- Afunctional programming system

Carlos Kavka

Head of Research and Development

Agenda

Why functional programming in Java?

The functional programming paradigm

A functional programming system

Analysis

Java evolution till functional programming

An alignment with language trends was required!

gRuby
Java ecosystem
Clojure

Improvements introduced in Java 8

Functional style of
programming

Collection enhancements

Optional

Stream processing
Lambda expressions

Method
references

Default
methods

Important point!

Using new Java elements is not enough!

A change in the way of thinking is required!

Many "expert" Java programmers use functional features in a really improper way!

A change in the way of thinking is required!

Imperative programming

Functional programming

style of programming modeled as a sequence of commands that modify
state
programs are expressions and transformations, modeling mathematical formulas

A change in the way of thinking is required!

```
count = 0;
for( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
    if (a[i] >0)
    count++;
```

$$
/+\circ \alpha(>\circ[\mathrm{id}, \overline{0}] \rightarrow \overline{1} ; \overline{0})
$$

programming means tell -declaratively-what we want rather than how to do it.

Imperative approach

$$
\begin{aligned}
& \text { count = 0; } \\
& \text { for }(i=0 ; i<n ; i++) \\
& \text { if (} a[i]>0 \text {) } \\
& \text { count++; } \\
& \text { count } 0 \\
& \text { a }
\end{aligned}
$$

Functional approach

$$
/+\circ \alpha(>\circ[\mathrm{id}, \overline{0}] \rightarrow \overline{1} ; \overline{0})
$$

7	3	-2	4	-8	-1	3	1	5	-5
1	1	0	1	0	0	1	1	1	0
6									

Comparison

```
count \(=0\);
for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
if (a[i] >0)
count++;
```


parallelism
different approach:
what vs. how
mutable objects
what happen if we call twice a function?

What about Oriented Programming?

class A \{ int x ; int getX(); void setX(int x); \}
 $f(g(x))$

abstracting over
data
abstracting over
behavior

Functional programming

Is it new? No.

```
1930-Lambda Calculus (A. Church)
1958 - Lisp (J. McCarthy)
1977 - FP (J. Backus)
```

What about Java implementation?

- no monads
- reduced lazy evaluation
- little support for immutability

Benefits

- Simpler, cleaner, and easier-to-read code
- Simpler maintenance
- Great for collections!
- Enhanced parallelism/concurrency for multi-core CPUs

ACM Turing Award Lecture by John Backus

A.M.
 IURNNG

a functional programming system

its associated algebra of programs

1977 ACM Turing Award Lecture

The 1977 ACM Turing Award was presented to John ${ }^{\text {a }}$	putations called Fortran. This same group designed the first
	Handite Forran programs ino mathine linguage.
n E,	tast
ation. The	ees, and later on virtu-
issuo of Commurications, pape 681.	y make of computer. Fortran was adopted as a U.S.
"Probaly werre is nobody in the ro	1 standard in 1966.
pre	version, Algol 60. The language Algol, and its derivative com-
have heard the leterers BNF but dont neeessarily know what they	
the for	
n, are among	da
utions to the	
kus (Which in the For	to
eves). It is for these con	
ting award.	
tions of programming languages.' The most Siniticant part of the full citation	边
\therefore - \quad Backus headed a small IBM group in New York City	

Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of Programs
John Backus
IBM Research Laboratory, San Jose

Definition

An FP system comprises the following:

1. a set O of objects
2. a set F of functions that map objects into objects
3. an operation: application
4. a set of functional forms; used to combine existing functions or objects, to form new functions in F
5. a set of definitions that define some functions in F and assign a name to each

Objects

An object x is either:

- an atom
- a sequence $\left\langle x_{1}, \ldots, x_{n}\right\rangle$, whose elements x_{i} are objects
- $\quad \perp$ (undefined)

The sequence constructor is \perp-preserving:
if x is a sequence with \perp as an element, then $x=\perp$

Objects - examples

An operation: the application

If f is a function and x is an object, then $f: x$ is an application and denote the result of the application of f to x

$$
+:<1,2\rangle=3
$$

$$
\mathrm{tt}:<5,3,8>=<3,8>
$$

$$
\begin{aligned}
& 1:<5,3,8\rangle=5 \\
& 2:\langle 5,3,8\rangle=3
\end{aligned}
$$

Functions

All functions map objects into objects and are undefined-preserving.

Every functions is primitive, defined or a functional form

Functions

Identity
id: $\mathrm{x} \equiv \mathrm{x}$

Selector
$1: \mathrm{x} \equiv \mathrm{x}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\rangle \rightarrow \mathrm{x}_{1} ; \perp$
and for any positive integer s
$s: x \equiv x=\left\langle x_{1}, \ldots, x_{n}\right\rangle \& n \geq s \rightarrow x_{s} ; \perp$

Tail

$$
\begin{aligned}
\mathrm{t}: \mathrm{x} \equiv & \left.\mathrm{x}=<\mathrm{x}_{1}\right\rangle \rightarrow \emptyset ; \\
\mathrm{x} & =<\mathrm{x}_{1}, \ldots, x_{\mathrm{n}}>\& \mathrm{n} \geq 2 \rightarrow\left\langle\mathrm{x}_{2}, \ldots, x_{\mathrm{n}}>; \perp\right.
\end{aligned}
$$

null: $\mathrm{x} \equiv \mathrm{x}=\varnothing \rightarrow \mathrm{T} ; \mathrm{x} \neq \perp \rightarrow \mathrm{F} ; \perp$

Functions

Equality

$$
\begin{aligned}
e q: x \equiv x & =\langle y, z>\& y=z \rightarrow T ; \\
x & =\langle y, z>\& y \neq z \rightarrow F ; \perp
\end{aligned}
$$

$$
\begin{aligned}
\text { reverse: } x \equiv & x=\varnothing \rightarrow \varnothing ; \\
x & =\left\langle x_{1}, \ldots, x_{n}\right\rangle \rightarrow\left\langle x_{n}, \ldots, x_{1}\right\rangle ; \perp
\end{aligned}
$$

Length
length: $x \equiv x=<x_{1}, \ldots, x_{n}>\rightarrow n$; $x=\varnothing \rightarrow 0 ; \perp$

Arithmetic

$$
\begin{aligned}
& +: x=\langle y, z>\& y, z \text { are numbers } \rightarrow y+z ; \perp \\
& -: x=\langle y, z>\& y, z \text { are numbers } \rightarrow y-z ; \perp \\
& \times: x=\langle y, z>\& y, z \text { are numbers } \rightarrow y \times z ; \perp \\
& \div: x=\langle y, z>\& y, z \text { are numbers } \rightarrow y \div z ; \perp
\end{aligned}
$$

Functions

Append

apndl:x $\equiv x=<y, \varnothing>\rightarrow<y>$;

$$
x=\left\langle y,<z_{1}, \ldots, z_{n} \gg \rightarrow\left\langle y, z_{1}, \ldots, z_{n}>; \perp\right.\right.
$$

apndr: $x \equiv x=\langle\varnothing, y>\rightarrow y$;

$$
x=\left\langle\left\langle z_{1}, \ldots, z_{\mathrm{n}}\right\rangle, y\right\rangle \rightarrow\left\langle z_{1}, \ldots, z_{\mathrm{n}}, \mathrm{y}\right\rangle ; \perp
$$

$$
\begin{aligned}
& \text { trans: } x \equiv x=<\varnothing, \ldots, \varnothing>\rightarrow<\varnothing, \ldots, \varnothing>; \\
& \qquad x=<x_{1}, \ldots, x_{n}>\rightarrow\left\langle y_{1}, \ldots, y_{m}>; \perp\right. \\
& \text { where } \\
& x_{i}=\left\langle x_{i 1}, \ldots, x_{i m}>\text { and } y_{j}=\left\langle x_{1 j}, \ldots, x_{n j}>, 1 \leq i \leq n, 1 \leq j \leq m\right.\right.
\end{aligned}
$$

Selector right

$1 r: x \equiv x=\left\langle x_{1}, \ldots, x_{n}\right\rangle \rightarrow x_{n} ; \perp$
$2 r: x \equiv x=\left\langle x_{1}, \ldots, x_{n}\right\rangle n \geq 2 \rightarrow x_{n-1} ; \perp$ etc

Functions

Distribute

distl: $x \equiv x=\langle y, \varnothing>\rightarrow \varnothing$;

$$
x=\left\langle y,<z_{1}, \ldots, z_{n} \gg \rightarrow\left\langle\left\langle y, z_{1}\right\rangle, \ldots,\left\langle y, z_{n} \gg ; \perp\right.\right.\right.
$$

distr: $x \equiv x=<\varnothing, y>\rightarrow \varnothing$;

$$
x=\left\langle\left\langle z_{1}, \ldots, z_{n}\right\rangle, y\right\rangle \rightarrow\left\langle\left\langle z_{1}, y\right\rangle, \ldots,\left\langle z_{n}, y\right\rangle>; \perp\right.
$$

$$
\begin{aligned}
& \operatorname{tlr}: x \equiv \\
& x=\left\langle x_{1}\right\rangle \rightarrow \varnothing ; \\
& x=\left\langle x_{1}, \ldots, x_{n}\right\rangle \& n \geq 2 \rightarrow\left\langle x_{1}, \ldots, x_{n-1}\right\rangle ; \perp
\end{aligned}
$$

Rotate

$$
\begin{aligned}
\text { rotl: } & \left.\equiv x=\varnothing \rightarrow \varnothing ; x=<x_{1}\right\rangle \rightarrow\left\langle x_{1}>;\right. \\
& x=<x_{1}, \ldots, x_{n}>\& n \geq 2 \rightarrow<x_{2}, \ldots, x_{n}, x_{1}>; \perp
\end{aligned}
$$

Functional forms

A functional form is an expression denoting a function

Composition
(fog): $x \equiv f:(g: x)$
Construction

$$
\left[\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}\right]: \mathrm{x} \equiv<\mathrm{f}_{1}: \mathrm{x}, \ldots, \mathrm{f}_{\mathrm{n}}: \mathrm{x}>
$$

Constant
$\overline{\mathrm{x}}: \mathrm{y} \equiv \mathrm{y}=\perp \rightarrow \perp ; \mathrm{x}$
Condition

$$
\begin{aligned}
(\mathrm{p} \rightarrow \mathrm{f} ; \mathrm{g}): \mathrm{x} \equiv(\mathrm{p}: \mathrm{x}) & =\mathrm{T} \rightarrow \mathrm{f}: \mathrm{x} ; \\
(\mathrm{p}: \mathrm{x}) & =\mathrm{F} \rightarrow \mathrm{~g}: \mathrm{x} ; \perp
\end{aligned}
$$

Functional forms

Apply to all

$$
\begin{aligned}
\alpha f: x & \equiv \\
& x=\varnothing \rightarrow \varnothing ; \\
x & =\left\langle x_{1}, \ldots, x_{n}>\rightarrow<f: x_{1}, \ldots ., f: x_{n}>; \perp\right.
\end{aligned}
$$

Insert

$$
\begin{aligned}
/ f: x \equiv & x=<x_{1}>\rightarrow x_{1} ; \\
x & =<x_{1}, \ldots, x_{n}>\& n \geq 2 \rightarrow f:<x_{1}, / f:<x_{2}, \ldots, x_{n} \gg ; \perp
\end{aligned}
$$

If f has a unique right unit $u_{f} \neq \perp$, where $f:<x, u_{f}>\in\{x, \perp\}$ for all objects x, then the above definition is extended:
$/ f: \varnothing=u_{f}$

Definitions

A set of definitions that define some functions in F and assign a name to each

Deff \ddagger r

Programming examples

Def $!\equiv \mathrm{eq}_{0} \rightarrow \overline{1} ; \times \times\left[\mathrm{id},!\circ \mathrm{sub}_{1}\right]$
where

Def $\mathrm{eq}_{0} \equiv \mathrm{eq} \circ[\mathrm{id}, \overline{0}]$
Def $\mathrm{sub}_{1} \equiv-\circ[\mathrm{id}, \overline{1}]$

Programming examples

Def IP $\equiv(/+) \circ(\alpha \times) \circ$ trans

Matrix multiply
Def MM $\equiv(\alpha \alpha I P) \circ(\alpha$ distI $) \circ$ distr $\circ[1$, trans $\circ 2]$

Comparison

This program MM does not name its arguments or any intermediate results; contains no variables, no loops, no control statements nor procedure declarations; has no initialization instructions; is not word-at-a-time in nature; is hierarchically constructed from simpler components; uses generally applicable housekeeping forms and operators (e.g., αf, distl, distr, trans); is perfectly general; yields \perp whenever its argument is inappropriate in any way; does not constrain the order of evaluation unnecessarily (all applications of IP to row and column pairs can be done in parallel or in any order); and, using algebraic laws (see below), can be transformed into more "efficient" or into more "explanatory" programs (e.g., one that is recursively defined). None of these properties hold for the typical von Neumann matrix multiplication program.

Conclusions

different approach for problem

 solving: what and not how$$
\begin{aligned}
& \text { parallelism } \\
& \text { opportunities }
\end{aligned}(/+) \circ(\alpha \times) \circ \text { trans } \quad \begin{gathered}
\text { new important } \\
\text { properties }
\end{gathered}
$$

what happen if we call twice a function?
what about mutable state?

Thank you!
$\boldsymbol{f} \boldsymbol{\otimes}$ in \boldsymbol{v}

