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Protein coding genes give
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Retrotransposons can change genetic
context




Retro-transposition machinery
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Pseudogene derived RNASs
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PSEUDOGENE BIOTYPES

Table 2 Pseudogene biotypes

Biotype Definition

Processed Pseudogene created via retrotransposition of the mRNA of a functional protein-coding parent gene followed by
pseudogene accumulation of disabling mutations

Duplicated Pseudogene created via genomic duplication of a functional protein-coding parent gene followed by accumulation of
pseudogene disabling mutations

Unitary pseudogene| Pseudogene for which the ortholog in a reference species (mouse) is coding but the human locus has accumulated fixed

disabling mutations

Polymorphic Locus known to be coding in some individuals but with disabling mutations in the reference genome
pseudogene

IG pseudogene Immunoglobulin gene segment with disabling mutations

TR pseudogene T-cell receptor gene segment with disabling mutations

Duplicated/Unitary pseudogenes: can bring regulatory sequences, often spliced
Processed pseudogenes: hitch hike on regulatory elements dispersed throughout
throughout the genome



PSEUDOGENE BIOTYPES
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Figure 2 Growth of pseudogene annotation. The numbers of pseudogenes present in the GENCODE dataset from version 1 to version 7 are
plotted. The three colors - purple, green and yellow - represent processed, duplicated and other types of pseudogenes, respectively. The
pseudogenes were annotated manually and/or using the automated pipelines PseudoPipe and RetroFinder. The gray bar indicates the estimated
number of pseudogenes (+ standard deviation present in the human genome.

The majority of pseudogenes are processed pseudogenes:
Burst of retro-transposition events in recent phase of evolution

Total No of Genes 60498
Protein-coding genes 19797
Long non-coding RNA genes 15931
Small non-coding RNA genes 9882
Pseudogenes 14477
10727

3271

- unitary pseudogenes 172

- polymorphic pseudogenes: 59




PSEUDOGENE LOCI (duplicated/processed)
CAN BE USED BY OTHER FUNCTIONAL LOCI
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1. Pseudogene sequence creates a new alternatively spliced internal exon in the protein coding gene
2. Pseudogene sequence contributes to the 5’ exon in the protein coding gene

3. Pseudogene sequence contributes to the 3’ terminal exon of the protein-coding gene

- Pseudogenes contribute to the evolution of protein coding genes
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Figure 3 Complexity of transcribed pseudogenes. Screenshots of pseudogene annotation are taken from the Zmap annotation interface. The
pseudogenes are represented as open green boxes and indicated by dark green arrowheads, exons of associated transcript models are
represented as filled red boxes and connections are shown by red lines. The coding exons of protein-coding models are represented by dark
green boxes and UTR exons as filled red boxes; protein-coding models are also indicated by red arrowheads. (a-c) Single pseudogene models
intersecting with single transcript models. (a) The processed pseudogene High mobility group box 1 pseudogene (HMGB1P; HAVANA gene ID:
OTTHUMG00000172132 and its associated unspliced (that is, single exon) transcript. (b) The processed pseudogene Myotubularin related protein
12 pseudogene (MTMR12P; HAVANA gene ID: OTTHUMGO00000167532) and a spliced transcript model with three exons. (c) A duplicated
pseudogene PDZ domain containing 1 pseudogene 1 (PDZK1P1; HAVANA gene ID: OTTHUMG00000013746) and a spliced transcript model with
nine exons. (d,e) Single pseudogene models intersecting with multiple transcripts. (d) The processed pseudogene Ribosomal protein, large, PO
pseudogene 1 (RPLPOP1; HAVANA gene ID: OTTHUMGO00000158396) and five spliced transcripts. (e) The duplicated pseudogene Family with
sequence similarity 86, member A pseudogene (FAM86AP; HAVANA gene ID: OTTHUMG00000159782) and four spliced transcripts. (f,g) Groups of
multiple pseudogenes that are connected by overlapping transcripts. (f) Three pseudogenes with single connecting transcripts: 1 is the
duplicated pseudogene von Willebrand factor pseudogene 1 (VWFPT; HAVANA gene ID: OTTHUMGO00000143725); 2 is a duplicated pseudogene
ankyrin repeat domain 62 pseudogene 1 (ANKRD62P1; HAVANA gene ID: OTTHUMGO00000149993); 3 is the duplicated pseudogene poly (ADP-
ribose) polymerase family, member 4 pseudogene 3 (PARP4P3; HAVANA gene ID: OTTHUMG00000142831). Pseudogene 1 and 2 are connected
by a seven exon transcript, pseudogenes 2 and 3 are connected by a nine exon transcript and there is a third transcript that shares two of its
four exons with pseudogene 2. (g) Two pseudogenes with multiple connecting transcripts: 1 is the processed pseudogene vitamin K epoxide
reductase complex, subunit 1-like 1 pseudogene (VKORCIL1P; HAVANA gene ID: OTTHUMGO00000156633); 2 is the duplicated pseudogene
chaperonin containing TCP1, subunit 6 (zeta) pseudogene 3 (CCT6P3; HAVANA gene ID: OTTHUMG00000156630). The two pseudogenes are
connected by two transcripts that initiate at the upstream pseudogene and utilize a splice donor site within the single exon, which is also a
splice donor site in the pseudogene’s parent locus. Interestingly, the downstream locus hosts two small nucleolar RNAs (snoRNAs) that are
present in the parent locus and another paralog. (h) A very complex case where multiple pseudogenes, connected by multiple transcripts, read
through into an adjacent protein-coding locus: 1 is the duplicated pseudogene suppressor of G2 allele of SKP1 (S. cerevisiae) pseudogene (SGT1P;
HAVANA gene ID: OTTHUMG00000020323); 2 is a novel duplicated pseudogene (OTTHUMGO00000167000); and the protein-coding gene is
C9orf174, chromosome 9 open reading frame 174 (OTTHUMGO0000167001). (i) A similarly complex case where multiple pseudogenes, connected
by multiple transcripts, read through into an adjacent protein-coding locus: 1 is a duplicated pseudogene stromal antigen 3 pseudogene
(STAGP3; HAVANA gene ID: OTTHUMGO00000156884); 2 is a duplicated pseudogene poliovirus receptor related immunoglobulin domain
containing pseudogene (PVRIGP; HAVANA gene ID: OTTHUMG00000156886); and the protein-coding gene is PILRB, paired immunoglobin-like
type 2 receptor beta (OTTHUMGO0000155363). sSRNA, small RNA.



GENOMICS STRATEGIES TO IDENTIFY AND CLASSIFY PSEUDOGENES

Table 3 Fields for pseudogene features in the psiDR annotation file = Pseudogene decoration resource

Field Explanation psiDR value

Transcript 1D Pseudogene ID from GENCODE annotation. Used for cross-referencing

Parent Protein ID, Gene ID, chromosome, start, end and strand. Detailed in section ‘Parents of
pseudogenes’
Sequence The percentage of pseudogene sequence preserved from parent
similarity
Transcription Evidence for pseudogene transcription and validation results. May be tagged as EST, BodyMap, 1, transcription; 0, otherwise
RT-PCR or None, which represent pseudogene expression evidence from corresponding data
sources. Multiple tags are separated by commas. Detailed in section Transcription of
pseudogenes’
DNasel A categorical result indicating whether the pseudogene has easily accessible chromatin, 1, has Dnase hypersensitivity in
hypersensitivity predicted by a model integrating DNasel hypersensitivity values within 4 kb genomic regions  upstream; 0, otherwise
upstream and downstream of the 5" end of pseudogenes. Detailed in section ‘Chromatin
signatures of pseudogenes’

Chromatin Whether a pseudogene maintains an active chromatin state, as predicted by a model using 1, active chromatin; 0, otherwise
state Segway segmentation. Detailed in section ‘Chromatin signatures of pseudogenes’

Active Pol2* Whether Pol2 binds to the upstream region of a pseudegene. Detailed in section ‘Upstream 1, active binding site; 0, otherwise
binding regulatory elements’

Active Whether there are active promoter regions in the upstream of pseudogenes. Detailed in 1, active binding site; 0, otherwise
promoter section ‘Upstream regulatory elements’

region

Conservation  Conservation of pseudogenes is derived from the divergence between human, chimp and 1, conserved; 0, otherwise

mouse DNA sequences. Detailed in section ‘Evolutionary constraint on pseudogenes’

*Pol2, RNA polymerase II.

- Parent gene/ancestral gene = functional gene with greatest sequence similarity
- Ancestral gene can be identified for ca. 90% of pseduogenes
- 10% of pseudogenes are highly degraded and is derived from a parent gene with highly similar paralogs
Or parent gene contains a commonly found functional domain
-NOTE: most parental genes have only 1 pseudogene
-NOTE: some parental genes — mainly housekeeping genes - have MANY pseudogenes:
-Robosomal protein L21: 143 pseudogenes
-Gapdh: 68 pseudogenes



Sequence identity between parental and pseudogenes
with focus on coding sequence (CDS) and 3’'UTR
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Evolutionary constraint on pseudogenes
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Figure 6 Preservation of human coding sequences, processed pseudogenes and duplicated pseudogenes. Sequences orthologous to
human genomic regions from different species were studied. The sequence preservation rate was calculated as the percentage of sequences
aligned to human sequence from each species. The calculation was based on a MultiZ multiple genome sequence alignment.

\

dogenes. While the preservation of duplicated pseudo-
genes decreases gradually with the increase of
evolutionary distance of the specles from human, the
preservation of processed pseudogenes exhibits an
abrupt decrease from macague to mouse and remains
low within the species more divergent than mouse.

These results are in agreement with previous findings
showing that most processed pseudogenes in humans
and mice are lineage-specific, arising from distinct retro-
transposition bursts happening in the two organisms
after they diverged [13,41].




Features of transcribed pseudogenes

Problem: precise analysis of RNA-seq/array data: high sequence similarity pseudogene — parental gene
2012: ca 9000 pseudogenes: 873 are transcribed according to STRINGENT psiDR parameters (real number is higher)
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344 Transcribed Pssudogenes

The majority of pseudogenes show tissue specific expression
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Chromatin at transcriptional start sited of transcribed pseudogenes
is similar to coding genes
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Figure 8 Chromatin signatures: DNasel hypersensitivity and histone modification. Average chromatin accessibility profiles and various
histone modifications surrounding the TSS for coding genes, transcribed pseudogenes, and non-transcribed pseudogenes. The coding gene
histone modification profiles around the follow known patterns - for mple, enrichment of H3K4me1 around 1 kb upstream of the TSS
and the H3K4me3 peaks close to the TSS [63]. Transcribed pseudogenes also show stronger H3K4 signals than non-transcribed pseudogenes
H3K27me3, a marker commonly associated with gene repression [64], showed depletion around the TSS for the coding gene and a distinctive
peak in the same region for the pseudogenes. H3K36me3 also shows a similar pattern as H3K27me3 at TSSs, which may relate to nucleosome
depletion.
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Pseudogenes are a diversified group of genetic elements

Real number is probably lower!!!
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- few pseudogenes show consistently active signals across all biological features
that describe gene activity

- many pseudogenes show little or no activity
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Pseudogenes are a diversified group of genetic elements
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In light of these examples, we believe that the partial
activity patterns are reflective of the pseudogene evolu-
tionary process, where a pseudogene may be in the pro-
cess of either resurrection as a ncRNA or gradually

losing its functionality. Understanding why pseudogenes
show partial activity may shed light on pseudogene evo-
lution and function.






Retrotransposon activity during development
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The inner cell mass of the blastocyst are the
source of pluripotent embryonic stem cells

Blastocyst cells give ris
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OCT4 expressing ES cells have self-renewing and
differentiation potential in vitro
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The self-renewal transcription factor
Oct4 is essential for embryonic stem
cell self-renewal

Self-renewal

0CT4 —3p Active promoters of self-renewal genes
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Nicolaj Strgyer Christophersen, and Kristian Helin J Exp Med
2010;207:2287-2295




Mouse and human contain several
processed OCT4 pseudogenes
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Ancestral OCT4 gave rise to 5 processed pseudogenes
that are expressed in mESCs
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OCT4 pseudogenes are localized
nuceloplasm or cytoplasm
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OCT4 pseudogenes are localized
nuceloplasm or cytoplasm
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Nuclear OCT4P4 promotes mESC differentiation
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5/ and 37 UTR homolgy domains are required
to repress self-renewal marker genes
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Oct4P4 interferes with the ancestral
Oct4 promoter
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A model system to study Oct4P4 IncRNA
localization
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A model system to study Oct4P4 IncRNA
localization
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Oct4P4-MS2 directs Suv39hl to Oct4 promoter
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Oct4P4-MS2 directly interacts with Suv39hi
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Oct4P4-MS2 recruits Suv39hit
To direct silencing of the Oct4 promter
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INDUCING PLURIPOTENCY IN ADULT CELLS
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Oct4P4 depletion in pMEFs causes
the re-acquisition of self-renewal features”
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Pseudogenes control the epigenetic
status of ancestral genes

Oct4 pseudogene IncRNA silences ancestral gene
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Scarola et al. Under review in Nat. Comm




Pseudogenes are powerful regulators of gene expressio
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