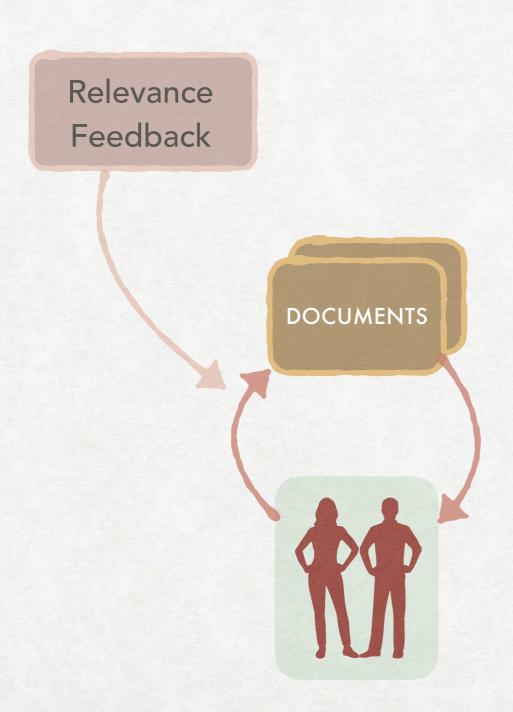
INFORMATION RETRIEVAL

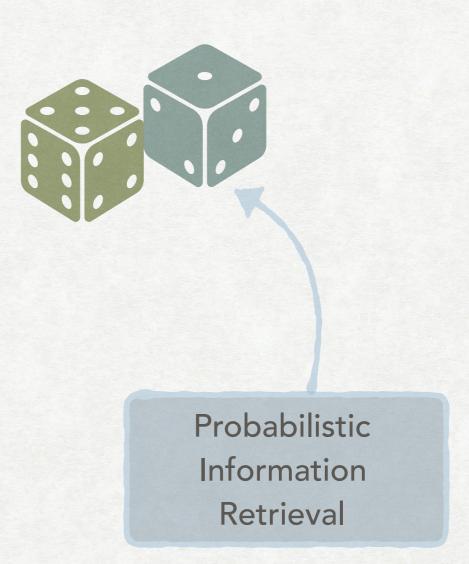
Luca Manzoni Imanzoni@units.it

Lecture 7

LECTURE OUTLINE

*PROBABLY CONTAINS PROBABILITIES





RELEVANCE FEEDBACK

WHAT IS RELEVANCE FEEDBACK

RECEIVING FEEDBACK FROM THE USER

- The main idea is to involve the user in giving feedback on the initial set of results:
- The user issues a query.
- The system returns an initial set of results.
- The user decides which results are relevant and which are not.
- The system computes a new set of results based on the feedback received by the user.
- If necessary, repeat.

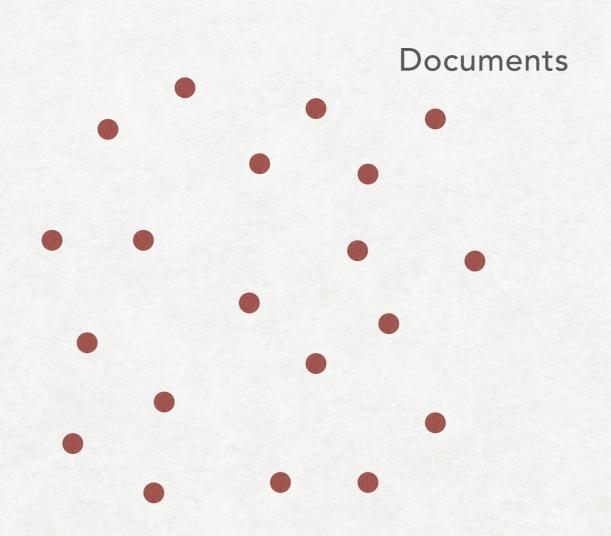
WHAT RELEVANCE FEEDBACK CAN SOLVE

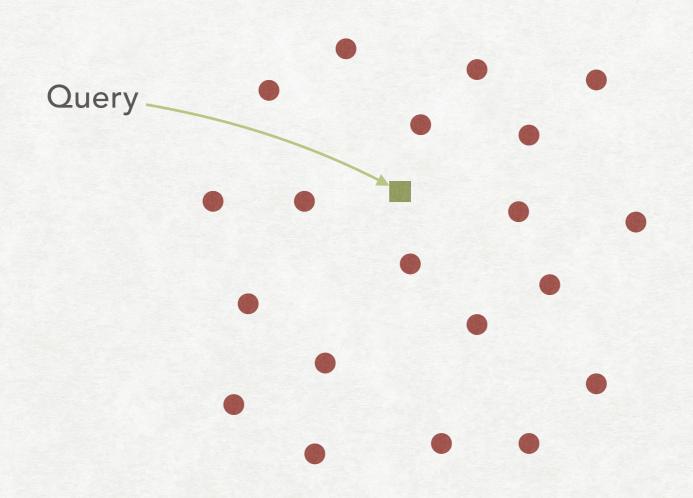
AND WHAT IT CANNOT SOLVE

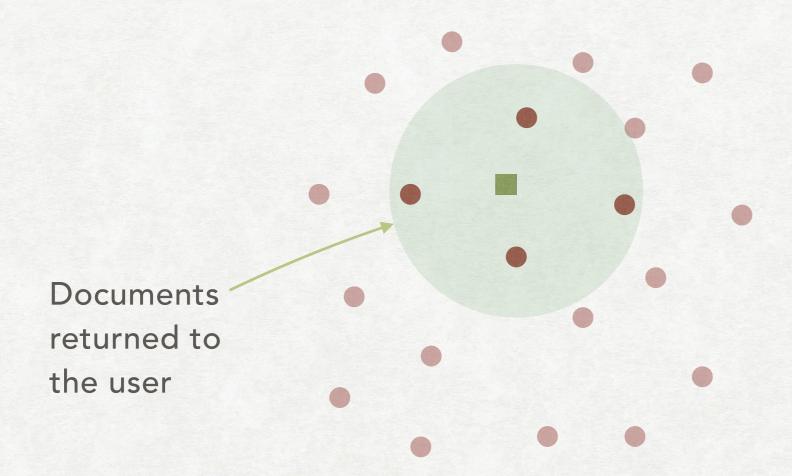
- Relevance feedback can help the user in refining the query without having him/her reformulate it manually.
- It is a *local method*, where the initial query is modified, in contrast to *global methods* that change the wording of the query (like spelling correction).
- Relevance feedback can be ineffective when in the case of
 - Misspelling (but we have seen spelling correction techniques).
 - Searching documents in another language.
 - Vocabulary mismatch between the user and the collection.

THE ROCCHIO ALGORITHM FEEDBACK FOR THE VECTOR SPACE MODEL

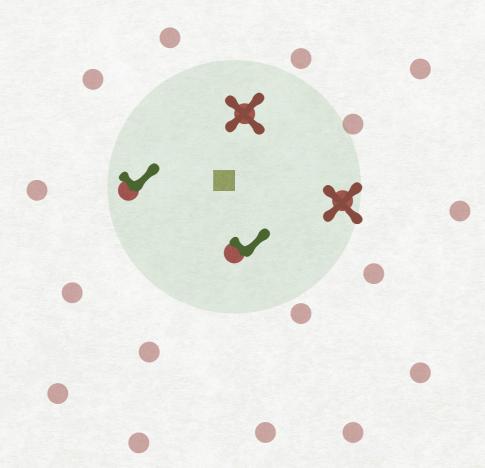
- It is possible to introduce relevance feedback in the vector space model
- We will see the Rocchio Algorithm (1971)
- It was introduced in the SMART (System for the Mechanical Analysis and Retrieval of Text) information retrieval system...
- ...which is also where the vector space model was firstly developed



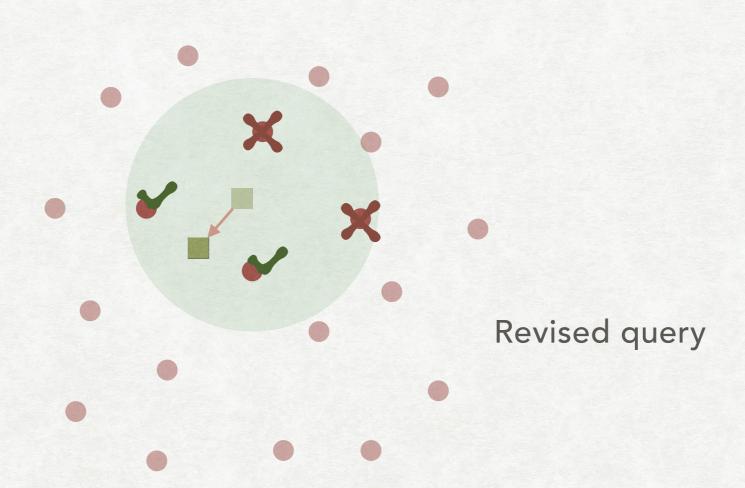




MOVING THE QUERY VECTOR



Feedback from the user



ROCCHIO ALGORITHM: THEORY

- The user gives us two sets of documents:
 - The relevant documents C_r
 - The non-relevant documents C_{nr}
- We want to maximise the similarity of the query with the set of relevant documents...
- ...while minimising it with respect to the set of non-relevant documents.

ROCCHIO ALGORITHM: THEORY

This can be formalised as defining the optimal query \overrightarrow{q}_{opt} as:

$$\overrightarrow{q}_{opt} = \arg\max_{\overrightarrow{q}} [\sin(\overrightarrow{q}, C_r) - \sin(\overrightarrow{q}, C_{nr})]$$

If we use cosine similarity, we can reformulate the definition as:

$$\overrightarrow{q}_{opt} = \underbrace{\frac{1}{|C_r|} \sum_{\overrightarrow{d} \in C_r} \overrightarrow{d}}_{|C_{nr}|} \underbrace{\sum_{\overrightarrow{d} \in C_{nr}} \overrightarrow{d}}_{|C_{nr}|}$$

Centroid of relevant documents

Centroid of non-relevant documents

ROCCHIO ALGORITHM

However, we usually do not have knowledge of the relevance of *all* documents in the system. Instead we have:

- a set D_r of known relevant documents
- a set D_{nr} of known non-relevant documents

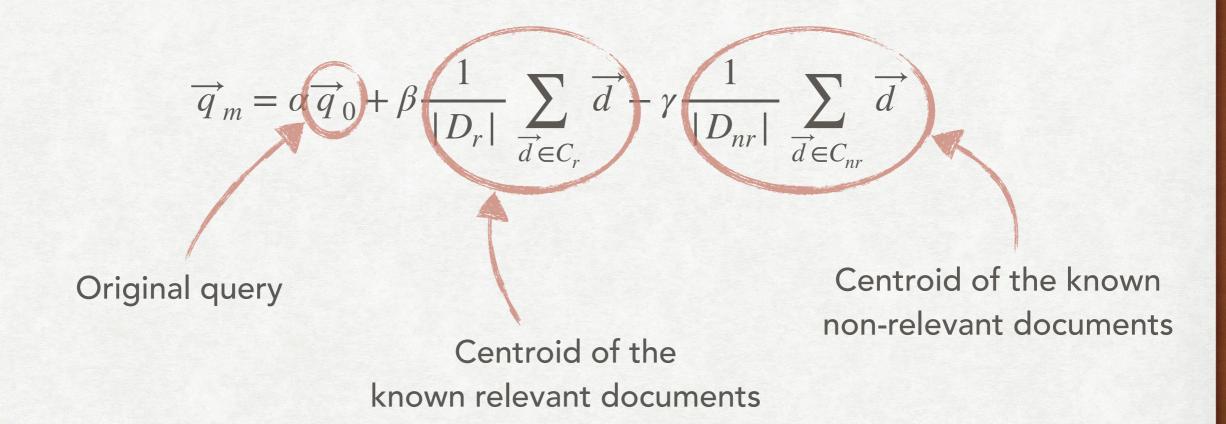
We also have the original query \overrightarrow{q}_0 performed by the user.

We can perform a linear combination of:

- The centroid of D_r
- The centroid of D_{nr}
- The original query \overrightarrow{q}_0

ROCCHIO ALGORITHM

In the Rocchio algorithm the query is updated as follows:



If one of the components of \overrightarrow{q}_m is less than 0, we set it to 0 (all documents have non-negative coordinates)

ROCCHIO ALGORITHM

SELECTING THE WEIGHTS

- We need to select reasonable weights α , β , and γ :
- Positive feedback is more valuable than negative feedback, so usually $\gamma < \beta$.
- Reasonable values might be $\alpha = 1$, $\beta = 0.75$, and $\gamma = 0.15$.
- It is also possible to also have only positive feedback with $\gamma=0$.

PSEUDO-RELEVANCE FEEDBACK

NOW WITHOUT THE USER

- It is possible to perform a relevance feedback without the user...
- ...even before he/she receives the results of the first query.
- Perform the query \overrightarrow{q} as usual.
- Consider the first k retrieved documents in the ranking as relevant.
- Perform relevance feedback using this assumption.
- Might provide better results, but the retrieved documents might drift the query in an unwanted direction.

PROBABILISTIC INFORMATION RETRIEVAL

PROBABILISTIC IR

MAIN IDEAS

- If we know some relevant and some non-relevant documents for a query we can estimate the probability of a document to be relevant given the terms it contains.
- This is the main idea of a probabilistic model of IR: estimate probabilities of a document being relevant with respect to a query based on its content.
- There will be some assumptions to simplify the computation of this probability...
- ...and some estimates: we do not known most of the probabilities involved!

A QUICK REVIEW BASICS OF PROBABILITY THEORY

• The probability of A and B can be written as a conditional probability:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

• The probability of B and A plus the probability of B and not A is simply the probability of B:

$$P(B) = P(B, A) + P(B, \overline{A})$$

The odds of an event A is defined as:

$$O(A) = \frac{P(A)}{P(\overline{A})} = \frac{P(A)}{1 - P(A)}$$

A QUICK REVIEW BASICS OF PROBABILITY THEORY

The classical Bayes' rule is:

•
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)}{\sum_{X \in [A, \overline{A}]} P(B \mid X)P(X)} P(A)$$

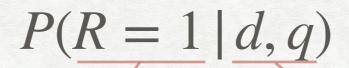
- Which can be interpreted as:
 - Given the prior probability P(A) of A...
 - ...how we can update it based on the evidence B, thus obtaining a posterior probability $P(A \mid B)$.

PROBABILITY RANKING PRINCIPLE

AND THE BASIS FOR PROBABILISTIC IR

For each document we consider the random variable $R_{d,q}$ (or R for short) representing wether a document is relevant to not.

We want to rank documents according to their probability of being relevant to a given query q:



Probability of having something relevant

Given that the document is d and the query is q

1/0 LOSS AN THE OPTIMAL DECISION RULE

The simples case:

- Penalty when we retrieve a document that is not relevant.
- Penalty when we miss a relevant document.
- The penalty is the same in all cases, there are no costs associated to retrieving documents.

If we need to rank documents then we rank them by decreasing P(R = 1 | d, q).

If we need to return a set of documents we return all then ones where $P(R=1\,|\,d,q)>P(R=0\,|\,d,q).$

It can be proved that this choice minimise the expected loss under the 1/0 loss.

RETRIEVAL COSTS

MORE THAN THE 1/0 LOSS

We can also have a more complex model for costs:

- C_1 is the cost of retrieving a relevant document.
- C_0 is the cost of retrieving a non-relevant document

Then to select the document to be retrieved d we must the one where for all non-retrieved documents d' it holds that:

$$C_1 \cdot P(R = 1 \mid d, q) + C_0 \cdot P(R = 0 \mid d, q) \le C_1 \cdot P(R = 1 \mid d', q) + C_0 \cdot P(R = 0 \mid d', q)$$

Weighted cost of retrieving d

Weighted cost of retrieving d'

THE BINARY INDEPENDENCE MODEL

THE BINARY INDEPENDENCE MODEL

OR "BIM"

Binary

Or "Boolean". Each document (and query) is represented as a vector $\overrightarrow{x}=(x_1,\ldots,x_M)$ where $x_i=1$ if the term is present and $x_i=0$ otherwise

Independence

We assume that all terms occurs in a document independently.

Not a correct assumption, but "it works"

Additionally, we assume the relevant of a document to be independent on the relevance of other documents.

This is not true in practice: e.g., duplicate and near-duplicate documents are not independent.

ESTIMATION OF THE PROBABILITY

WE DO NOT KNOW THE EXACT VALUE, WE WILL NEED TO

PROVIDE ESTIMATES!

$$P(R = 1 \mid d, q)$$
In out model this is given by
$$P(R = 1 \mid \overrightarrow{x}, \overrightarrow{q})$$
By Bayes' rule
$$P(\overrightarrow{x} \mid R = 1, \overrightarrow{q}) P(R = 1 \mid \overrightarrow{q})$$

$$P(\overrightarrow{x} \mid \overrightarrow{q})$$

Probability for a document with representation \overrightarrow{x} is retrieved given that a relevant document for the query q is retrieved

Probability of retrieving a relevant document for the query q

ESTIMATION OF THE PROBABILITY

$$P(R=0 \,|\, d,q)$$
 In out model this is given by
$$P(R=0 \,|\, \overrightarrow{x},\overrightarrow{q})$$
 By Bayes' rule
$$P(\overrightarrow{x} \,|\, R=0,\overrightarrow{q})\,P(R=0 \,|\, \overrightarrow{q})$$

$$P(\overrightarrow{x} \,|\, \overrightarrow{q})$$

Probability for a document with representation \overrightarrow{x} is retrieved given that a **non**-relevant document for the query q is retrieved

Probability of retrieving a **non**-relevant document for the query q

DO WE REALLY NEED TO KNOW THE PROBABILITY?

FOR RANKING ODDS ARE SUFFICIENT

For the purpose of ranking, we can use a monotone function of the probability. For example, the odds of R given \overrightarrow{x} and \overrightarrow{q} :

$$O(R \mid \overrightarrow{x}, \overrightarrow{q}) = \frac{P(R = 1 \mid \overrightarrow{x}, \overrightarrow{q})}{P(R = 0 \mid \overrightarrow{x}, \overrightarrow{q})}$$

$$P(\overrightarrow{x} \mid R = 1, \overrightarrow{q}) P(R = 1 \mid \overrightarrow{q})$$

$$P(\overrightarrow{x} \mid \overrightarrow{q})$$

$$P(\overrightarrow{x} \mid R = 0, \overrightarrow{q}) P(R = 0 \mid \overrightarrow{q})$$

$$P(\overrightarrow{x} \mid \overrightarrow{q})$$

RANKING AND PROBABILITIES

$$\frac{P(\overrightarrow{x} | R = 1, \overrightarrow{q})}{P(\overrightarrow{x} | R = 0, \overrightarrow{q})} \frac{P(R = 1 | \overrightarrow{q})}{P(R = 0 | \overrightarrow{q})}$$

Depends on the document

We now have to estimate:

$$\frac{P(\overrightarrow{x} | R = 1, \overrightarrow{q})}{P(\overrightarrow{x} | R = 0, \overrightarrow{q})}$$

The same for all documents

Does not affect the ranking

We can remove it

USING THE BIM

$$\frac{P(\overrightarrow{x} | R = 1, \overrightarrow{q})}{P(\overrightarrow{x} | R = 0, \overrightarrow{q})}$$

We can now employ the independence assumption: each of the terms is assumed to appear independently from the others

$$\frac{P(x_1|R=1,\overrightarrow{q})}{P(x_1|R=0,\overrightarrow{q})} \times \frac{P(x_2|R=1,\overrightarrow{q})}{P(x_2|R=0,\overrightarrow{q})} \times \cdots \times \frac{P(x_M|R=1,\overrightarrow{q})}{P(x_M|R=0,\overrightarrow{q})}$$

Which means the the value to estimate is now:

$$\prod_{i=1}^{M} \frac{P(x_i | R = 1, \overrightarrow{q})}{P(x_i | R = 0, \overrightarrow{q})}$$

SPLITTING UP FURTHER

$$\prod_{i=1}^{M} \frac{P(x_i | R = 1, \overrightarrow{q})}{P(x_i | R = 0, \overrightarrow{q})}$$

Each x_i can only assume two values: 0 if the i^{th} term is not present 1 if the i^{th} term is present

$$\prod_{i:x_i=1} \frac{P(x_i = 1 \mid R = 1, \overrightarrow{q})}{P(x_i = 1 \mid R = 0, \overrightarrow{q})}$$

$$\prod_{i:x_i=1} \frac{P(x_i = 1 | R = 1, \overrightarrow{q})}{P(x_i = 1 | R = 0, \overrightarrow{q})} \cdot \prod_{i:x_i=0} \frac{P(x_i = 0 | R = 1, \overrightarrow{q})}{P(x_i = 0 | R = 0, \overrightarrow{q})}$$

For the terms in the document

For the terms not in the document

HOW MANY PROBABILITIES TO ESTIMATE?

$$\prod_{i:x_i=1} \frac{P(x_i = 1 | R = 1, \overrightarrow{q})}{P(x_i = 1 | R = 0, \overrightarrow{q})} \cdot \prod_{i:x_i=0} \frac{P(x_i = 0 | R = 1, \overrightarrow{q})}{P(x_i = 0 | R = 0, \overrightarrow{q})}$$

For each term we need only to estimate four probabilities:

	Document relevant	Document not relevant
Term present	p_i	u_i
Tern absent	$1-p_i$	$1-u_i$

SIMPLIFYING FURTHER

$$\prod_{i:x_i=1} \frac{p_i}{u_i} \cdot \prod_{i:x_i=0} \frac{1-p_i}{1-u_i}$$

Let us assume that all query terms **not** in the query appears equally in relevant and non-relevant documents. That is, $p_i = u_i$ when $q_i = 0$.

We can remove the factors for all terms not in the query, obtaining:

$$\prod_{i:x_i=1;q_i=1} \frac{p_i}{u_i} \cdot \prod_{i:x_i=0;q_i=1} \frac{1-p_i}{1-u_i}$$

SIMPLIFYING FURTHER

$$\prod_{i:x_i=1;q_i=1} \frac{p_i}{u_i} \cdot \prod_{i:x_i=0;q_i=1} \frac{1-p_i}{1-u_i}$$

We now multiply everything by

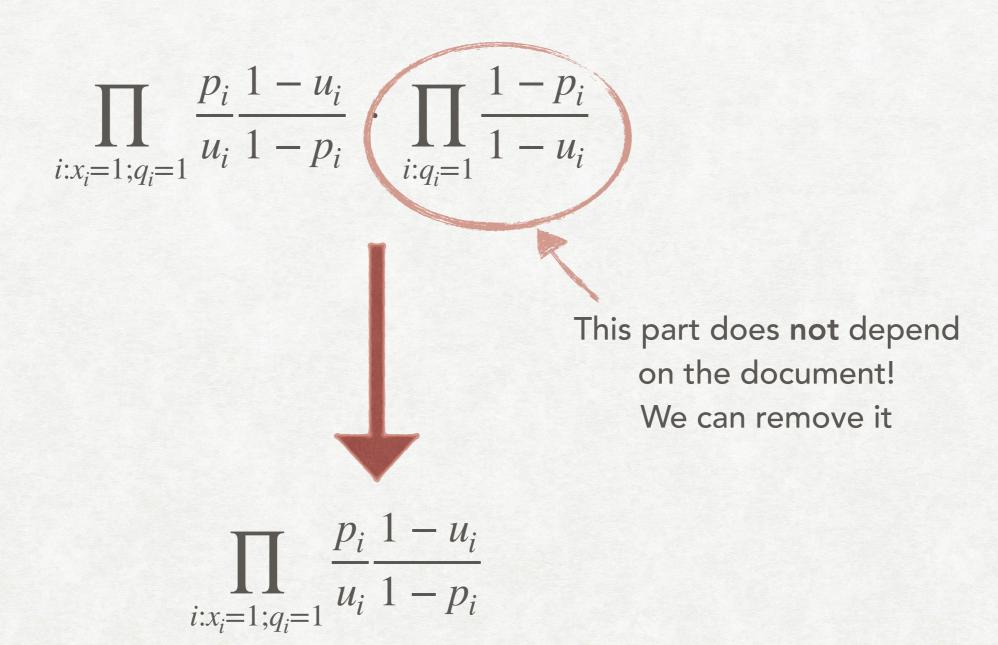
Each term is actually 1.

$$\prod_{i:x_i=1;q_i=1} \frac{1-p_i}{1-u_i} \cdot \frac{1-u_i}{1-p_i}$$

By rearranging the factors we obtain:

$$\prod_{i:x_i=1;q_i=1} \frac{p_i}{u_i} \frac{1-u_i}{1-p_i} \cdot \prod_{i:q_i=1} \frac{1-p_i}{1-u_i}$$

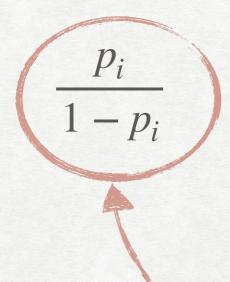
SIMPLIFYING FURTHER



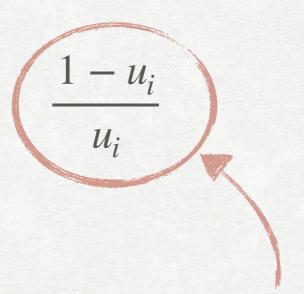
RATIO OF ODDS

$$\prod_{i:x_i=1;q_i=1} \frac{p_i}{u_i} \frac{1 - u_i}{1 - p_i}$$

Each factor can be seen as two odds:



Odds of the term appearing in the document if the document is relevant



Inverse odds of the term appearing in the document if the document is **not** relevant

RETRIEVAL STATUS VALUE

The Retrieval Status Value (RSV) of a document d is defined as the logarithm of the quantity that we now have:

RSV_d = log
$$\left(\prod_{i:x_i=1;q_i=1} \frac{p_i}{u_i} \frac{1 - u_i}{1 - p_i} \right)$$

$$= \sum_{i:x_i=1;q_i=1} \log \frac{p_i}{u_i} \frac{1 - u_i}{1 - p_i}$$

RETRIEVAL STATUS VALUE

Consider each term of the sum:

$$c_i = \log \frac{p_i}{u_i} \frac{1 - u_i}{1 - p_i}$$

Which can be rewritten as a log odds ratio:

$$c_i = \log \frac{p_i}{1 - p_i} + \log \frac{1 - u_i}{u_i}$$

 c_i can be considered the **weight** of the i^{th} term of the dictionary, and can be pre-computed (like other measures like the inverse document frequency)

RETRIEVAL STATUS VALUE

At the end the RSV of a document d can be written as:

$$RSV_d = \sum_{i: x_i = q_i = 1} c_i$$

Which algorithmically, can be described as:

To compute the RSV of a document d, sum the weight c_i of each term contained in both the document and the query

We now need a way to estimate the various probabilities to (pre-)compute all c_i .

PROBABILITY ESTIMATION IN PRACTICE

ESTIMATION FOR NON-RELEVANT DOCUMENTS

- We assume that non-relevant documents are a majority inside the collection.
- Thus, we approximate the probability for non-relevant documents with statistics computed using the entire collection.
- Usually $\log \frac{1 u_i}{u_i} = \log \frac{N \mathrm{df}_i}{\mathrm{df}_i}$ for a term i.
- Which is approximately $\log \frac{N}{\mathrm{d}f_i}$, which is actually the inverse document frequency $\mathrm{id}f_i$ for the term i.

ESTIMATION FOR RELEVANT DOCUMENTS

- Estimation for relevant documents is more complex. There are multiple approaches used in practice:
- We can estimate the probabilities by looking at statistics on a set of relevant documents that we have obtained in some way.
- We can put all probabilities equal to 0.5. With this estimate and assuming idf_i for non-relevant documents, this approximation is the sum of the idf_i for all query terms that occurs in the document.
- Another possibility is using some collection level statistics, for example obtaining $p_i = \frac{\mathrm{d} f_i}{N}$.

COMBINATION WITH RELEVANCE FEEDBACK

We can combine relevance feedback to help us estimate the probability used in computing the RSV_d :

- 1. Start with probabilities estimated as before
- 2. Retrive a set V of documents
- 3. The user classifies the documents retrieved and gives us a set of relevant documents: $VR = \{d \in V : R_{d,q} = 1\}$
- 4. Re-compute our estimates for p_i and u_i

COMBINATION WITH RELEVANCE FEEDBACK

RE-COMPUTING ESTIMATES

If VR is large enough we can use the following updating: For each i let VR_i be the set of relevant documents containing the ith term:

$$p_i = \frac{|VR_i|}{|VR|} \qquad u_i = \frac{\mathrm{df}_i - |VR_i|}{N - |VR|}$$

However in most case the set of documents evaluated by the user is not large, so we use a "smoothed" version:

$$p_i = \frac{|VR_i| + \frac{1}{2}}{|VR| + 1} \qquad u_i = \frac{\mathrm{df}_i - |VR_i| + \frac{1}{2}}{N - |VR| + 1}$$

COMBINATION WITH RELEVANCE FEEDBACK

PSEUDO-RELEVANCE FEEDBACK

We can extend the previous model to allow for pseudo-relevance feedback.

Select the first k highest ranked documents, consider them as a set V

Consider all of them relevant, and update the probability accordingly (simply substituting VR with V in the previous equations):

$$p_i = \frac{|V_i| + \frac{1}{2}}{|V| + 1} \qquad u_i = \frac{\mathrm{df}_i - |V_i| + \frac{1}{2}}{|V| + 1}$$

Repeat until the ranking converges

OKAPI BM25

OKAPI BM25 AKA BM25 WEIGHTING OR OKAPI WEIGHTING

This model is non-binary, since it takes into account the *frequency* of the terms inside the document.

We start with:

$$RSV_d = \sum_{t \in q} idf_t$$

Recall that this is the formula that we obtain with one of our estimates.

We now need a way to add information about the term frequencies

OKAPI BM25

AKA BM25 WEIGHTING OR OKAPI WEIGHTING

Let L_d be the length of the document and L_{avg} the average length of the documents in the collection.

$$RSV_d = \sum_{t \in q} idf_t \cdot \frac{(k_1 + 1)tf_{t,d}}{k_1((1 - b) + b \cdot \frac{L_d}{L_{avg}}) + tf_{t,d}}$$

 k_1 and b are two parameters, with $b \in [0,1]$ and $k_1 \ge 0$, usually $k_1 \in [1.2, 2.0]$

OKAPI BM25

AKA BM25 WEIGHTING OR OKAPI WEIGHTING

Let us break up the formula in its components

How much to consider term frequency, With $k_1 = 0$ we have the binary model

$$RSV_d = \sum_{t \in q} idf_t \cdot \frac{(k_1 + 1)tf_{t,d}}{k_1((1 - b) + b \cdot \frac{L_d}{L_{avg}}) + tf_{t,d}}$$

How much to normalise with respect to length, regulated by b, with b=0: no normalisation, with b=1, full scaling by document length