
A functional programming system

Carlos Kavka

Head of Research and Development

Why functional programming in Java?

The functional programming paradigm

A functional programming system

Analysis

Agenda

© 2019 ESTECO SpA

Java evolution till functional programming

1996 2014

Java 5
Generics

Collections

Java 7
Fork/JoinJava 1.2

Swing

Java 1.0
JVM

© 2019 ESTECO SpA

An alignment with language trends was required!

Java ecosystem

© 2019 ESTECO SpA

Improvements introduced in Java 8

Functional style of
programming

Collection
enhancements

Lambda
expressions

Default
methods

Optional
values

Stream
processing

Method
references

© 2019 ESTECO SpA

Important point!

Using new Java
elements is not

enough!

A change in the way
of thinking is

required!

Many “expert” Java programmers use functional features in a really improper way!

(*) reprinted from https://www.explainxkcd.com/wiki/index.php/1270:_Functional

(*)

© 2019 ESTECO SpA

A change in the way of thinking is required!

style of programming
modeled as a sequence of

commands that modify
state

programs are expressions
and transformations,

modeling mathematical
formulas

Imperative
programming

Functional
programming

f(g(x))x++

© 2019 ESTECO SpA

A change in the way of thinking is required!

programming means tell —declaratively—what we want rather than
how to do it.

© 2019 ESTECO SpA

Imperative approach

7 3 -2 4 -8 -1 3 1 5 -5

0

0

© 2019 ESTECO SpA

Functional approach

7 3 -2 4 -8 -1 3 1 5 -5

1 1 0 1 0 0 1 1 1 0

6

© 2019 ESTECO SpA

Comparison

7 3 -2 4 -8 -1 3 1 5 -5

1 1 0 1 1 0 1 1 1 0

6
7 3 -2 4 -8 -1 3 1 5 -5

6

11

parallelism

different approach:
what vs. how

mutable objects

what happen if we call
twice a function?

© 2019 ESTECO SpA

What about Oriented Programming?

abstracting over
data

abstracting over
behavior

f(g(x))

class A {
int x;
int getX();
void setX(int x);

}

© 2019 ESTECO SpA

Functional programming

Is it new? No.

What about Java implementation?
• no monads
• reduced lazy evaluation
• little support for immutability
...

1930 - Lambda Calculus (A. Church)
1958 - Lisp (J. McCarthy)
...
1977 - FP (J. Backus)
...

however, it is better than nothing!

© 2019 ESTECO SpA

Benefits

• Simpler, cleaner, and easier-to-read code

• Simpler maintenance

• Great for collections!

• Enhanced parallelism/concurrency for multi-core CPUs

© 2019 ESTECO SpA

ACM Turing Award Lecture by John Backus

a functional
programming system

its associated algebra of
programs

© 2019 ESTECO SpA

Definition

1. a set O of objects

2. a set F of functions that map objects into objects

3. an operation: application

4. a set of functional forms; used to combine existing

functions or objects, to form new functions in F

5. a set of definitions that define some functions in F and

assign a name to each

An FP system comprises the following:

© 2019 ESTECO SpA

Objects

An object x is either:

• an atom
• a sequence <x1, ..., xn>, whose elements xi are objects
• ⊥ (undefined)

The sequence constructor is ⊥-preserving:
if x is a sequence with ⊥ as an element, then x = ⊥

© 2019 ESTECO SpA

Objects - examples

1
34

Numeric atoms

T
F

Boolean atoms

Ø
<1,2,Ø,3>

Lists

<1, 2, 3>
<1, <2,3,4>>
<<1,2>,<3,4,5>>

Lists

<1,⊥> = ⊥

Undefined preservation

© 2019 ESTECO SpA

An operation: the application

If f is a function and x is an object, then f:x is an application
and denote the result of the application of f to x

+:<1,2> = 3

1:<5,3,8> = 5
2:<5,3,8> = 3

tl:<5,3,8> = <3,8>

© 2019 ESTECO SpA

Functions

All functions map objects into objects and are
undefined-preserving.

Every functions is primitive, defined or a
functional form

© 2019 ESTECO SpA

Functions

id:x ≡ x

Identity

atom:x ≡ x is an atom → T ; x ≠ ⊥→ F ; ⊥
Atom

1:x ≡ x = <x1, ..., xn> → x1 ; ⊥

and for any positive integer s

s:x ≡ x = <x1, ..., xn> & n ≥ s → xs ; ⊥

Selector

tl:x ≡ x = <x1> → Ø ;
x = <x1, ..., xn> & n ≥ 2 → <x2, ..., xn> ; ⊥

Tail

null:x ≡ x = Ø → T ; x ≠ ⊥→ F ; ⊥

Null

© 2019 ESTECO SpA

Functions

eq:x ≡ x = <y,z> & y = z → T ;
x = <y,z> & y ≠ z → F ; ⊥

Equality

reverse:x ≡ x = Ø → Ø ;
x = <x1, ..., xn> → <xn, ..., x1> ; ⊥

Reverse

length:x ≡ x = <x1, ..., xn> → n ;
x = Ø → 0 ; ⊥

Length

+:x = <y,z> & y,z are numbers → y+z ; ⊥
-:x = <y,z> & y,z are numbers → y-z ; ⊥
×:x = <y,z> & y,z are numbers → y×z ; ⊥
÷:x = <y,z> & y,z are numbers → y÷z ; ⊥

Arithmetic

© 2019 ESTECO SpA

Functions

apndl:x ≡ x = <y, Ø > → <y> ;
x = <y,<z1, ..., zn>> → <y, z1, ..., zn > ; ⊥

apndr:x ≡ x = <Ø,y> → y ;
x = <<z1, ..., zn>, y> → <z1, ..., zn ,y> ; ⊥

Append

trans:x ≡ x = <Ø, ..., Ø> → <Ø, ..., Ø> ;
x = <x1, ..., xn> → <y1, ..., ym> ; ⊥

where
xi = <xi1, ..., xim> and yj = <x1j, ..., xnj> , 1 ≤ i ≤ n, 1 ≤ j ≤ m

Transpose

1r:x ≡ x = <x1, ..., xn> → xn ; ⊥
2r:x ≡ x = <x1, ..., xn> n ≥ 2 → xn-1 ; ⊥
etc

Selector right

© 2019 ESTECO SpA

Functions

distl:x ≡ x = <y, Ø > → Ø ;
x = <y,<z1, ..., zn>> → <<y, z1 >, ..., <y, zn >> ; ⊥

distr:x ≡ x = <Ø,y> → Ø ;
x = <<z1, ..., zn>, y> → <<z1,y>, ..., <zn ,y>> ; ⊥

Distribute

tlr:x ≡ x = <x1> → Ø ;
x = <x1, ..., xn> & n ≥ 2 → <x1, ..., xn-1> ; ⊥

Tail right

rotl:x ≡ x = Ø → Ø ; x = <x1> → <x1> ;
x = <x1, ..., xn> & n ≥ 2 → <x2 , ..., xn, x1 > ; ⊥

Rotate

© 2019 ESTECO SpA

Functional forms

A functional form is an expression denoting a function

(f◦g):x ≡ f:(g:x)

Composition

[f1, ..., fn] :x ≡ <f1:x, ..., fn:x>

Construction

(p → f;g): x ≡ (p:x) = T → f:x ;
(p:x) = F → g:x ; ⊥

Condition

തx : y ≡ y = ⊥→⊥; x

Constant

© 2019 ESTECO SpA

Functional forms

If f has a unique right unit uf ≠ ⊥, where f:<x,uf> ϵ {x, ⊥}
for all objects x, then the above definition is extended:

/f: Ø = uf

αf:x ≡ x = Ø → Ø;
x = <x1, ..., xn> → <f:x1,..., f:xn> ; ⊥

Apply to all

/f:x ≡ x = <x1> → x1;
x = <x1, ..., xn> & n ≥ 2 → f:<x1, /f:< x2,..., xn>> ; ⊥

Insert

© 2019 ESTECO SpA

Definitions

A set of definitions that define some
functions in F and assign a name to each

Def f ≡ r

© 2019 ESTECO SpA

Programming examples

Def ! ≡ eq0 → ത1; ×◦[id, ! ◦ sub1]

where

Def eq0 ≡ eq ◦[id, ത0]
Def sub1 ≡ - ◦[id, ത1]

Factorial

© 2019 ESTECO SpA

Programming examples

Def MM ≡ (α α IP) ◦ (α distl) ◦ distr ◦ [1, trans ◦ 2]

Matrix multiply

Def IP ≡ (/+) ◦ (α ×) ◦ trans

Inner product

© 2019 ESTECO SpA

Comparison

© 2019 ESTECO SpA

Conclusions

parallelism
opportunities

new important
properties

different approach for problem
solving: what and not how

what about mutable
state?

what happen if we call
twice a function?

(/+) ◦ (α ×) ◦ trans

esteco.com

Thank you!

https://www.facebook.com/ESTECO-166776810033909/
https://twitter.com/esteco_mF
https://it.linkedin.com/company/esteco-s-p-a
https://www.youtube.com/user/estecosrlsoftware/featured
https://vimeo.com/channels/1050665
https://www.esteco.com/corporate/esteco-copyright-policy

