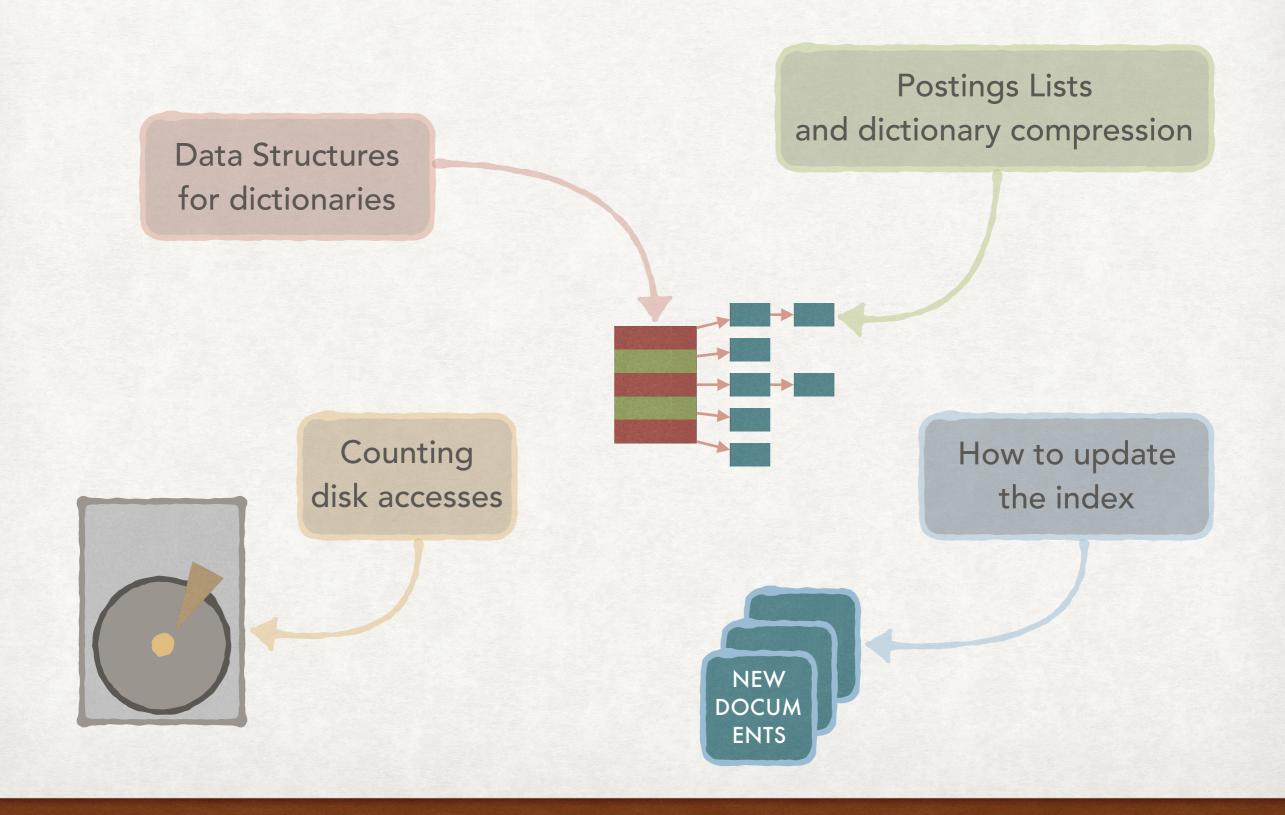
INFORMATION RETRIEVAL

Luca Manzoni Imanzoni@units.it

Lecture 3

LECTURE OUTLINE

*NOW WITHOUT ASBESTOS



EXTERNAL STORAGE

MAIN MEMORY AND EXTERNAL STORAGE

- When analysing the complexity of algorithms each step is considered as having the same cost.
- This is a reasonable assumption in many cases, especially if all the data fit in the main memory.
- When accessing storage this assumption is stretched too thin: the costs can be orders of magnitude greater than accessing the main memory.
- Similar considerations holds when using the network.

TIMING OF SOME STANDARD OPERATIONS

FROM NANOSECONDS DI MILLISECONDS

1 r	าร
0.5	E ACT
0.5 r	าร
5 r	าร
7 r	าร
25 r	าร
100 r	าร
000 r	าร
	5 r 7 r 25 r 100 r 000 r

COMPLEXITY: COUNTING DISK ACCESSES

- · We should take into account the number of disk accesses.
- Some effects of this choice are:
 - We might want to transfer data "in bulk". Since each read is costly, we want to read more than strictly necessary.
 - While asymptotic results are important, we might want to be do a finer analysis.
 - Since the access to external storage is expensive, we might decide to do more work "in memory" to minimise the number of accesses (e.g., compress and decompress data).

DATA STRUCTURES FOR DICTIONARIES

HOW IS A DICTIONARY ACTUALLY REPRESENTED?

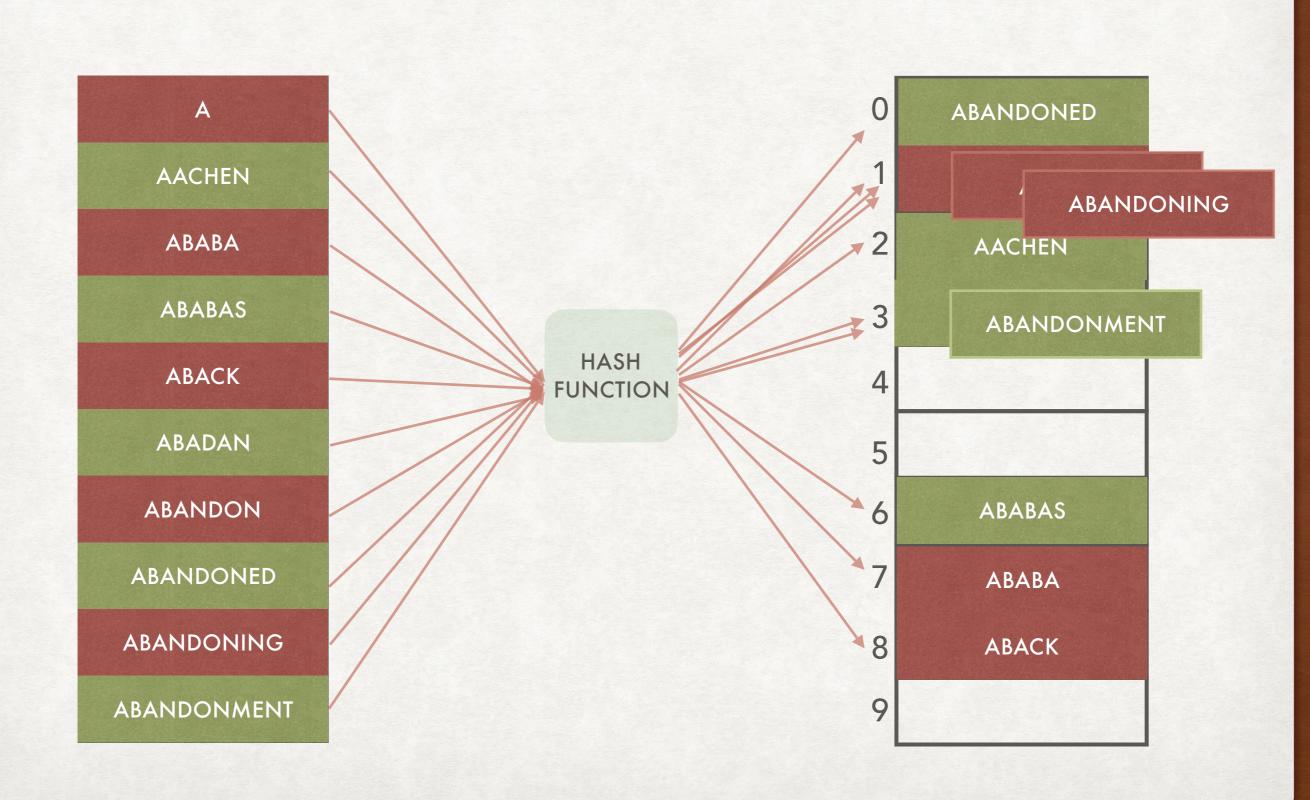
HASH TABLES & TREES

A **AACHEN** ABABA **ABABAS ABACK** ABADAN **ABANDON ABANDONED ABANDONING ABANDONMENT**

- It is necessary to search in a dictionary that can be quite large
- Something more efficient than a linear scan is needed
- Two main approaches:
 - Hash tables
 - Trees (binary trees, b-trees, tries, etc.)

HASH TABLES

A BRIEF RECAP



HASH FUNCTIONS

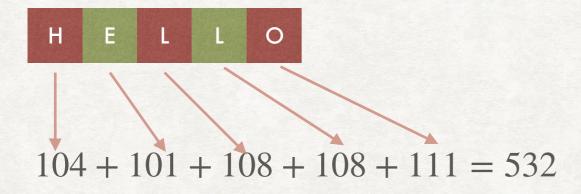
SOME EXAMPLES

Traditional for integers: $h(x) = x \mod m$ where m is the size of the table

How to manage strings?

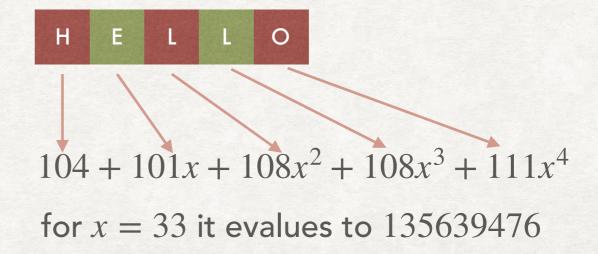
Component sum

split the string into chunks and sum (or xor) them.



Polynomial accumulation

consider each chunk as a coefficient of a polynomial, then evaluate it for a fixed value of the unknown



HASH TABLES

A BRIEF RECAP

- A hash function assign to each input (term) an integer number, which is the position of the term in a table.
- Collisions: sometimes for two different inputs the hash function returns the same value.
- Load factor: $\frac{\text{# elements}}{\text{size of the table}}$.
 - Lower load factor: higher memory usage but less risk of collisions
 - Higher load factor: lower memory usage but higher risk of collisions

HASH TABLES MANAGING COLLISIONS

- Open addressing. All entries are stored in the table, in case of collision the first free slot according to some probe sequence is found (e.g., linear or quadratic probing).
- Chaining. Each "cell" is a list of all entries with the same hash.
- Perfect hashing. For a fixed set it is possible to compute an hashing function with no collisions.
- Other collision resolution techniques, like cuckoo hashing. It shares some characteristic of perfect hashing while allowing updates.

HASH TABLES

THE GOOD, THE BAD, AND THE UGLY

- Finding an element in a hash table requires O(1) expected time.
- In some cases (e.g., perfect hashing) this can also be the worst case time.
- Adding new elements might require rehashing (i.e., reinsertion of all elements into a bigger table) which is costly. This is needed to keep the load factor low enough.
- Some kind of searches are not possible, like looking for a prefix.
 In general anything that requires something different form the exact term.

BINARY TREES

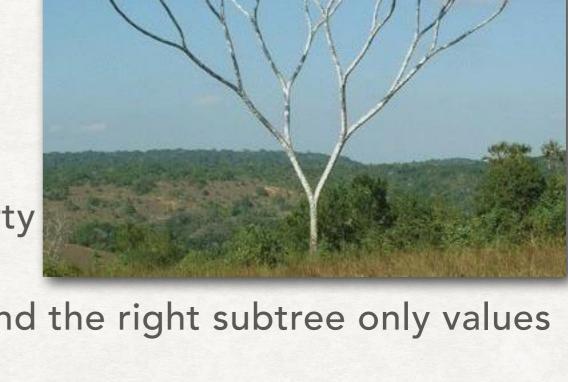
A BRIEF RECAP

A binary tree is a tree in which each node has at most two children

Each node has an associated value (a term in our case)

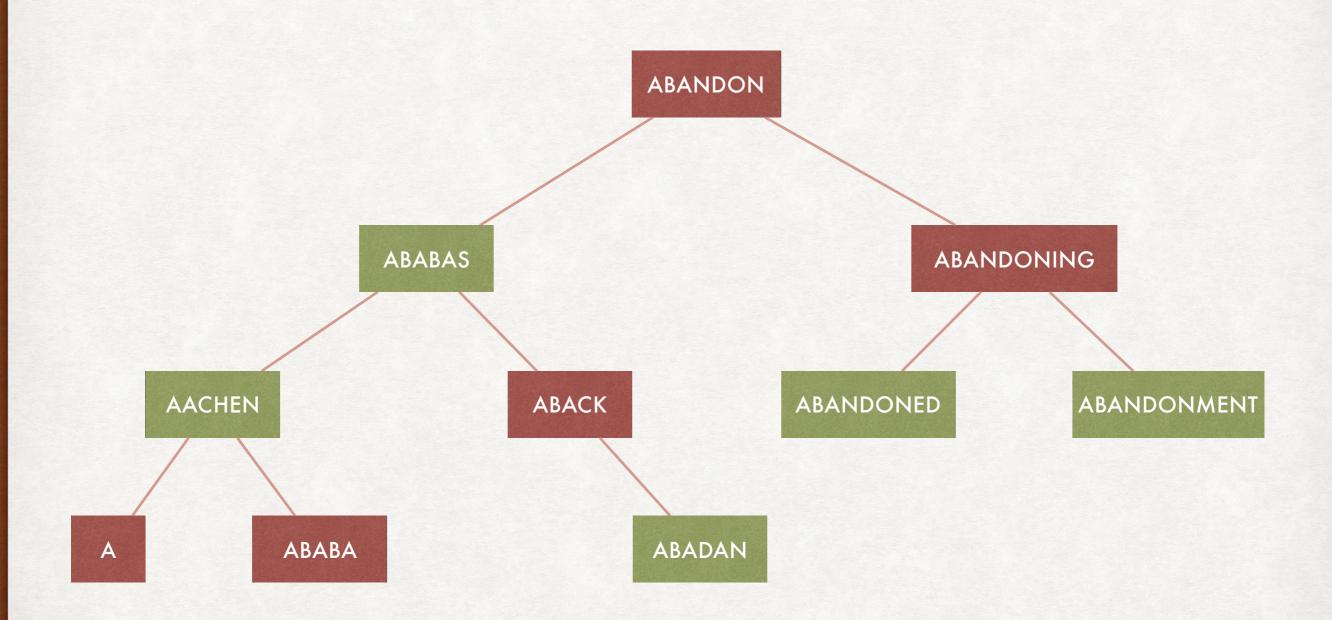
that are larger.

A binary search tree has the property that the left subtree has only vales smaller than the value in the root and the right subtree only values



This means that, if the tree is balanced, search can happen in $O(\log n)$ steps.

AN EXAMPLE OF BINARY SEARCH TREE



BINARY TREES

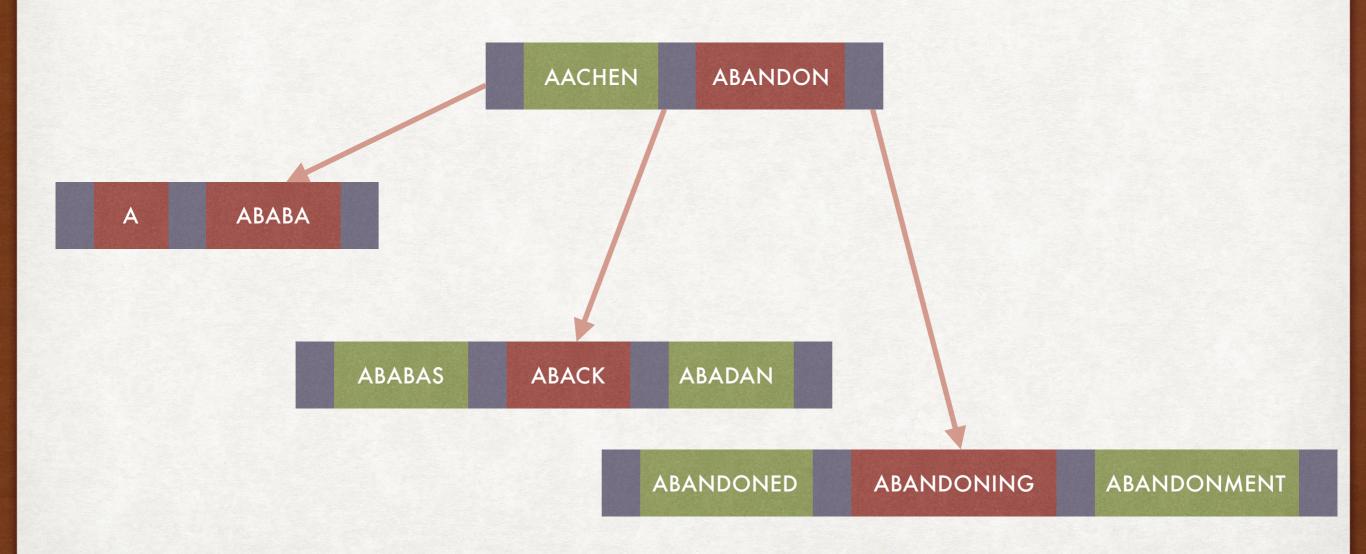
THE GOOD, THE BAD, AND THE UGLY

Binary search trees solve most of the problems of hash tables:

- Insertion (and deletion) are not expensive.
- Searching a prefix is possible.
- As long as the tree is kept balanced, search il efficient.
- But binary trees do no play well with disk access. $O(\log n)$ accesses to the main storage might be costly.
- A way to reduce the number of disk accesses while still using trees is via B-trees.

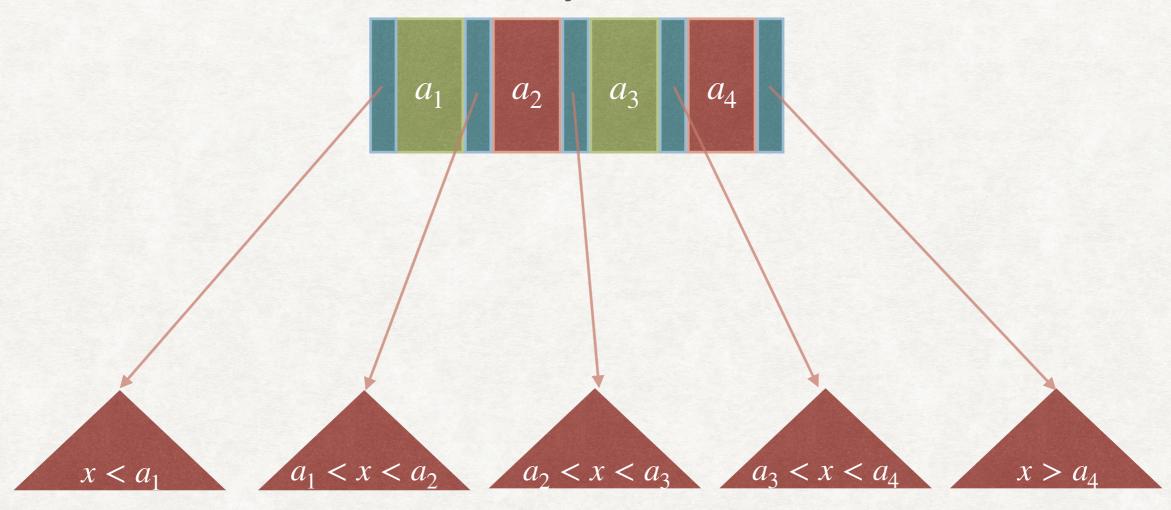
B-TREES

B-trees can be seen as a generalisation of binary search trees in which each node has between a and b children.



STRUCTURE OF A B-TREE NODE

The size of a node is usually selected to be a "block"



The node can contain up to four values and five pointers to subtrees each respecting a "generalised" version of the BST property

WHY B-TREES?

AND NOT SIMPLY BINARY SEARCH TREES?

- If you have to search across 10^6 elements then you need to go through at most:
 - $\lceil \log_2(10^6) \rceil = 20$ nodes in a binary search tree.
 - $\lceil \log_B(10^6) \rceil$ nodes in a B-tree, where B is the size of the block. Suppose B=100, then $\lceil \log_{100}(10^6) \rceil=3$.
 - This number corresponds to the number of disk accesses, which are the ones dominating the running time.

TRIES ALSO KNOWN AS PREFIX TREES

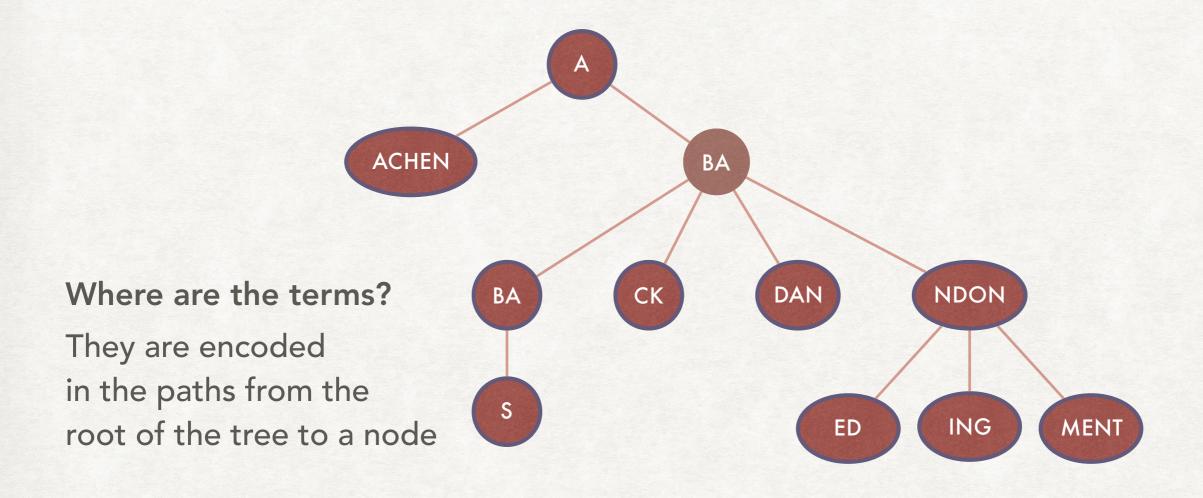
A trie is a special kind of tree based on the idea of searching by looking at the prefix of a key

The key itself (the term in our case) provides the path along the edges of the trie

Access time: worst case O(m) where m is the size of the key. This is optimal because we must read the key.

Insertion is still possible and efficient.

TRIES: AN EXAMPLE



- There is a key corresponding to the path from the root to this node
- There isn't key corresponding to the path from the root to this node

TRIES: PROS AND CONS

- Tries have access time that is as good as hash tables (the O(1) time for hash tables assumes a constant-length key)
- Differently from hash tables, there cannot be collisions.
- Insertion is still efficient.
- Search inside a range of key is very efficient.
- There can still be problems of too many accesses to disk.
- There are variants of tries for external storage that mitigate the problem

DICTIONARY AND INDEX COMPRESSION

WHY COMPRESSION?

SPEED IMPLICATIONS

- We can compress two things: the dictionary and the postings
- Why using compression?
 - To save disk space.
 - To keep the entire dictionary in memory.
 - To keep more data in the main memory.
 - It might be faster to read less data from disk and decompress it in memory than to read the non-compressed data.

ESTIMATION OF THE NUMBER OF TERMS

HEAPS' LAW

In a collection with T tokens the estimated size of the vocabulary is:

$$M = kT^b$$

Typical values for k are between 30 and 100

Usually, $b \approx 0.5$

HEAPS' LAW SUGGESTS THAT THE SIZE OF THE DICTIONARY INCREASES WITH THE SIZE OF THE COLLECTION

DISTRIBUTION OF TERMS

ZIPF'S LAW

The *i*-th most common term in a collection appears with a frequency cf_i proportional to $\frac{1}{i}$:

$$cf_i \propto \frac{1}{i}$$

In other words, frequency of terms decreases rapidly with the rank.

Equivalent formulation: $cf_i = ci^k$ for some constants c and for k = -1.

DICTIONARY AS FIXED-WIDTH ENTRIES

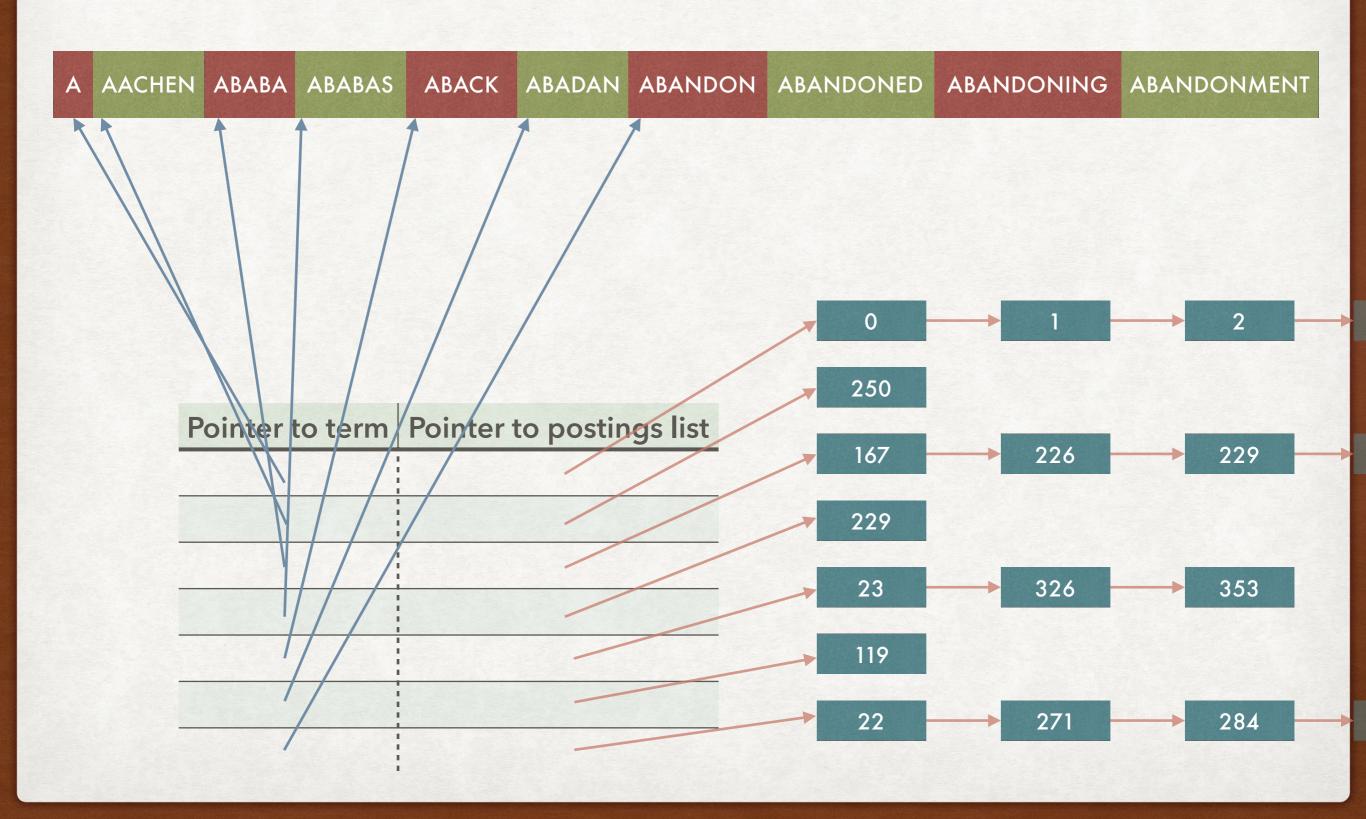


DICTIONARY AS FIXED-WIDTH ENTRIES

ADVANTAGES AND DISADVANTAGES

- Each entry consists of an entry of m characters and a pointer to the postings list.
- Words of length at most m can be stored.
- If we save a 40 characters string (i.e., $m \ge 40$) then every entry will require 40 characters, wasting a lot of space for short words.

DICTIONARY AS A SINGLE STRING

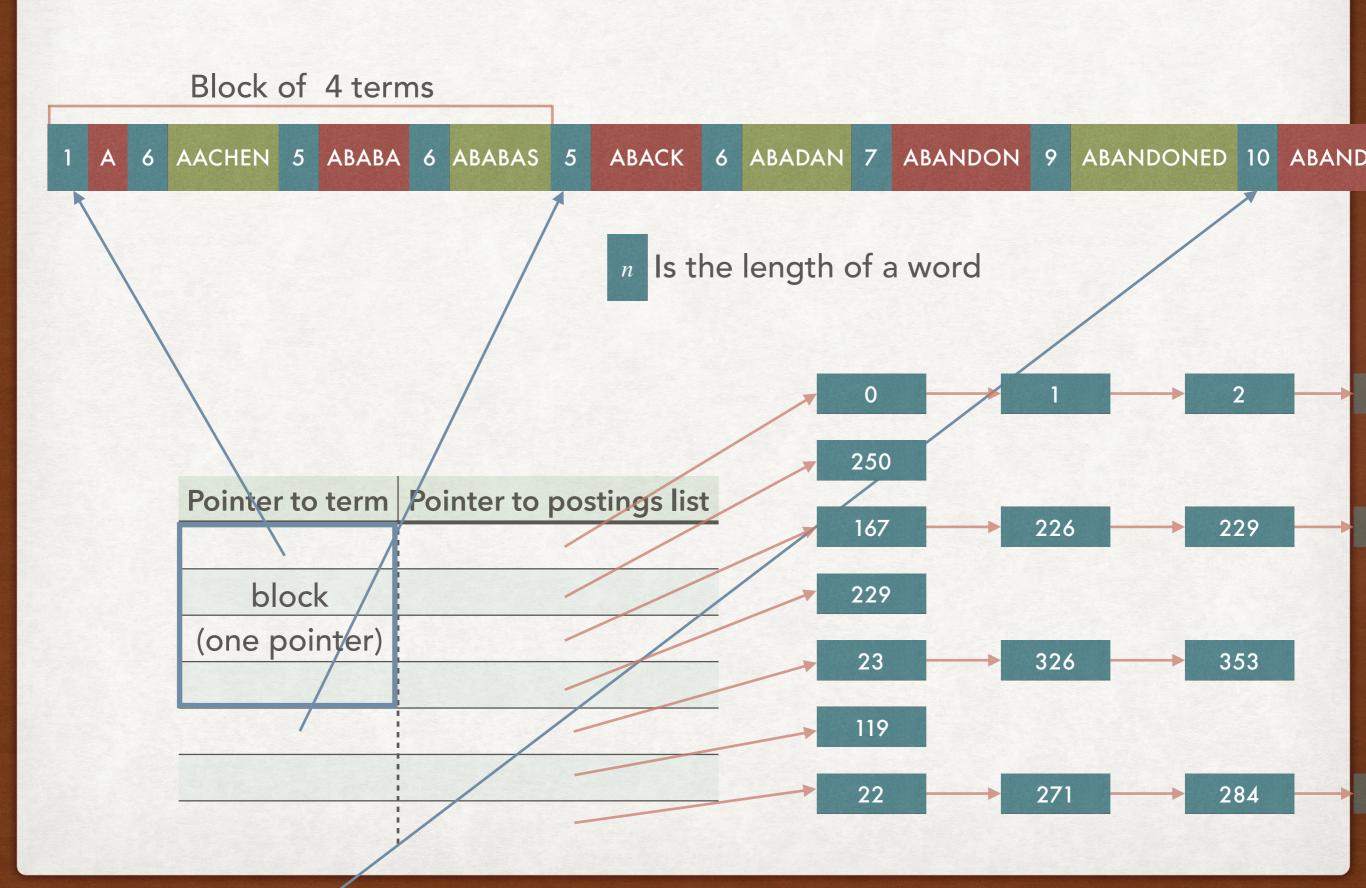


DICTIONARY AS A SINGLE STRING

DESCRIPTION AND ADVANTAGES

- Each entry consists of a pointer to the term that is part of a contiguous string and to the pointer to the postings list
- To know the end of the word it is necessary to look at the next pointer.
- There is no wasted space for the strings...
- ...but it is necessary to keep an additional pointer for each entry.
- We can reduce the space used for the pointers by using blocked storage.

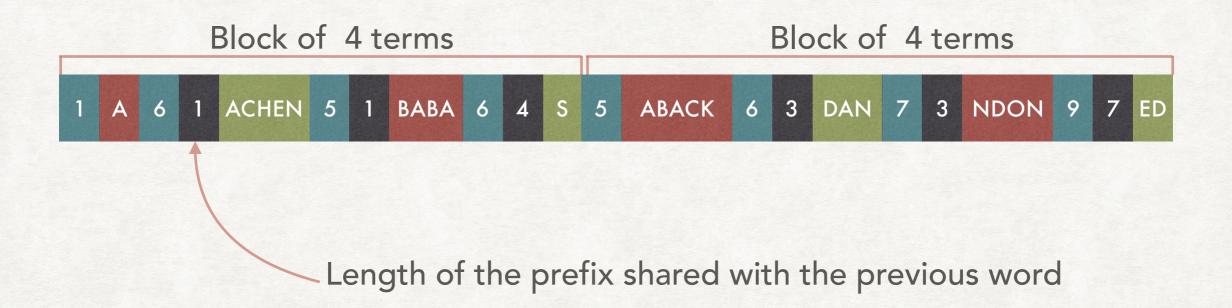
BLOCKED STORAGE



BLOCKED STORAGE ADVANTAGES AND DISADVANTAGES

- Now only one every k entries (the block size) has a pointer.
- The value of the others entries is determined by a linear scan of the block.
- The addition of the length of the string is needed to know where a string end.
- It is a trade-off between space and access time (which is increased due to the linear scanning inside a block).
- We are still not using the fact that the words in the dictionary are ordered alphabetically.

FRONT CODING



In red the prefix shared by each word with the previous one in the block:

A ABACK
AACHEN ABADAN

ABABA ABANDON

ABABAS ABANDONED

This works because the dictionary is ordered alphabetically, thus many words share a prefix

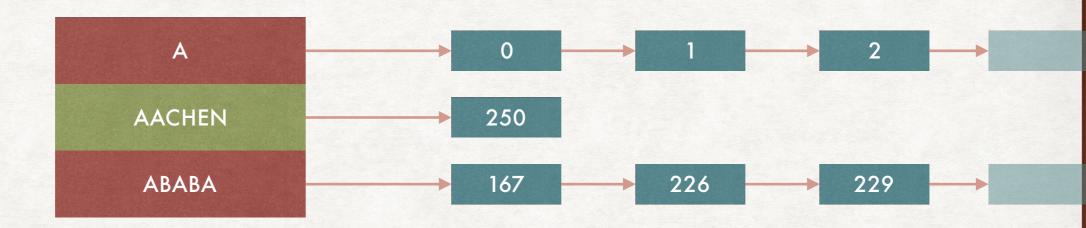
FRONT CODING

ADVANTAGES AND DISADVANTAGES

- Used inside a block reduces the size of the dictionary.
- Uses the fact that the dictionary is ordered.
- Requires, in addition to the linear scanning, a decoding phase.
- As before a trade-off between reducing size and incrementing the cost of retrieving a term.

POSTING FILE: ENCODING DIFFERENCES

AND THE USE OF VARIABLE BYTE CODES



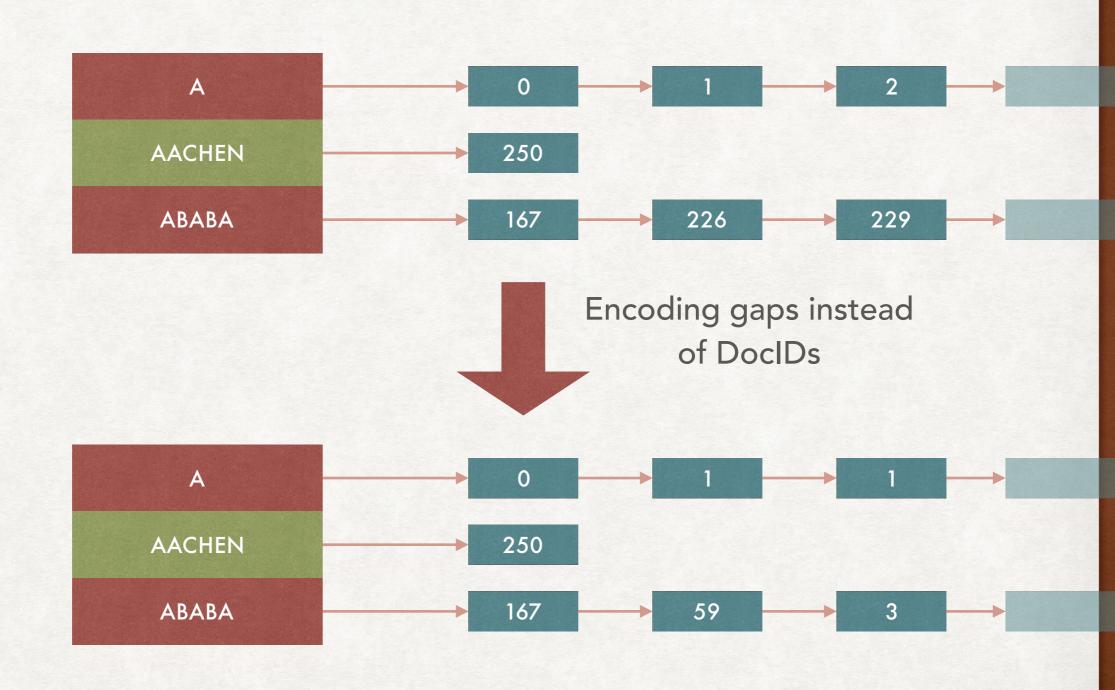
Can we use the fact that a postings list is ordered?

YES

If we have a sequence $(a_0, a_1, a_2, a_3, \ldots)$ with $a_i < a_{i+1}$ for all i, we can also encode it as a sequence of differences of consecutive terms: $(a_0, a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$

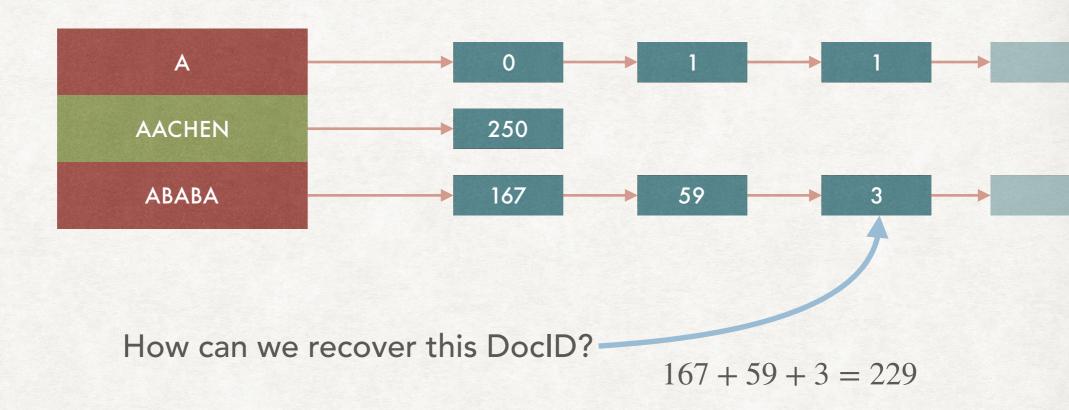
POSTING FILE: ENCODING DIFFERENCES

AND THE USE OF VARIABLE BYTE CODES



POSTING FILE: ENCODING DIFFERENCES

AND THE USE OF VARIABLE BYTE CODES



In general, to recover the k-th DocID in list we sum all the values up to the k-th one:

$$a_0 + \sum_{i=0}^k (a_i - a_{i-1}) = a_0 + a_1 - a_0 + a_2 - a_1 + \dots = a_k$$

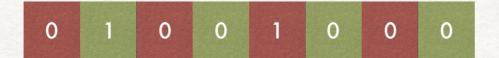
POSTING FILE: ENCODING DIFFERENCES

MOTIVATIONS FOR ENCODING THE GAPS

- The DocID can be arbitrarily large...
- ...but most of the gaps between two DocID will be small
- We can use variable byte codes to use less storage
- Still, recovering a DocID now is more complex.
- Most importantly, access to the list must be sequential: to recover a DocID we need to read all the previous ones.
- But the algorithms for union and intersection access the list sequentially.

VARIABLE BYTE CODES

ENCODE NUMBERS IN A VARIABLE NUMBER OF BYTES



$$2^6 + 2^3 = 72$$

One byte usually encodes $2^8 = 256$ different values

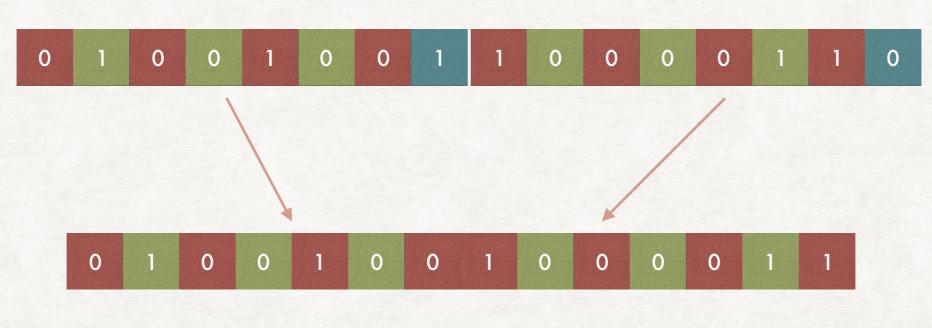
$$0 2^5 + 2^2 = 36$$

We encode $2^7 = 128$ different values in the first seven bits the last bit is a *continuation bit*.

If it is 0 then we have completed reading the number otherwise we must continue to read the next byte

VARIABLE BYTE CODES

ENCODE NUMBERS IN A VARIABLE NUMBER OF BYTES



$2^{1}2 + 2^{9} + 2^{6} + 2^{1}$	$+2^{0} = 4675$
----------------------------------	-----------------

# of bytes	Max value
1	127
2	16383
3	2097152
4	268435456

The most frequent terms will have small gaps in their postings lists.

Hence, we can store the size of most gaps in only a few bytes

UPDATING THE INDEX

STORING POSTINGS

HOW THE POSTINGS LISTS ARE ORGANISED ON DISK

- How are the postings stored on-disk?
- One file per postings list can lead to too many files for a filesystem to manage efficiently
- One single large file containing all the postings can be better (here we select this solution)
- In reality we can have a combination of both, with multiple large files each storing part of the postings

DYNAMIC INDEXING FOR COLLECTIONS THAT CHANGE WITH TIME

- How can we insert new documents (or delete old ones) in an inverted index?
- We can rebuild the index:
 - Not very efficient.
 - Only useful when the number of changes is small.
 - To keep the system online while reindexing we need to keep the old index until new one is ready.

AUXILIARY INDEX A MORE EFFICIENT SOLUTION

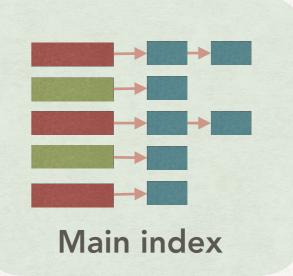
Queries merge the results of the two indices

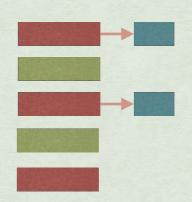
+

Filtering using the invalidation bit vector

Invalidation bit vector:

we save which documents
has been deleted
(one bit for each document)





Auxiliary index: contains only new document

AUXILIARY INDEX

CAN WE DO BETTER?

- When the auxiliary index becomes too big we need to merge it with the main index.
- We can improve the efficiency by keeping $\log_2(T/n)$ auxiliary indices (each one of size double the previous one) where T is the total number for postings and n the size of the smaller auxiliary index.
- This increase the complexity of all algorithms used to answer queries, so it is a trade-off.

LOGARITHMIC MERGING

MAIN IDEAS

INDEX OF SIZE n

MAIN MEMORY

"SLOT" FOR INDEX OF SIZE n

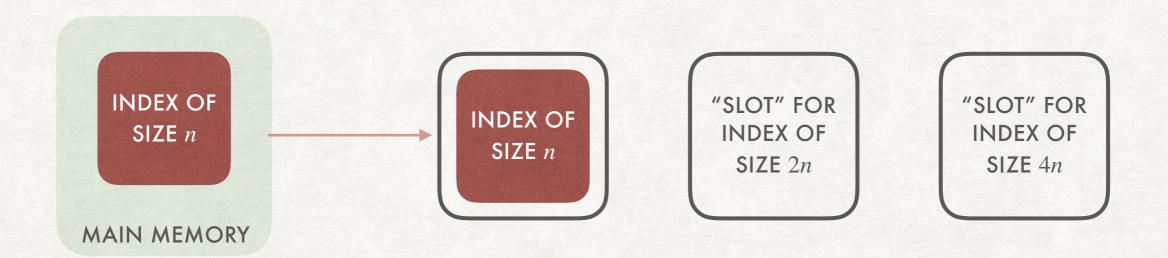
"SLOT" FOR INDEX OF SIZE 2n

"SLOT" FOR INDEX OF SIZE 4n

The smaller index is kept in memory

LOGARITHMIC MERGING

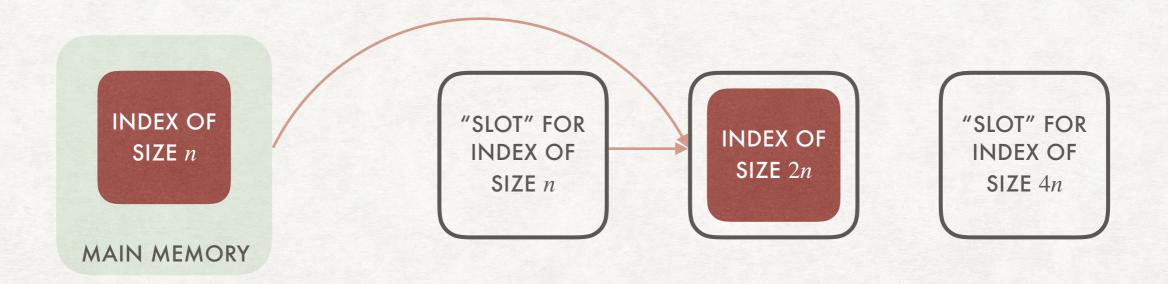
MAIN IDEAS



When full it is copied to disk.

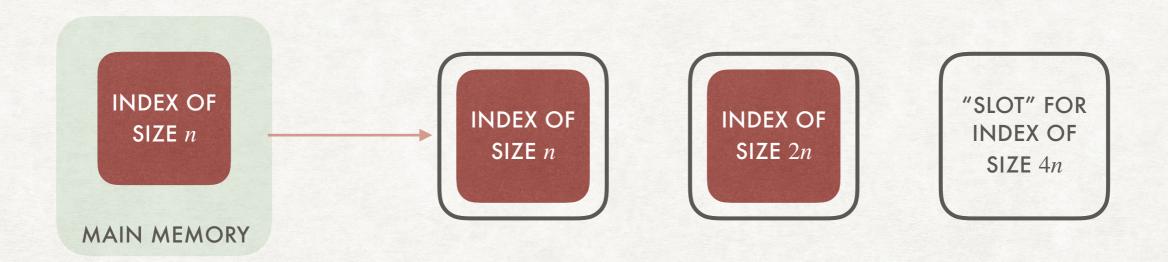
A new (empty) index of size n is created in memory

LOGARITHMIC MERGING MAIN IDEAS



When it is full, since there is already an index of size n saved on disk, it is merged with it to form an index of size 2n. A new (empty) index of size n is created in memory

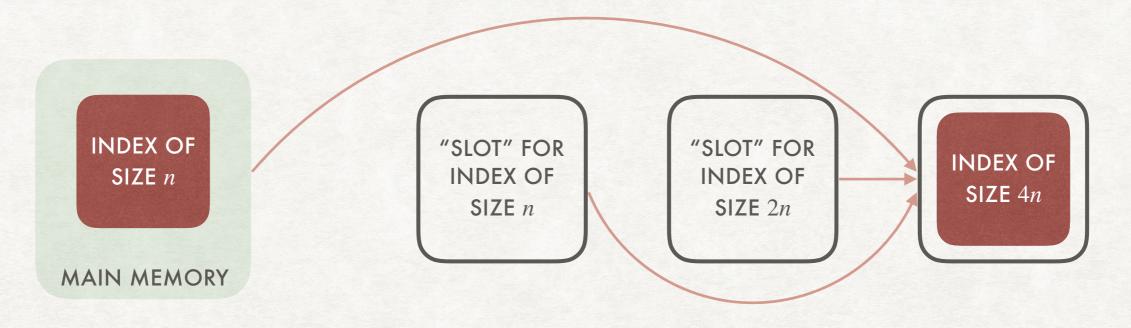
LOGARITHMIC MERGING MAIN IDEAS



When full it is copied to disk. No merge is necessary (the "slot" is free) A new (empty) index of size n is created in memory

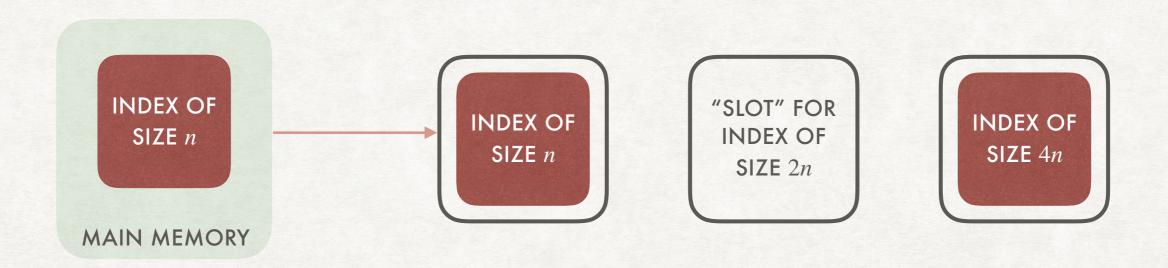
LOGARITHMIC MERGING

MAIN IDEAS



When it is full, since there is already an index of size n saved on disk, it is merged with it to form an index of size 2n. Since there is already an index of size 2n saved on disk, it is merged with it to form an index of size 4n. A new (empty) index of size n is created in memory

LOGARITHMIC MERGING MAIN IDEAS



When full it is copied to disk. No merge is necessary (the "slot" is free) A new (empty) index of size n is created in memory

Most merges are of small indices, even if sometimes a series of more merge operations are necessary.