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WHAT ARE THEM

BAYESIAN NETWORKS

• Also called Bayesian belief networks, decision network, etc. 

• A graphical model is a statistical model using a graph to 
represent the conditional dependency between random variables. 

• BN are a kind graphical model using a directed acyclic graph. 

• Intuitively they are useful because when we need to compute 
 we actually need to compute only  with 

 the parent nodes of . 

• An example should clarify this.

P(y |x1, x2, …, xk) p(y |Pa(y))
Pa(y) y



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

There are four random variables: 
CLOUDY, SPRINKLERS, RAIN, 
and WET GRASS.

The edges represents the 
conditional dependencies

If we want to compute 
 we only 

compute , 
and we will have to “rewrite” it.

P(CLOUDY |SPRINKLES)
P(SPRINKLES |CLOUDY)

If we want to compute 
  we can find 

it directly in our table
P(RAIN |CLOUDY)
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C = 0 C =1
0.5 0.5
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?P(𝖶 = 1 |𝖢 = 1,𝖱 = 0)

P(𝖶 = 1 |𝖢 = 1,𝖱 = 0)

= P(𝖶 = 1 |𝖱 = 0,𝖲 = 1) ⋅ P(𝖲 = 1 |𝖢 = 1)
+P(𝖶 = 1 |𝖱 = 0,𝖲 = 0) ⋅ P(𝖲 = 0 |𝖢 = 1)

= 0.9 ⋅ 0.1 + 0 ⋅ 0.9

= 0.09
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?P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ P(𝖲 = 𝟣 |𝖢 = 𝟣)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ 0.1

P(𝖶 = 1 |𝖢 = 1,𝖲 = 1) P(𝖶 = 1 |𝖢 = 1)



A SIMPLE EXAMPLE
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S = 0 S =1
C = 0 0.5 0.5
C = 1 0.9 0.1

R = 0 R =1
C = 0 0.8 0.2
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P(𝖶 = 1 |𝖢 = 1)

P(𝖶 = 1 |𝖲 = 0,𝖱 = 0) ⋅ P(𝖲 = 0 |𝖢 = 1) ⋅ P(𝖱 = 0 |𝖢 = 1)+
P(𝖶 = 1 |𝖲 = 0,𝖱 = 1) ⋅ P(𝖲 = 0 |𝖢 = 1) ⋅ P(𝖱 = 1 |𝖢 = 1)+
P(𝖶 = 1 |𝖲 = 1,𝖱 = 0) ⋅ P(𝖲 = 1 |𝖢 = 1) ⋅ P(𝖱 = 0 |𝖢 = 1)+
P(𝖶 = 1 |𝖲 = 1,𝖱 = 1) ⋅ P(𝖲 = 1 |𝖢 = 1) ⋅ P(𝖱 = 1 |𝖢 = 1)

0 ⋅ 0.9 ⋅ 0.2 + 0.9 ⋅ 0.9 ⋅ 0.8 + 0.9 ⋅ 0.1 ⋅ 0.2 + 0.99 ⋅ 0.1 ⋅ 0.8
= 0.7452

P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)
= 0.0972
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?P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ P(𝖲 = 𝟣 |𝖢 = 𝟣)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ 0.1

=
0.0972
0.7452

⋅ 0.1 ≈ 0.013



INFERENCE

BAYESIAN NETWORKS

• To find the probability of an event we can use the tables of 
conditional probabilities of the network. 

• We can have more than binary variables by making larger tables. 

• The size of the table depends on the number of edges entering 
the node. For binary variables it is  with  the in-degree of the 
node. 

• Inference in Bayesian networks is, in the general case, intractable 
from a computational point of view… 

• …but for specific cases it can still be performed efficiently.

2k k



USE OF BN FOR INFORMATION RETRIEVAL



MAIN IDEAS

BAYESIAN NETWORKS IN IR

• Bayesian Networks can model dependencies between terms or 
documents (contrarily to the assumption of the BIM). 

• However, we must always keep an eye to complexity! 

• Here we see only one possible model. Other model with different 
topologies exist.



A SIMPLE STRUCTURE

BN STRUCTURE

t1 t2 t3 tM… Nodes for the terms

d1 d2
dN

Nodes for the documents

Each edge connect a term with a document containing the term. 

Both the  and  are binary random variables with meanings: 

•  means “the term  is relevant” 

•  means “the document  is relevant”

ti dj

ti ti

dj dj



FOR TERMS AND DOCUMENTS

SETTING THE PROBABILITIES

ti
ti not t i 

1/M 1-1/M

dj

The size of the table depends exponentially by 
the number of terms in the document: 
with 50 terms we need a table of  entries.250

A different approach is needed to store 
the conditional probabilities



FOR TERMS AND DOCUMENTS

SETTING THE PROBABILITIES

We assign weights to each edget1 t2 t3

d1

w1,1 w1,2 w1,3

The value  is now computed as:P(dj |Pa(dj))

P(dj |Pa(dj)) = ∑
i:ti∈Pa(dj), ti=1

wi.j

i.e., sum all  for all the parent nodes with state  (relevant)wi, j 1



ONE METHOD OF WEIGHTING

SETTING THE WEIGHTS

Multiple weighting methods are possible. 
Two conditions to be respected are: 

•  for all  and . 

•
 for all documents .

wi, j ≥ 0 i j

∑
ti∈dj

wi, j ≤ 1 dj

One possible weighting scheme is wi, j = α−1
tf-idf2

i, j

∑ tk ∈ dj (tf-idfk, j)
2

With  a normalising constantα

MADE TO “RESEMBLE” 
THE COSINE MEASURE



HOW THE QUERY SETS THE STATE OF TERMS

USING A QUERY

Given a query  we assume that all terms in  are relevant (i.e.,  if ). 
We use the notations  and 

q q ti = 1 ti ∈ q
P(ti |q) P(dj |q)

t1 t2 t3

d1

w1,1 w1,2 w1,3

P(d1 |q) = w1,1 + w1,2 ⋅
1
M

+ w1,3

Suppose , then  is:q = t1 t3 P(d1 |q)

P(dj |q) = ∑
i:pi∈Pa(dj)

wi,jP(tj |q)

In general:



AT LEAST AMONG TERMS

ADDING DEPENDENCIES

Until now we have considered the term independent from one another. 
We can now add some form of dependency between terms while keeping 
the graph acyclic.

t1

t2

t3

d1

w1,1

w1,2

w1,3

Now we need a way to set the 
probabilities for root nodes (without 
any parent) and for nodes with parents.

ti not t i 

1/M 1-1/M

For root nodes we already have:



SETTING THE WEIGHTS

ADDING DEPENDENCIES

We can use the idea for the Jaccard coefficient of “similarity” among terms

t1

t2

t3

d1

w1,1

w1,2

w1,3

Given a “configuration”  of the parent terms 
(i.e., which terms are present and which are not) 
let  be the set of documents not containing  
and containing the exact “configuration”  of the 
parent node. Similarly, define  and . Then:

x

At̄i,x ti
x

At̄i
Ax

P(ti = 0 |Pa(ti) = x) =
|At̄i,x|

|At̄i
| + |Ax| − |At̄i,x|

P(ti = 1 |Pa(ti) = x) = 1 − P(ti = 0 |Pa(ti) = x)



FINAL REMARKS

BAYESIAN NETWORKS

• We have seen only one model of IR using Bayesian networks. 

• We can actually also add some dependencies between 
documents. 

• In any case we must find a way to design or learn the 
dependencies. E.g., by estimating  and linking the “top 
documents” 

• Other models are possible, including ones with completely 
different topologies, like mapping document to terms and then to 
“general concepts”.

P(di |dj)


