
Chapter 1

Introduction to Fluid
Mechanics

1.1 Generalities

As regards Mechanics, the states of matter (solid, liquid, gas) are featured
by the way they react to extrenal forces. Fluids, either liquids or gases,
are not capable to resist to shear stresses and to normal, traction stresses,
how small they can be. In other words, a fluid deforms continuously (i.e.,
flows) whenever a shear or normal, traction stress is applied on its boundary.
Notice that fluids are capable to resist to normal, compressive stresses. A
solid, on the contrary, shows a limited, finite deformation under the action
of small stresses.

This rough distinction does not represent substances that have an in-
termediate behaviour between solids and fluids, as, e.g., visco-elastic fluids
(e.g., paint and jelly), but is adequate for our purposes.

Refer to Chapter 1 of this book for an intriguing introduction to Fluid
Mechanics.

1.2 On the continuum assumption

A fluid, or any other substance for that matter, is composed of a large
number of molecules in constant motion and undergoing collisions with each
other. Matter is therefore discontinuous or discrete at microscopic scales.
In principle, it is possible to study the mechanics of a fluid by studying the
motion of the molecules themselves, as is done in kinetic theory or statistical
mechanics. However, we are generally interested in the gross behaviour of
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the fluid, that is, in the average manifestation of the molecular motion. For
example, forces are exerted on the boundaries of a container due to the
constant bombardment of the molecules; the statistical average of this force
per unit area is called pressure, a macroscopic property. So long as we are
not interested in the mechanism of the origin of pressure, we can ignore the
molecular motion and think of pressure as simply force per unit area. It is
thus possible to ignore the discrete molecular structure of matter and replace
it by a continuous distribution, called a continuum. For the continuum or
macroscopic approach to be valid, the size of the flow system (characterized,
for example, by the size of the body around which flow is taking place) must
be much larger than the mean free path of the molecules. For ordinary cases,
however, this is not a great restriction, since the mean free path is usually
very small. For example, the mean free path for standard atmospheric air
is ∼ 5 × 10−8m. In special situations, however, the mean free path of the
molecules can be quite large and the continuum approach breaks down. In
the upper altitudes of the atmosphere, for example, the mean free path of
the molecules may be of the order of a meter, a kinetic theory approach is
necessary for studying the dynamics of these rarefied gases.

According to ?, It is important to appreciate that, once we invoke the
continuum hypothesis to obtain continuous fields, such as ρ(x, t) and U(x, t),
we can leave behind all notions of the discrete molecular nature of the fluid,
and molecular scales cease to be relevant. We can talk meaningfully of “the
density at x, t,” even though (in the microscopic view) in all likelihood there
is no matter at (x, t). Similarly, we can consider differences in properties
over distances smaller than molecular scales: indeed we do so when we define
gradients,

∂ρ

∂x1
≡ lim

h−→0

(
1

h
[ρ (x1 + h, x2, x3, t)− ρ (x1, x2, x3, t)]

)
The Knudsen number (Kn) is a dimensionless number defined as the

ratio of the molecular mean free path length1 λ to a representative physical
length scale of the flow. This length scale could be, for example, the radius of
a body immersed in a fluid. The Knudsen number helps determine whether
the Statistical Mechanics or the Continuum Mechanics perspective of fluid
dynamics should be used to model a given flow configuration. If the Knudsen
number is near or greater than one, the mean free path of a molecule is
comparable to a length scale of the problem, and the continuum assumption
of fluid mechanics is no longer a good approximation.

1In kinetic theory the mean free path of a particle, such as a molecule, is the average
distance the particle travels between collisions with other moving particles.
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An expression for the Knudsen number in terms of thermodynamic vari-
ables can be provided for ideal gases, according to the kinetic theory. If
the velocities of identical gas molecules have a Maxwell distribution, the
following relationship applies for the mean free path (see section 1.3):

λ =
1√

2nσ
(1.1)

where n is the number density of molecules (i.e., the number of molecules
per unit volume) while σ = π (2 r)2 is the effective cross sectional area for
spherical particles with radius r. The specific expression for σ is motivated
by the representation of a molecule as a hard sphere and by the observation
that two identical hard spheres collide whenever their centres get closer than
the sum of their radii, i.e., 2 r. For an ideal gas the state equation is:

p V = N R0 T (1.2)

where N is the number of moles contained in the volume V , T is the ther-
modynamic temperature and R0 = 8314 J/(kmol K) is the universal gas
constant. The number density n and the molar density N/V are related as

N/V = n/Na

where Na is the Avogadro’s number (Na = 6.022 × 1026 molecules/kmol).
Therefore, we end up with:

p = nKB T =⇒ n =
p

KB T
(1.3)

where KB ≡ R0/Na ≈ 1.38× 10−23 J/K is the Boltzmann’s constant. Sub-
stituting n from (1.3) into (1.1) yields:

λ =
KB T√

2σ p
(1.4)

and, consequently, the Knudsen number is

Kn =
λ

l
=

KB T√
2σ p l

(1.5)

which shows that, apart from other considerations, the continuum assump-
tion is better suited to model low -temperature, high-pressure gases.
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Exercise 1.2.1. As an exercise, calculate the mean free path under usual
atmospheric conditions,

p = 100 kPa, T = 293.15 K

assuming a molecular diameter

d ≈ 0.3× 10−10 m

The Knudsen number can be related to the Mach number and the
Reynolds number in gas flows. The following results of the kinetic theory of
gases are used, to this end:

µ =
1

2
ρ c λ

c =

√
8KB T

πm

 =⇒ λ =
2µ

ρ c
=
µ

ρ

√
πm

2KB T

where c denotes the molecular mean velocity from Maxwell’s distribution
while m denotes the molecular mass, M = Nam. The knudsen number is
easily expressed as:

Kn =
µ

ρ l

√
πm

2KB T
(1.6)

The Mach number is defined as:

Ma =
U∞
cs

(1.7)

where, for an ideal gas,

cs =

√
γ
R0

M
T

The Reynolds number is defined as

Re =
ρU∞ l

µ
(1.8)

Thus:

Kn =
Ma

Re

√
π γ

2
(1.9)
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which shows that the continuum assumption is better suited to deal with
slow, subsonic flows. Indeed, shock fronts may develop in supersonic (Ma >
1) or hypersonic (Ma > 5) flows: within shock fronts the flow variables
experience and abrupt change over a distance of few mean free paths, with
little hope to apply the continuum assumption.

Example 1.2.2. Let us consider for instance the flow over an airliner’s
wing, with chord length l = 4m (at a given wing section). Let us assume
that the aeroplane is flying at Ma = 0.88. The kinematic viscosity of air (at
250K) is 1.132 × 10−5Pa s. The sound speed through air at 250K is given
approximately by

cs = 331.4 + 0.6 (T − 273.15) [m/s]

yielding cs = 317.28m/s at T = 250K. This, in turn, yields U∞ = Ma cs =
279.20m/s. Thus:

Ma

Re
=

ν

cs l
= 8.9× 10−9

leading to (γ ≈ 1.4 for air):

Kn =

√
π γ

2

Ma

Re
≈ 1.3× 10−8 (1.10)

This shows that the airflow around an airliner has a very low Knudsen
number, making it firmly in the realm of continuum mechanics.

It is commonly believed that Kn > 1 is a suitable criterion for distin-
guishing molecular flow from continuum flow. Nevertheless, this inequality
has to be considered just as a rule of thumb, as the actual value of the
Knudsen number depends on the length scale l.

Let us reconsider the example above, in view of the fact that the chord
length is not the only relevant length scale for the considered flow. Another
pertinent length scale is the depth δv of the boundary layer, the region
close to a solid surface where viscous and inertial effects are in approximate
balance. Prandtl’s equations for incompressible boundary layer flow over
a flat plane are a simplification of the full set of Navier-Stokes equations,
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owing to the very small thickness of the boundary layer at high Reynolds
number:

∂u

∂x
+
∂v

∂y
= 0 (1.11)

u
∂u

∂x
+ v

∂u

∂y
+

1

ρ

dp∞
dy
− ν ∂

2u

∂y2
= 0 (1.12)

Prandtl’s assumption implies:

x/δv � 1; y/δv ∼ 1

From the continuity equation:

u∞
x
∼ v

δv

Equating the orders of magnitude of inertial and viscous forces within the
b.l. yields:

u2
∞
x

+
u∞ δv
x

u∞
δv
∼ ν u∞

δ2
v

The following important result is easily derived:

δv
x
∼ 1√

Rex
(1.13)

The Knudsen number for an incompressible fluid is derived as:

Kn =
λ

δv
=

v

δv
√

2 Na σ

where v denotes the molar specific volume of the fluid,

v =
M

ρ

with M the molar mass of the liquid. Then, using (1.13),

Kn =
λ

δv
=

√
RexM/ρ

x
√

2 Na σ
(1.14)

The continuum assumption holds within the boundary layer as long as
λ/δv � 1, which is the case for most of the flows encountered in engineering
applications. Nevertheless, as for Example 1.2.2, the Knudsen number based
on the boundary-layer thickness turns out to be of the order of 0.02, which
may be considered small, yet not negligibly small.
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1.3 Intuitive derivation of λ

Equation (1.1) may be derived following rather intuitive arguments. Let’s
first consider a stationary molecule, hit by other molecules. We refer to
this molecule as target. All molecules positioned at time t = 0 within a
cylindrical region of volume

σ v t

are going to hit the target within the time interval [0, t], where v denotes
the mean molecular velocity. Thus, there will be

nσ v t (1.15)

collisions with the target within the time interval [0, t]. On average, the
path between two successive collisions can be estimated as

λ =
distance traveled

nr. of collisions

=
v t

n σ v t

=
1

nσ

(1.16)

The problem with this derivation is that the target is assumed stationary,
while it really moves with mean velocity v. What the target molecule sees
is actually the relative velocity of the incoming molecules, not their absolute
velocity. Thus, the mean relative velocity vrel must be substituted to the
mean velocity v in equation (1.15). This relative velocity may be estimated
as follows:

vrel = v1 − v2

Thus:

vrel =
√

(v1 − v2) · (v1 − v2)

=
√
v1 · v1 − 2v1 · v2 + v2 · v2

Since v1 and v2 are random and uncorrelated,

v1 · v2 = 0

yielding

vrel =
√
v1 · v1 + v2 · v2
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Since the same average velocity would be associated with each molecule, this
becomes

vrel = v
√

2

yielding, once substituted in (1.16):

λ =
1√

2nσ
(1.17)



Chapter 2

Hydrostatics

Let’s consider the simpler case of incompressible fluids, i.e., fluids with a
constant density ρ. By definition, a fluid at rest can not sustain shear- and
traction-stresses. Only compressive stresses are allowed. Such compressive
stress is named pressure, p.

Using Cauchy’s tetrahedron (figure 2.1) it is easily shown that pressure
is a scalar. In other words, at a given point in a fluid at rest, pressure is
independent of orientation.

Figure 2.1: Cauchy’s tetrahedron.

The force-balance equation for a generic region Ω within a fluid at rest
is:

−
∫
∂Ω

pndS +

∫
Ω

ρ g dV = 0 (2.1)

9
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Using Gauss’ divergence theorem yields:

−
∫
Ω

∇p dV +

∫
Ω

ρ g dV = 0 (2.2)

or, equivalently,

∇p = ρ g (2.3)

Thus, in a fluid at rest, a pressure variation exists only along the vertical
direction, with pressure increasing downwards (Pascal’s law).

2.1 Simple applications

2.1.1 Free surface of a liquid in a rotating, cylindrical tank

Make reference to figure 2.2.

Figure 2.2: Liquid in a rotating tank.

A generic fluid element, of volume dV , is in equilibrium under the action
of three forces:
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1. Weight:

ρ g dV

2. Inertia (centrifugal) force:

ρΩ2 r dV

3. Pressure force from surrounding fluid:

−∇p dV

Thus, the equilibrium condition yields:

∇p = ρ g + ρΩ2 r

Pressure is uniform on the free surface, as it equals the atmospheric pressure.
Thus, ∇p is orthogonal to the free surface. Let’s consider the parametric
form of the intersection curve between the free surface and a radial plane:

r = r

z = z(r)

A tangent vector to the curve is:

τ = r̂ +
dz

dr
k̂

Thus:

∇p · τ = 0 =⇒ ρΩ2 r − ρ g dz

dr
= 0

which, in turn, yields:

dz

dr
=

Ω2 r

g

The free surface is a paraboloid of equation:

z(r)− z0 =
Ω2 r2

2 g
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The value of z0 results from mass conservation. Let’s consider a cylindri-
cal tank with circular cross-section and denote by H the height of the liquid
in the tank at rest, before rotation is initiated. Mass conservation dictates:

π r2
0 H =

2π∫
0

r0∫
0

z(r)∫
0

r dz dr dϑ

Integrating and solving for z0 yields:

z0 = H − Ω2 r2
0

4 g

2.1.2 Measurement principle and dynamic behaviour of a U-
tube manometer

A U-tube manometer (figure 2.3) is used to measure the pressure of flu-
ids contained within tanks or flowing through pipes. The tube’s diameter
must be large enough to allow neglecting capillarity effects. Recalling Pas-
cal’s principle, we know that the hydrostatic pressure within a homogeneous
liquid is uniform on horizontal planes (in gravitational field). Thus:

pA = patm + ρ2 g∆z − ρ1 g (zA − z1) (2.4)

Whenever the pressurized fluid is much lighter than the manometric fluid
(e.g., air is the pressurized fluid, mercury is the manometric fluid) the for-
mula above may be simplified as

pA = patm + ρ2 g∆z (2.5)

Whenever a U-tube manometer is connected to a positive-pressure source,
as a pressurized tank, the manometric liquid column is impulsively acceler-
ated and, due to its inertia and weak friction resistance, oscillates around its
equilibrium position. Let’s support this intuition by devising a physical, dy-
namic model for the manometer. Using the mechanical energy conservation
theorem yields:

d

dt
(K + U) =

·
W

K =
1

2
mv2

U = (ρ a z) g z



2.1. SIMPLE APPLICATIONS 13

Figure 2.3: Sketch of a U-tube manometer.

·
W= (pA − patm) a v − τw P l v

where K and U denote the kinetic and potential energy of the liquid column,

respectively.
·
W denotes the work rate of other forces (pressure forces and

viscous, wall shear-stress). The mass of the liquid column, m, is given by

m = ρ a l

where a is the cross-section’s area of the tube and l is the length of the
liquid column. z denotes the z-displacement of the free-surface of the liquid
column, exposed to atmospheric pressure. The velocity of the liquid column

is v ≡ ·z. The wall shear-stress τw depends linearly on v, under laminar flow
conditions,

τw ≡ c v; c ≥ 0

Substituting and rearranging yields:

d2z

dτ2
+ 2 ξ

dz

dτ
+ z = f0 (2.6)

where the non-dimensional time τ was introduced, τ ≡ ωn t, with ωn ≡√
2 g/l natural angular frequency of the system. The dissipation coefficient
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ξ is defined as

ξ ≡ 1

2

c P

ρ aωn

and the pressure-force term is represented by f0,

f0 ≡
pA − patm

2 ρ g

Equation (2.6) represents a second-order dynamical system. It is well known
that, according to the magnitude of the dissipation coefficient ξ, the system
may either oscillate, with progressively reduced amplitude, or tend expo-
nentially towards its final equilibrium state.



Chapter 3

Hydrostatic forces on
submerged surfaces

15
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3.1 Brief overview on equivalent systems of ap-
plied vectors

Let us denote by {fh; Ph} a set of applied vectors. Vector fh is applied on
point Ph. In the followings we are going to refer to these vectors as forces,
as, in practice, this is the most common case in Mechanics.

The resultant force vector R is defined as:

R ≡
∑
h

fh (3.1)

The resultant torque vector w.r.t. a pole A is defined as

MA ≡
∑
h

~AP h × fh (3.2)

Two systems of applied vectors are said to be equivalent if:

1. They have the same resultant.

2. They have the same resultant torque w.r.t. any pole.

Theorem 3.1.1. (Torque transposition)

MB = ~BA×R+MA (3.3)

Proof.

MB =
∑
h

~BPh × fh

=
∑
h

~BA× fh +
∑
h

~APh × fh

= ~BA×R+MA

Remark 3.1.2. The torque transposition theorem yields the consequence
that if two systems of applied forces have the same resultant force R and
the same resultant torque w.r.t. a specific pole, then they have the same
resultant torque w.r.t any pole and, therefore, are equivalent.

Two equivalent systems of forces applied to a rigid body cause the same
motion. Thus, complex systems of forces can be conveniently reduced to
simpler, equivalent ones without affecting the motion of rigid bodies, they
are applied onto. In the following we show how a three-dimensional system
of forces can be reduced to its resultant force vector and a torque of minimum
magnitude.
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3.1.1 Central axis

The invariant trinomial T is defined as:

T ≡MA ·R (3.4)

This definition is well-posed as, using theorem 3.1.1, it can be shown that
the choice of the pole is immaterial. This, in turn, implies that MA depends
on the pole A but its projection on R does not.

Let:

T = MAR cosϑ

where ϑ is the angle between MA and R. Assuming R 6= 0, the minimum
resultant torque is obtained whenever A is chosen such that MA and R are
either parallel or anti-parallel, yielding:

Mmin =
|T |
R

(3.5)

We aim to find a point C, if any, yielding ‖MC‖2 = Mmin. To this end,
consider the coordinate system sketched in figure 3.1. In this particular
coordinate system we have:

R = Rk; MA = My j +Mz k

where the definition of the normal units vectors i, j, k is provided in fig-
ure 3.1. We look for a point C ≡ (x, y, z) such that MC is parallel or
anti-parallel to R. According to the transposition theorem:

MC = MA + ~CA×R = My j +Mz k + (x j − y i) R

Then, consider:

MC ‖ R =⇒

 My + xR = 0

y R = 0

yielding the position of point C as:

C =

(
−My

R
, 0, z

)
where z is arbitrary. In other words:

C = A− My

R
i+ z k (3.6)
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This is the equation of the central axis. The resultant torque w.r.t. to any
pole C chosen on the central axis is

MC =
T

R
k

Figure 3.1: Coordinate system used to calculate the location of the central
axis.

Remark 3.1.3. For planar systems, where all force vectors lie in a plane
π,

• The resultant force lies on π.
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• The resultant torque is orthogonal to π.

• T = 0 and Mmin = 0.

• The central axis lies on π.

3.2 Pressure force on immersed surfaces

In an hydrostatic pressure field of an incompressible fluid, the pressure varies
linearly with depth:

p = p0 + ρ g · (x− x0)

where x0 belongs to the free-surface, where p ≡ p0.
Let us consider a closed surface ∂Ω bounding a solid body Ω of volume

V . The resultant pressure force on ∂Ω is:

Rp =

∫
∂Ω

(−pn) dS = −
∫
Ω

∇p dV (3.7)

Substituting the hydrostatic pressure field yields:

Rp = −ρ g V (3.8)

Rp is the buoyancy force in an hydrostatic field, as stated by Archimede’s
principle.

Let us compute the resultant torque of the pressure forces acting on ∂Ω,
w.r.t. a generic pole A1

MA = −
∫
∂Ω

x× (pn) dS =

∫
Ω

∇× (px) dV (3.9)

1The vector identity used in (3.9) can be easily proved - working in Cartesian coor-
dinates - using Einstein’s summation convection and the properties of the permutation
tensor.

∇× (px) = ∇p× x + p ∇× x︸ ︷︷ ︸
≡0∫

Ω

∇× f dV = ei

∫
Ω

∂

xj
(ei j kfk) dV

=

∫
∂Ω

ei ei j kfk nj dS = −
∫
∂Ω

f × n dS

Taking f ≡ px makes the deal.
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Assuming that g is oriented along the positive z direction, so that p = p(z),
it turns out that MA lies on the (x, y) plane:

MA = (ρ g V ) [xG j − yG i]

whereG denotes the centroid of the immersed volume. Therefore, the system
of hydrostatic pressure forces acting on ∂Ω does not tend to spin the body
about a vertical axis.

3.3 Area coordinates for planar triangles

Area coordinates for planar triangles: short intro

3.3.1 Using MATLAB to verify the mapping between Carte-
sian and area cooridnates

The symbolic toolbox by MATLAB is rather useful to verify that, for a
linear triangle,

x = L1 x1 + L2 x2 + L3 x3

Indeed, try this:
>> syms x y x1 x2 x3 y1 y2 y3

>> L1 = det([x y 1;x2 y2 1;x3 y3 1])/det([x1 y1 1;x2 y2 1;x3 y3 1]);

>> L2 = det([x y 1;x3 y3 1;x1 y1 1])/det([x1 y1 1;x2 y2 1;x3 y3 1]);

>> L3 = det([x y 1;x1 y1 1;x2 y2 1])/det([x1 y1 1;x2 y2 1;x3 y3 1]);

>> simplify(L1)

ans =

(x*y2 - x2*y - x*y3 + x3*y + x2*y3 - x3*y2)/(x1*y2 - x2*y1 - x1*y3 + x3*y1 + x2*y3 - x3*y2)

>> simplify(L1*x1+L2*x2+L3*x3)

ans =

x

>> simplify(L1*y1+L2*y2+L3*y3)

ans =

y

3.4 Numerical calculation of the resultant force
and resultant torque on an immersed, trian-
gulated surface

The surface is represented by a tessellation of triangular facets, sharing
common edges. The geometrical characteristics of a triangulated surface
are contained in STL files, that have the following general format:
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solid tetrahedron

facet normal 0 1 0

outer loop

vertex 0 0 0

vertex 1 1 0

vertex 1 0 0

endloop

endfacet

facet normal 0 1 0

outer loop

vertex 1 1 0

vertex 1 1 1

vertex 1 0 0

endloop

endfacet

facet normal 0 1 0

outer loop

vertex 0 0 0

vertex 1 0 0

vertex 1 1 1

endloop

endfacet

facet normal 0 1 0

outer loop

vertex 1 1 1

vertex 1 1 0

vertex 0 0 0

endloop

endfacet

endsolid tetrahedron

Thus, an STL file contains information about:

• The coordinates of all vertices of each facet in the tessellation.

• The normal vector to any facet in the tessellation.

Notice that indices are repeated, as they are listed as many times as are
the triangles containing them.

There exist several tools to visualize, check and repair STL files, as, e.g.,

• MeshLab

http://www.meshlab.net/
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• ViewStl

The resultant pressure-force acting on a triangular facet can be easily
computed as follows:

Rp =

∫
4

−pndS = −n
∫
4

p dS

When p is a hydrostatic pressure field:

Rp = −n
∫
4

[p0 + ρ g · (x− x0)] dS

x′ ≡ x− x0

Rp = −n
∫
4

[
p0 + ρ g · x′

]
dS = −nS

[
p0 + ρ g · x′G

]
where x′G denotes the position of the centroid of the triangular surface (in
the translated coordinate system):

x′G ≡
1

S

∫
4

x′ dS

For a linear triangle, the position of the centroid is obtained as arithmetic
average of the positions of the vertices2:

xG =
x1 + x2 + x3

3
(3.10)

Using the surface area vector S ≡ S n yields:

Rp = −S pG (3.11)

where pG is the hydrostatic pressure at the depth of the centroid.3

2To prove this assert, calculate xG from the definition of centroid, carrying out the
quadrature in the transformed space (L1, L2).

3The mid-point quadrature rule is exact for any linear functions f(x):∫
Ω
f dΩ =

∫
Ω
f(G) + ∇f |G · (x−G) dΩ

= f(G) Ω + ∇f |G ·
∫

Ω

(x−G) dΩ︸ ︷︷ ︸
=0

= f(G) Ω

https://www.viewstl.com/


3.4. HYDROSTATIC PRESSURE ON TRIANGULATED SURFACES 23

The torque acting on the triangular facet is:

MA =

∫
4

(x−A)× (−pn) dS

x′′ ≡ x−A

MA =

∫
4

x′′ × (−pn) dS

= n×
∫
4

px′′ dS

(3.12)

Let L1(x′′), L2(x′′), L3(x′′) denote the area-coordinates of a linear triangle.
Both p and x′′ can be interpolated at any point within the triangle using
area coordinates as:

p(x′′) =
3∑
j=1

Lj(x
′′) p(x′′j ); x′′ =

3∑
j=1

Lj(x
′′)x′′j (3.13)

Substituting into (3.12) yields, using Einstein’s summation convention:

MA = n×
∫
4

pj Lj(x
′′)x′′k Lk(x

′′) dS

= n×

pj x′′k ∫
4

Lj(x
′′)Lk(x

′′) dS

 (3.14)

The following identity holds for linear triangles:∫
4

La1 L
b
2 L

c
3 dS = 2S

a! b! c!

(a+ b+ c+ 2)!
(3.15)

where S is the triangle’s area (it can be computed in several ways, e.g., as
half of the modulus of the cross product of two edges). It can be easily
recognized that the following simpler expression holds:∫

4

Lj(x
′′)Lk(x

′′) dS = (1 + δj k)
S

12
(3.16)
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The resulting expression for MA is (again, using Einstein’s summation con-
vention):

MA = S ×
∑

j,k=1,2,3

[
pj x

′′
k (1 + δj k)

S

12

]
(3.17)

Notice that (3.12) is a general, exact expression for the resultant torque
of a pressure field acting on the triangle. As long as the interpolation (3.13)
is used, equation (3.17) is only approximate. Being the hydrostatic pressure
field linear in the coordinates, the interpolation (3.13) is exact and so is
(3.17).

A MATLAB code implementing the algorithm outlined in this section
can be found in hydrostatics.m. This figure shows the central axis calculated
for a triangulated geometry of a Porsche car. The color pattern corresponds
to the absolute pressure distribution on the car, in kPa.

Homework 3.4.1. In this Homework the Student is requested to:

1. Implement his own version of the algorithm for the calculation of the
action of a hydrostatic pressure field on an immersed surface.

2. Validate the aforementioned implementation calculating the resultant
force and resultant torque for a submerged, planar bulkhead, inclined
at 30◦ w.r.t. the vertical. Assume that:

(a) The bulkhead’s dimensions are W = 10m (horizontal) and H =
5m (sub-vertical).

(b) Fluid’s density: ρ = 1000kg/m3.

(c) Free-surface pressure: p0 = 1bar.

(d) g = 9.81m/s2.

3. Assume the bulkhead must be kept in position by a horizontal force,
applied along its lower, horizontal edge. Provide the intensity of this
force in kN. Consider the configuration shown in figure 3.2.

./LinkedFiles/hydrostatics.m
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Figure 3.2: Sketch of the bulkhead.
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