Pharmacodinamic

AFFINITY

the strength of interaction between a drug and its binding site

EFFICACY

the ability of a drug to change receptor conformation to produce a cellular response

DRUG-RECEPTOR THEORY

The effect of a drug D is the consequence of its binding to the receptor R

The intensity of the effect is proportional to the complex [DR]

$$D + R \xrightarrow{k_1} DR$$

$$\downarrow k_2$$

Concentration-Response Curves: EC50 and Order of Potency

The true AFFINITY of a drug for its receptor is given by the Dissociation Constant Kd

- Kd is the drug concentration that occupies
 50% of receptors at the equilibrium
- Unit: molar concentration
- Kd value is determined by radioligand binding experiments

THE RADIOLIGAND BINDING TECHNIQUE TO INVESTIGATE DRUG-RECEPTOR INTERACTION

A direct measurement of the binding of a molecule to its receptor can be obtained if it is possible to:

- 1. Distinguish the drug bound from the unbound (free)
- 2. Quantify the bound (labelled with ³H or ¹²⁵I)

and Quantification

SATURATION EXPERIMENT

 Bmax is the maximal binding capacity of a preparation (membranes, cells) containing receptors

COMPETITION EXPERIMENT

[³H]Ligand binding to receptors in brain cortex membranes

 IC50: concentration of a drug that reduces by 50% the maximal binding of a labelled reference compound (relative value)

Concentration-Response Curves: EFFICACY

A: FULL AGONIST

B: PARTIAL AGONIST

C: PARTIAL AGONIST

D: ANTAGONIST

DRUG-RECEPTOR THEORY

The effect of a drug D is the consequence of its binding to the receptor R

The intensity of the effect is proportional to the complex [DR]

$$\begin{array}{c} k_1 \\ D + R \xrightarrow{k_2} DR \\ k_2 \end{array}$$

Effect = α [DR] with α a constant named intrinsic activity or efficacy

Efficacy or Intrinsic activity

- efficacy α is a measure of the response that can be obtained in a tissue with a drug
- Increase of drug concentrations does not Increase drug effect
- α value ranges from 1 to 0 (is the percentage between the maximal effect of the drug and the maximal effect that can be obtained in that tissue)

% effect of partial agonist
$$80\%$$
 $= 0.8$
% effect of full agonist 100%

Partial agonism and antagonism

Full agonist: a ligand that produces the maximal response in that tissue

Partial agonist: a ligand that produces a submaximal response in that tissue

Antagonist: a drug that binds to the receptor but produces no response

Inverse agonism

Inverse agonism

The constitutively active receptor R* is active in absence of endogenous ligand

Inverse agonist: a ligand that reverses constitutive receptor activity R*

Inverse agonist binds preferentially to R altering the equilibrium R - R*

Inverse agonism

BIASED AGONISM or LIGAND-SELECTIVE FUNCTIONAL AGONISM

BIASED AGONISM

Biased agonist B

Receptor Activation: Full Agonist, Partial Agonist, Antagonist

Schild Plot for pA2 determination

6

-Log B

9

10

pA2 is the negative log of molar concentration of the antagonist which will reduce the effect of double dose of the agonist drug to that of a single dose

Allosteric ligands

Allosteric site =

 α_{q}

Modulate orthosteric ligand binding

Modulate orthosteric ligand efficacy independent of orthosteric ligand binding or G protein coupling sites

Modulate G protein binding

Allosteric modulators work only in the presence of orthosteric ligand, but don't necessarily alter orthosteric ligand binding

Orthosteric agonist binding Functional response Solution of the state of the stat

Response

Allosteric modulation: effect on affinity and efficacy

