Chimica Bioorganica

≻2 parti: catalisi e meccanismi in chimica organica i meccanismi delle reazioni enzimatiche

- ≻ 6 crediti: 48 ore
- \succ esame orale
- ➤ orario: lunedì 9-11

martedì 12-13

mercoledì 9-11

 Structure and Reactivity in Organic Chemistry H. Maskill, Oxford Science Pub., 1999
 Introduction to Enzyme and Coenzyme Chemistry T.D.H. Bugg, Wiley, 2012 (3rd ed.)

Introduction

Kinetics and Thermodynamics of Catalysis

Catalysis – Kinetics

Rate acceleration: $v_{cat}/v_0 = (k_{cat}/k_0)[C]$

depends on: catalytic efficiency catalyst concentration

Catalysis – Kinetics

Catalyzed and uncatalyzed reactions run in parallel

Catalysis – Thermodynamics

A $\Delta\Delta$ G[‡] of 5.7 kJ/mol (1/2 of one hydrogen bond) gives a 10-fold rate enhancement.

 $A\Delta\Delta G^{\ddagger}$ of 34 kJ/mol (small fraction of a covalent bond) gives a 10⁶-fold rate enhancement

Catalysis – Thermodynamics

Michaelis-Menten Equation

Catalytic Efficiency: k_{cat}

Catalytic Perfection: k_{cat}/K_M

Enzyme	Substrate	Reaction Type	k _{cat} /K _M (M ⁻¹ s ⁻¹)	Rate-det. step
superoxide dismutase	superoxide	redox	7 x 10 ⁹	diffusion
fumarase	fumarate	hydration	1 x 10 ⁹	diffusion
triose phosphate isomerase	glyceraldehyde 3-phosphate	enolization	4 x 10 ⁸	diffusion
b-lactamase	penicillin	lactam hydrolysis	1 x 10 ⁸	partly diff.
OMP decarboxylas	orotidine 5'- phosphate	decarboxyl ation	6 x 10 ⁷	not diff.
cytochrome c peroxidase	hydrogen peroxide	redox	5 x 10 ⁷	not diff.
HIV protease	peptide	amide hydrolysis	2 x 10 ⁷	not diff.

Catalytic Efficiency

ODC: Orotidine 5'-phosphate decarboxylase

 $k_{cat}/k_0 = 10^{17}$ $t_{1/2} = 78.000.000$ years $\longrightarrow 0.018$ s $K_{TS} = 10^{23}$

Enzymes are wonderful catalysts

>Catalytic Efficiency $k_{cat}/k_0 = 10^{6}-10^{20}$

≻Specificity
≻Selectivity
✓ binding

Structure and Properties of Amino Acids, Peptides, Proteins and Enzymes

Aminoacids

Enantiomers = non superimposable mirror images

Stereochemical Notation

Non Proteinogenic a.a.

Non proteinogenic a.a. are occasionally found in proteins

Post-traslational Modifications

C,N-terminal

Side chains

Post-traslational Modifications

Peptides

The Peptide Bond

Cis-Trans Peptide Bonds

Conformations of Peptides

Conformations of Peptides

Secondary Structure of Proteins

a-helix

β-sheet

Secondary Structure of Proteins

a-helix

β-sheet

Conformations of Peptides

β**-turn**

Secondary Structure of Proteins

Antiparallel β Sheets

Helices and Parallel β Sheets

Chou-Fasman Rule

α -helix

Glu Ala Leu His Met Gln Trp Val Phe	Lys lle Asp Thr Ser Arg Cys	Asn Tyr Pro Gly
<pre>promote (helicogenic)</pre>	neutral	inhibit

4 helicogenic aa in a sequence of 6 initiate a α -helix

β -sheet

Met Val Ile Cys Tyr Phe Gln Leu Thr Trp	Ala Arg Gly Asp	Lys Ser His Asn Pro Glu				
promote	neutral	inhibit				
3 promoters in a sequence of 5 initiate a β sheet.						

4 inhibitors terminate a $\boldsymbol{\beta}$ sheet

Tertiary Structure

Collagen: LINEAR

Haemoglobin: GLOBULAR

Hiv-protease complexed with a substrate

Catalytic Efficiency

Binding and Catalysis

The activity of enzymes depends on:

their ability to bind a substrate (binding)

their ability to promote its transformations (catalysis)

Specificity and selectivity

Specificity of Serine Proteases

Chymotrypsin:	Phe-Xaa Tyr-Xaa Trp-Xaa
Trypsin:	Lys-Xaa Arg-Xaa
Elastase:	Gly-Xaa Ala-Xaa
Specificity and selectivity

Acylase is **stereospecific**: it recognizes (*S*)-acyl-a.a. but not *R* isomers.

Specificity and selectivity

Alcohol dehydrogenase is stereospecific: only the (S) alcohol is oxidized

Alcohol dehydrogenase is stereoselective: only the (S) alcohol is formed

Specificity, Selectivity and Binding

alcohol dehydrogenase

The Lock and Key Principle (Emil Fischer 1894)

Lock and key are complementary

enzyme

Specific binding

Enzyme-substrate complex

Flexible binding. Induced Fit

Non-Covalent Binding Interactions

Electrostatic Interactions (< 350 kJ/mol)

- Ion-Ion
- Ion-Dipole
- Dipole-Dipole

Hydrogen Bonding (< 160 kJ/mol)

π-Bonds (< 80 kJ/mol)

- Cation-π
- π - π Stacking

Van der Waals (< 10 kJ/mol)

- Dipole-Induced Dipole
- London Forces
- The Hydrophobic Effect

Electrostatic Interactions (up to 350 kJ/mol)

100-350 kJ/mol 1/r²

Electrostatic Interactions in Proteins

Ion-Dipole Interactions (50-200 kJ/mol)

18 Crown 6

Ion-Dipole Interactions in Proteins

Potassium channel from *Streptomycin Lividans*

Noskov S.Y. Biophys. Chem. 2006

Dipole-Dipole Interactions (5-50 kJ/mol)

Dipole-Dipole Interactions

Hydrogen Bond 4-160 kJ/mol

 D = donor: an electronegative atom (in proteins: N, O)
 A = acceptor: an atom with non-bonded electron pairs (in proteins: N, O)

Hydrogen Bonds

in bifurcated systems

Hydrogen Bonds in Proteins

Hydrogen Bonds in Proteins

Also amide groups in the *backbone* can form hydrogen bonds with the substrate, if they are not engaged in hydrogen bonds internal to the protein (α -helix, β -sheet).

Hydrogen Bond Motifs

Dipole-Induced Dipole Interactions

London Forces (< 5 kJ/mol)

London Forces (Hydrophobic Interactions)

Squalene oxide cyclase $K_M = 250 \ \mu M$

Lysozyme

Chorismate mutase $K_M = 2 \text{ mM}$

Ribonuclease A

π-π-Stacking
(< 50 kJ/mol)</pre>

π - π -Stacking

59

π - π -Stacking in Proteins

Calcium ATPase (PDB: 1T5S)

Cation-π Interactions (5-80 kJ/mol)

Cation-π Interactions in Proteins

Catalysis

Acid Base Proton transfer

- Electrophilic
- Nucleophilic

Acid-Base Properties

Nucleophiles

Proteases, lipases, esterases

Posphotransferases

Proteases

Epoxide hydrolases, haloalkane dehalogenases

Aldolases, acetoacetate decarboxylase

Phosphotransferases, Nucleases

DNA topoisomerase

Catalytic Efficiency

- multifunctional catalysis
- proximity
- transition state complementarity
- substrate distorsion

Bifunctional Catalysis: Mutarotation

acid-catalyzed:

base-catalyzed:

Bifunctional Catalysis: Mutarotation

kPhOH

k⊳y

 k_{PyOH} = 7000 x (k_{Py} + k_{PhOH})

Bifunctional Catalysis: Ketosteroid Isomerase

© 2008 John Wiley & Sons, Inc. All rights reserved

Catalytic Efficiency

- multifunctional catalysis
- > proximity
- transition state complementarity
- substrate distorsion

Intramolecular Catalysis

$$\Delta H^{\#}_{intra} \cong \Delta H^{\#}_{inter}$$

$$\Delta G^{\#}_{intra} < \Delta G^{\#}_{inter}$$
Intramolecular Catalysis

Intramolecular catalysis $\begin{pmatrix} R \\ l \end{pmatrix} \begin{pmatrix} Cat \\ l \end{pmatrix} = \begin{pmatrix} P \\ l \end{pmatrix}$ Cat Intermolecular catalysis $R \xrightarrow{Cat} P$ $v_{intra} = k_{intra}[R-Cat]$ $[k_{intra}] = s^{-1}$ $v_{inter} = k_{inter}[R][Cat]$ $[k_{inter}] = M^{-1}s^{-1}$ if [R-Cat] = [R] and $v_{intra} = v_{intra}$ kintra = kinter[Cat] then kintra/kinter = [Cat]

Effective Molarity EM = $k_{intra}/k_{inter} > 1$ [EM] = s⁻¹/M⁻¹s⁻¹ = M

Intramolecular Catalysis

EM for Intramolecular Catalysis

Catalytic Efficiency

- multifunctional catalysis
- proximity
- transition state complementarity
- ➤ substrate distorsion

Transition State Complementarity

Transition State Complementarity

substrate complementary

transition state complementary

Substrate Destabilization

substrate complementary

transition state complementary

substrate distorsion

Substrate Destabilization

Distorted amide:

- geometrically similar to the TS
- loss of amide resonance ≈ 20 Kcal/mol

Catalysis

Acid Base Proton transfer

- Electrophilic
- Nucleophilic

Specific Acid-Base Catalysis

The catalyst is H₃O⁺ or OH⁻

$$R \longrightarrow P \quad v_0 = k_0[R]$$

$$R \xrightarrow{H_3O^+} P \quad v_H = k_H[R][H_3O^+]$$

$$R \xrightarrow{OH^-} P \quad v_{OH} = k_{OH}[R][OH^-]$$

$$= k_0[R] + k_H[R][H_3O^+] + k_{OH}[R][OH^-]$$

$$= (k_0 + k_H[H_3O^+] + k_{OH}[OH^-])[R]$$

$$k_{obs}$$
(at constant pH):
$$v = k_{obs}[R]$$

$$k_{obs} = k_0 + k_H[H_3O^+] + k_{OH}K_w/[H_3O^+]$$

[H₃O⁺]

pH Profile

pH Profiles

Acid-Catalyzed Hydrolysis of Esters

A_{ac}2 Mechanism

Slow formation of T⁺: $v = k_2 [EH^+] = k_2 K_1 [E][H_3O^+] = k_{H,obs}[E][H_3O^+]$

Slow breakdown of T⁺: $v = k_3[T^+] = k_3K_2'[EH^+] = k_3K_2'K_1'[E][H_3O^+] = k_{H,obs}[E][H_3O^+]$

Rate Determining Step

1. Sterically hindered esters

Consistent with slow associative step

Rate Determining Step

2. Isotopic labelling

Energy Profile

B_{ac}2 Mechanism

pH Profile

Mechanisms for Ester Hydrolysis

Catalysis	Bond cleavage	Molecularity
A = Acid	AC = O-acyl	1 = monomol.
B = Base	AL = O-alkyl	2 = bimol.

Acid-Catalyzed Ester Hydrolysis

Base-Catalyzed Ester Hydrolysis

Oxime Formation

Oxime Formation

Oxime Formation

General Acid-Base Catalysis

The catalyst is any species that can transfer a proton:

H ₃ O+	strong acid
HA	weaker acid (es. AcOH)

- OH- strong base
- B weaker base (es. AcO⁻)

 $v = v_0 + v_H + v_{AH} + v_{OH} + v_B = k_0[R] + k_H[R][H_3O^+] + k_{HA}[R][HA] + k_{OH}[R][OH^-] + k_B[R][B]$ = [R](k_0+k_H[H_3O^+] + k_{HA}[HA] + k_{OH}[OH^-] + k_B[B])

at constant pH: $v = k_{obs}[R]$ $k_{obs} = k_0 + k_H[H_3O^+] + k_{OH}[OH^-] + k_{HA}[HA] + k_B[B]$

General Acid-Base Catalysis

$$v = k_{obs}[R]$$

$$k_{obs} = k_0 + k_H[H_3O^+] + k_{HA}[HA]$$

At constant pH and varying [HA] (buffer):

Kinetic Origin of General and Specific Catalysis

$$R + HA \xrightarrow{k_1} RH^+ + A^-$$

$$RH^+ \xrightarrow{k_2} P + H^+$$

proton transfer is fast (k₂ slow): specific catalysis

proton transfer is **slow** (k₁ slow): **general** catalysis

Kinetic Origin of General and Specific Catalysis

$$R + HA \xrightarrow{k_1} RH^+ + A^-$$

$$RH^+ \xrightarrow{k_2} P + H^+$$

$$v = d[P]/dt = k_2[RH^+]$$

steady state: $d[RH^+]/dt = 0 = k_1[R][HA]-k_1[RH^+][A^-]-k_2[RH^+]$ $k_1[R][HA] = [RH^+](k_1[A^-]+k_2)$ $[RH^+] = \frac{k_1[R][HA]}{(k_1[A^-]+k_2)}$

$$v = \frac{k_1 k_2 [R] [HA]}{(k_{-1} [A^-] + k_2)}$$

Kinetic Origin of General and Specific Catalysis $R + HA \xrightarrow{k_1} RH^+ + A^ RH^{+} \xrightarrow{k_{2}} P + H^{+}$ $\frac{k_1 k_2 [R] [HA]}{(k_{-1} [A^-] + k_2)}$ 2. $k_2 >> k_1[A]$ (k₁ slow) $v = \frac{k_1 k_2 [R] [HA]}{k_2}$ $v = k_1[R][HA]$ general

Kinetic Origin of General and Specific Catalysis

$$R + HA \xrightarrow{k_1} RH^+ + A^-$$

$$RH^+ \xrightarrow{k_2} P + H^+$$

proton transfer is fast (k₂ slow): specific catalysis

proton transfer is slow (k₁ slow): general catalysis

Hydrolysis of Acetals $\stackrel{\text{'RO OR'}}{\xrightarrow{}}_{\text{H}} + H_2O \longrightarrow \stackrel{\text{O}}{\xrightarrow{}}_{\text{R}} + 2 \text{ R'OH } v = k_{obs}[\text{acetal}]$ k_{obs}∦ logkobs k_{obs} [H₃O⁺] pH 14 [AH] 0 $\stackrel{\mathsf{'RO} \quad \mathsf{OR'}}{\underset{\mathsf{R} \quad \mathsf{H}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}{\overset{\mathsf{OR'}}{\overset{\mathsf{OR'}}{\overset{\mathsf{OR'}}{\overset{\mathsf{OR'}}{\overset{\mathsf{OR'''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR'''}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}{\overset{\mathsf{OR''}}}}}{\overset{\mathsf{OR'''}}}}}}}}}}}}}$ R'OH $\longrightarrow \overset{H^+}{\underset{D}{\overset{\vee}}} \overset{OH}{\underset{U}{\overset{\vee}}} \overset{OH^+}{\underset{R}{\overset{\vee}}} \overset{OH^+}{\underset{H}{\overset{\vee}}} \overset{H_2O}{\underset{R}{\overset{\vee}}} \overset{O}{\underset{R}{\overset{\vee}}} \overset{O}{\underset{H}{\overset{\vee}}} + H_3O^+$ **R'OH** MeO OMe MeO OMe MeO OMe H₃C[∕]H H₃C× CH3 k_{rel}. **10**³ 107

α-Halogenation of Carbonyl Compounds

$$\bigcirc + I_2 \longrightarrow OH^- + HI$$

 $v = k_{OH}[OH][acetone]$

General Base Catalysis

The Aldol Reaction

dilute solution $v = k_{OH}[OH-][CH_3CHO]^2$ $k_{OH} = 0,67 \text{ M}^{-2}\text{s}^{-1}$ conc. solution (>10M) v' = k'_{OH}[OH-][CH₃CHO] k'_{OH} = 7 M⁻¹s⁻

The Aldol Reaction

Hydrolysis of Anhydrides: Mechanistic Catalysis

Hydrolysis of Anhydrides: Mechanistic Catalysis

 $v_{obs} = v_{OH} + v_{AcO} = k_1[OH][Ac_2O] + k_1[AcO][Ac_2O] = (k_1[OH] + k_1[AcO])[Ac_2O]$

Proteases

Specificity

Catalytic mechanism

- Serine protease
- Cysteine proteases
- Aspartyl proteases
- Metal proteases

HIV Protease

Aspartyl Proteases

- Two Asp residues in the catalytic site
- The two residue can be on the same chain or on different chains
- Optimum pH is acidic: HIV-PR pH 4-5; pepsin pH ≈ 4 (stomach)

HIV-Protease – Catalytic Mechanism

Tetrahedral Intermediate (hydrated amide)

Brønsted Equation

Is there a relation between K_{HA} and k_{HA} (K_{HB} and k_{HB})?

The Brønsted equation (empirical)

 $\log k_{HA} = \alpha \log K_{HA} + cost.$ $\log k_{B} = -\beta \log K_{BH} + cost.$

 $\log k_{HA} = -\alpha p K_{HA} + \text{cost.} \ (0 \le \alpha \le 1)$

 $\log k_B = \beta p K_B + cost. (0 \le \beta \le 1)$

Brønsted Equation

LFER = Linear Free Energy Relationship

Brønsted Equation

Meaning of the α , β parameters

$$HA + R \xrightarrow{k_{HA}} A^{*} + RH^{*} \frac{\Delta G^{*}}{RT} = \alpha \frac{\Delta G}{RT} + cost$$

$$HA^{*} + R \xrightarrow{k_{HA^{*}}} A^{*} + RH^{*} \frac{\Delta G^{*}}{RT} = \alpha \frac{\Delta G^{*}}{RT} + cost$$

$$G \xrightarrow{AG^{*}} - \frac{\Delta G^{*}}{RT} = \alpha (\Delta G^{*} - \Delta G)$$

$$\Delta G^{*} - \Delta G^{*} = \alpha (\Delta G^{*} - \Delta G)$$

$$\Delta G^{*} - \Delta G^{*} = \alpha (\Delta G^{*} - \Delta G)$$

$$\Delta G^{*} = \alpha \Delta \Delta G$$

$$A^{*} + RH^{*} + A^{*}$$

$$A^{*} + RH^{*} + A^{*} + A^{*} + A^{*}$$

$$A^{*} + RH^{*} + A^{*} +$$

Brønsted Equation Halogenation of Carbonyl Compounds

Brønsted Equation: Levelling of α (β)

Nucleophilic Catalysis

G

q

Aldol Reaction

general base:

specific base: dil. aqueous sol. conc. aqueous sol.

2^{ry} and 1^{ry} amines are more efficient than 3^{ry} amines with the same pKa

Nucleophilic catalysis via enamine:

Benzoin Reaction

Thiamine-Catalyzed Benzoin Reaction

resonance-stabilized ylide

Piruvate Decarboxylase 1QPB

2.6 2.2

His115

Piruvate Decarboxylase 1QPB

Brønsted Equation for Nucleophiles and Leaving Groups

Is there a quantitative relation between nucleophilicity and pKa_{XH}?

 $\log k = \beta_{Nu} p Ka_{XH} + cost$

Is there a quantitative relation between nucleofugality and pKa_{YH} ?

 $\log k = -\beta_{LG}pKa_{YH} + cost$

Brønsted Equation for Nucleophiles

1. Poor nucleophiles

formation of the intermediate is slow: $v = k_1[ArO^-][RCOY]$ $\log k_1 = \beta_1 pK_{ArOH} + cost.$

formation of the intermediate is fast: $v = k_{obs}[ArO^{-}][RCOY] \qquad k_{obs} = k_2k_1/k_{-1}$ $log k_{obs} = \beta_{obs}pK_{ArOH} + cost.$ $\beta_{obs} = \beta_1 - \beta_{-1} + \beta_2$ $> 0 \qquad < 0 \qquad \approx 0$ **Energy Profile**

Ester Hydrolysis Catalyzed by Tertiary Amines

pKa _{R3NH}+

Ester Hydrolysis Catalyzed by Tertiary Amines

Chymotrypsin

Endoprotease

Specificity: Phe-Xaa, Tyr-Xaa, Trp-Xaa

Mechanism: serine 195 is essential

Hydrophobic pocket

Chymotrypsin

Chymotrypsin: The Catalytic Triad

Chymotripsin: Catalytic Mechanism

Acyl Enzyme

Serine Proteases: Specificity

© 2008 John Wiley & Sons, Inc. All rights reserved.

Chymotrypsin and Trypsin NH₂ Ö H B-0. BocHN N H Ö Inhibitor Asp189 Ser18 Asp102 Ser195 Ser195 His57 -lis5

Papain – Catalytic Mechanism

Thioacyl enzyme

Papain: Acyl Enzyme

Evolution of Serine and Cystein Proteases

Two families of serine proteases evolutionally distant

Evolution of Serine and Cystein Proteases

Electrophilic Catalysis

Decarboxylation of Dimethyloxalacetic Acid

catalysis by metal chelation

Hydrolysis of Aminoesters

Metal Proteases

- Contain a Zn(II) ion
- Inactivated by chelators sequestering the metal ion

- Thermolysin (endopeptidase)
- Carboxypeptidase A (exopeptidase)
- Similar catalytic site architecture
- Different mechanism

Thermolysin - Catalytic Mechanism

Thermolysin: Industrial Synthesis of Aspartame

NutraSweet/Ajinomoto "Formyl" process

DSM/Tosoh Synthesis chemoenzymatic process

Carboxypeptidase A – Catalytic Mechanism

NaCNBH₃ does not reduce carboxylic acids, but reduces anhydrides

Carboxypeptidase A – Catalytic Mechanism

Classification of Enzymes

- 1. Oxidoreductases
- 2. Transferases
- 3. Hydrolases
- 4. Lyases
- 5. Isomerases
- 6. Ligases

Hydrolysis and Transfer Reactions

Phosphatase (Phosphoesterases, Nucleases)

Phosphotransferases (Kinases)

Esterases and Lipases

- Common mechanism.
- Catalytic triad: Asp(Glu)/His/Ser
- Nucleophilic Catalysis (covalent)
- Similar Binding site architecture to serine proteases
- Esterases: hydrolyze small, water soluble esters
- Lipases: involved in the degradation of fatty acids hydrolyze water insoluble triglycerides inactive in water active at the water-lipid interface

AChE: Catalytic Mechanism

Acetylcholine

Acetylcholine is a neurotransmitter (transmits nerve signals across synapses).

Acetylcholine controls Na⁺-K⁺ channels and is degraded by AChE in the synaptic cleft.

When acetylcholine accumulates, the channel remains open causing muscles to contract.

This leads to spasms, loss of control over body functions, inability to breathe and, eventually, death.

Nerve Agents and Insecticides

Nerve agents (organophosphorus compounds) and certain insecticides are AChE inhibitors

Nerve agents (chemical weapons) were discovered in Germany in 1935-1939

SARIN

Irreversible AChE inhibitor

26 times more toxic than HCN

- 1988. Iraq (Kurdistan and IRAQ-IRAN war)
- 1995. Japan Tokyo Metro
- 2013 Syria

SARIN

Lipases: interfacial activation

Lid closed

ACTIVE

Lipases: interfacial activation

Biocatalysis in Organic Synthesis

Lipases and esterases are widely used in organic synthesis for their stereospecificity and stereoselectivity, both at the laboratory and industrial scale

Stereospecificity

Stereoselectivity (asymmetric synthesis)

Phosphoesters

Phosphoesters

ATP

Hydrolysis of Phosphate Esters

Monoesters:

The reaction occurs with inversion of configuration at P •

Hydrolysis of Phosphate Esters

Alkaline Phosphatase

- ROH and HPO₄²⁻ are formed at different rates
- 1 mol of ROH is rapidly released before phosphate is formed
- For the formation of ROH β_{LG} = -1.1
- k_{cat} (for the slow formation of HPO₄²⁻) is independent from R
- The reaction occurs with retention of configuration at P

Alkaline Phosphatase (E. Choli)

Electrophilic Water Activation by Metal Ions

Metal	рКа	Metal	рКа
Ba ²⁺	13.1	Ca ²⁺	12.5
Mg ²⁺	11.4	Mn ²⁺	10.1
Cd ²⁺	9.8	Zn ²⁺	9.6
C0 ²⁺	9.4	Ni ²⁺	9.0
Fe ²⁺	8.4	Be ²⁺	4.3

Alkaline Phosphatase

Phosphodioesterases - Nucleases

Exonucleases: hydrolyze phosphate bonds from the 3' or 5' terminal. Nucleases from snake's venom digest single stranded DNA from the 3' terminal in a completely aspecific way

Endonucleases: hydrolyze internal phosphate bonds and are, in general, highly specific. Restriction enzymes cut DNA's double helix in palindromic positions

Bacyllus amyloliquefaciens

Phosphodiesterases: BamH1

Ribonuclease A

Ribonuclease A

ATP: Energy Storage and Supply

ATP

ADP

Hydrolysis of ATP allows to overcome thermodynamical barriers
ATP: Energy Storage and Supply

ATP: Energy Storage and Supply

Protein Synthesis

P-Type ATPase

ATP

ADP

P-Type ATPase

P-Type ATPase

ATP Synthase, a Molecular Machine

ATP Synthase, a Molecular Machine

the distinct wide and narrow rings represent the two surfaces of the subunit-IIIx oligomer

Subunit-III oligomers of chloroplast ATP synthase

wide oligomer ends

narrow oligomer ends

ATP Synthase

open

loose binding

tight binding

ATP: the Third Cleavage Site. Biological Methylations

Glycosidases

Hydrolyse the glycosidic bond between two sugars: are involved in polysaccharides degradation

They are, generally, very specific for the disaccharide substrate:

- sugars
- type of bond (1,4-1,6-1,3; α, β)

All glycosidases use acid catalysis (acetal hydrolysis)

Lysozyme

Degrades peptidoglycan of bacterial cell walls by cutting between N-acetylmuramic acid and N-acetylglucosamine residues.

Lysozyme is a natural antibiotic present in tears, nasal mucus, egg white; it is used as a preservative in the food industry.

Discovered in 1922 by Alexander Fleming

Lysozyme - Carbocation Mechanism

Lysozyme - Nucleophilic Mechanism

Nucleophilic Substitutions: Haloalkane Dehalogenase

Haloalkane Dehalogenase is found in bacteria that grow in industrial wastes

Haloalkane Dehalogenase (Xanthobacter Autotrophicus)

Asp 124

His 289

Asp 260

Haloalkane Dehalogenase

Detoxification of hydrophobic compounds containing a suitable leaving group

Human Epoxide Hydrolase (PDB 3WK4)

1,2-Eliminations: Histidine Ammonia Lyase

R = Ph:phenylalanine ammonia lyaseR = Im:histidine a. l. $R = COO^-$ aspartase

Pseudomonas Putida Histidine Ammonia Lyase

1,2-Eliminations: Histidine Ammonia Lyase

1,2-Eliminations: Histidine Ammonia Lyase

Pseudomonas Putida Histidine Ammonia Lyase

C-C Bond Formation

Aldolases (Fructose 1,6-Diphosphate Aldolases)

Classe II – metal enzymes (Mg²⁺, Zn²⁺, Mn²⁺)

Fructose 1,6-diphosphate aldolase:

class I in mammals class II in bacteria

Class I Aldolase: Mechanism

Class I Aldolase: Mechanism

Class II Aldolase from Giardia lamblia Complexed with Tagatose-1,6-diphosphate

Class II Aldolase

Squalene Oxide Cyclase Mechanism

Radical Reactions: Methylmalonyl CoA Mutase

B12 Vitamin

5' deoxyadenosylcobalamine

Methylmalonyl CoA Mutase

Methylmalonyl CoA Mutase

Pericyclic Reactions

$\Delta H^{\#}$ is generally small, $\Delta S^{\#}$ is generally large and negative

Chorismate mutase

Claisen Rearrangement

transition state

Chorismate mutase

inhibitor

Chorismate mutase

Redox Reactions: NADH/NAD+

NAD⁺ (R = H): catabolism NADP⁺ (R = $PO_3^{=}$): anabolism

NAD(P)H is the strongest biological reducing agent

Alcohol dehydrogenase

CH₃CHO + 2 H⁺ + 2 e⁻
$$\rightarrow$$
 CH₃CH₂OH $E_0 = -0.16$ V
NADH \rightarrow NAD⁺ + H⁺ + 2e⁻ $E_0 = +0.32$ V

 $CH_3CHO + NADH + H^+ \rightarrow CH_3CH_2OH + NAD^+ E_0 = +0.16V$

HLADH

HLADH

HLADH

Flavin-Adenin Dinucleotide FAD

 $FADH_2 \rightarrow FAD + 2H^+ + 2e^- = E_0 = +0.18$

Glutathione Reductase

Glutathione: protects cells from oxidative stress and from molecular oxygen

Glutathione Reductase

Glutathione Reductase

p-Hydroxybenzoate Hydroxylase (Monooxygenase)

p-Hydroxybenzoate Hydroxylase (Monooxygenase)

Metal Dependent Monooxygenases Cytochrome p450

Cytochrome p450 catalyzes the hydroxylation of unactivated alkanes (detoxification)

Stereospecific! Retention of configuration

Pyridoxal-Catalyzed Reactions

Pyridoxal-Catalyzed Reactions

Alanine Racemase 1L6F

Alanine Racemase (Two-Base Mechanism)

L-DOPA Decarboxylase 1JS3

L-DOPA Decarboxylase 1JS3

Stereoelectronic Control of Reactivity

Aspartate Aminotransferase 1AJS

Aspartate Aminotransferase 1AJS

Asp222

Lys258

Inhibitor: ⁻OOC H₃N⁺ COO⁻

Aspartate Aminotransferase

Threonine Dehydratase 1ve5

Hairpin Ribozyme

Hairpin Ribozyme

Hairpin Ribozyme

Hairpin Ribozyme: Simplified Mechanism

Protein Synthesis

Ribosome and Protein Synthesis

Modified from Griffiths et al., AN INTRODUCTION TO GENETIC ANALYSIS, 6th Ed., W.H. Freeman & Co., 1996.

Ribosome and Protein Synthesis

2.6

Aminoacyl tRNA

Peptidyl tRNA

Ribosome and Protein Synthesis

Catalysis and Evolution

Enzyme Inhibitors

Competitive Non Competitive

Reversible Inhibitors

Substrate Analogs: Sulfa Drugs

TS Analogs: HIV Protease Inhibitors

HIV-Protease – JG-365 Complex

A P38 Kinase Non Competitive Inhibitor

BIRB 796 (Doramapimod®) antiinflammatory

Enzyme Inhibitors

Competitive Non Competitive

Nucleophiles

Proteases, lipases, esterases

Posphotransferases

Epoxide hydrolases, haloalkane dehalogenases

Aldolases, acetoacetate decarboxylase

Phosphotransferases, Nucleases

DNA topoisomerase

Irreversible Inhibitors

AChE:

Irreversible Inhibitors: Trypsin

Penicillin (Transpeptidase Inhibitor)

Bacterial Cell Wall:

Biosynthesis of Bacterial Cell Walls

(D-Ala)-(m-DAP)-(D-iGln)-(L-Ala)-NAM

Penicillin (Transpeptidase Inhibitor)

mimics the Ala-Ala substrate

Curcumin

