

Lambda functions - exercises

Software Development Methods

Master in Data Science and Scientific Computing

1. Define the lambda function const2 of type Function<Integer, Integer>, which is equivalent to

the constant function 2 of the FP system.

const2.apply(5)
2

const2.apply(11)
2

2. Define the lambda function half of type Function<Integer, Integer>, which returns an integer

which corresponds to the half of the integer value that was passed as an argument.

half.apply(4)
2

half.apply(11)
5

3. Define the lambda predicate isEven, which takes a single Integer as argument and returns true

or false to indicate if the value is even or not.

isEven.test(4)
true

isEven.test(5)
false

4. Define the lambda function quarter of type Function<Integer, Integer>, which returns an

integer which corresponds to the quarter of the integer value that was passed as an argument.

Define it by composing previously defined functions.

quarter.apply(12)
3

quarter.apply(4)
1

5. Define the functional interface ArrayFunction with the method int apply(int []), which can be

used to defined lambda functions that takes an array of integers as argument and returns an

integer value.

6. Define the lambda function size of type ArrayFunction, which returns the length of the array

passed as argument.

int[] a = {1,-2,-4,3,7};
System.out.println(size.apply(a));
5

7. Define the lambda function positive of type ArrayFunction, which returns the number of

positive integers in the array passed as argument.

int[] a = {1,-2,-4,3,7};
System.out.println(positive.apply(a));
3

8. Define the static method select which returns an object of type ArrayList<Integer> and takes

three arguments. The first argument called list is of type ArrayList<Integer>, the second called

pred is a Predicate<Integer> and the third called func is a Function<Integer, Integer>. The

method must return a new ArrayList with only the elements from the original list that fulfill

the condition indicated by the predicate pred, modified by the function func.

ArrayList<Integer> list1 = new ArrayList<>(Arrays.asList(1,8,5,2,3,4,15,20));
ArrayList<Integer> list2 = select(list1, isEven, half);
for (Integer x : list2)
 System.out.println(x);

4
1
2
10

9. Analyze the following piece of code:

BiFunction<Integer, Integer, Integer> f1 = (x, y) -> x + y;
Function<Integer, Function<Integer, Integer>> f2 = x -> y -> f1.apply(x, y);
System.out.println(f1.apply(2, 3));
System.out.println(f2.apply(2).apply(3));

5
5

The example uses a concept called “currying”. Please investigate it and prepare a small

example of “currying” to be discussed next class.

