INFORMATION RETRIEVAL

Luca Manzoni
Imanzoni@units.it

LECTURE OUTLINE

*SUBTITLE INTENTIONALLY LEFT BLANK

BAYESIAN NETWORKS

BAYESIAN NETWORKS

WHAT ARE THEM

- Also called Bayesian belief networks, decision network, etc.
- A graphical model is a statistical model using a graph to represent the conditional dependency between random variables.
- BN are a kind graphical model using a directed acyclic graph.
- Intuitively they are useful because when we need to compute $P\left(y \mid x_{1}, x_{2}, \ldots, x_{k}\right)$ we actually need to compute only $p(y \mid \mathrm{Pa}(y))$ with $\mathrm{Pa}(y)$ the parent nodes of y.
- An example should clarify this.

BAYESIAN NETWORKS

A SIMPLE EXAMPLE

There are four random variables: CLOUDY, SPRINKLERS, RAIN, and WET GRASS.

If we want to compute P (CLOUDY|SPRINKLES) we only compute $P($ SPRINKLES \mid CLOUDY $)$, and we will have to "rewrite" it.

The edges represents the conditional dependencies

If we want to compute $P($ RAIN \mid CLOUDY $)$ we can find it directly in our table

BAYESIAN NETWORKS

A SIMPLE EXAMPLE

BAYESIAN NETWORKS

A SIMPLE EXAMPLE

$C=0$	$C=1$	
0.5	0.5	
	$S=0$	$S=1$
$C=0$	0.5	0.5
$C=1$	0.9	0.1
	$R=0$	$R=1$
$C=0$	0.8	0.2
$C=1$	0.2	0.8

$$
\begin{aligned}
& P(\mathrm{~W}=1 \mid \mathrm{S}=0, \mathrm{R}=0) \cdot P(\mathrm{~S}=0 \mid \mathrm{C}=1) \cdot P(\mathrm{R}=0 \mid \mathrm{C}=1)+ \\
& P(\mathrm{~W}=1 \mid \mathrm{S}=0, \mathrm{R}=1) \cdot P(\mathrm{~S}=0 \mid \mathrm{C}=1) \cdot P(\mathrm{R}=1 \mid \mathrm{C}=1)+ \\
& \hline P(\mathrm{~W}=1 \mid \mathrm{S}=1, \mathrm{R}=0) \cdot P(\mathrm{~S}=1 \mid \mathrm{C}=1) \cdot P(\mathrm{R}=0 \mid \mathrm{C}=1)+ \\
& P(\mathrm{~W}=1 \mid \mathrm{S}=1, \mathrm{R}=1) \cdot P(\mathrm{~S}=1 \mid \mathrm{C}=1) \cdot P(\mathrm{R}=1 \mid \mathrm{C}=1)
\end{aligned}
$$

$$
\begin{aligned}
& 0 \cdot 0.9 \cdot 0.2+0.9 \cdot 0.9 \cdot 0.8+0.9 \cdot 0.1 \cdot 0.2+0.99 \cdot 0.1 \cdot 0.8 \\
& =0.7452
\end{aligned}
$$

BAYESIAN NETWORKS

A SIMPLE EXAMPLE

BAYESIAN NETWORKS

INFERENCE

- To find the probability of an event we can use the tables of conditional probabilities of the network.
- We can have more than binary variables by making larger tables.
- The size of the table depends on the number of edges entering the node. For binary variables it is 2^{k} with k the in-degree of the node.
- Inference in Bayesian networks is, in the general case, intractable from a computational point of view...
- ...but for specific cases it can still be performed efficiently.

USE OF BN FOR INFORMATION RETRIEVAL

BAYESIAN NETWORKS IN IR MAIN IDEAS

- Bayesian Networks can model dependencies between terms or documents (contrarily to the assumption of the BIM).
- However, we must always keep an eye to complexity!
- Here we see only one possible model. Other model with different topologies exist.

BN STRUCTURE

A SIMPLE STRUCTURE

Nodes for the terms

Nodes for the documents

Each edge connect a term with a document containing the term.
Both the t_{i} and d_{j} are binary random variables with meanings:

- t_{i} means "the term t_{i} is relevant"
- d_{j} means "the document d_{j} is relevant"

SETTING THE PROBABILITIES FOR TERMS AND DOCUMENTS

t_{i}	not t_{i}
$1 / M$	$1-1 / M$

The size of the table depends exponentially by the number of terms in the document: with 50 terms we need a table of 2^{50} entries.

A different approach is needed to store the conditional probabilities

SETTING THE PROBABILITIES FOR TERMS AND DOCUMENTS

> We assign weights to each edge

The value $P\left(d_{j} \mid \mathrm{Pa}\left(d_{j}\right)\right)$ is now computed as:

$$
P\left(d_{j} \mid \operatorname{Pa}\left(d_{j}\right)\right)=\sum_{i: t_{i} \in \operatorname{Pa}\left(d_{j}\right), t_{i}=1} w_{i . j}
$$

i.e., sum all $w_{i, j}$ for all the parent nodes with state 1 (relevant)

SETTING THE WEIGHTS ONE METHOD OF WEIGHTING

Multiple weighting methods are possible.
Two conditions to be respected are:

- $w_{i, j} \geq 0$ for all i and j.
- $\sum_{t_{i} \in d_{j}} w_{i, j} \leq 1$ for all documents d_{j}.

With α a normalising constant

USING A QUERY

how the query sets the state of terms

Given a query q we assume that all terms in q are relevant (ie., $t_{i}=1$ if $t_{i} \in q$). We use the notations $P\left(t_{i} \mid q\right)$ and $P\left(d_{j} \mid q\right)$

Suppose $q=t_{1} t_{3}$, then $P\left(d_{1} \mid q\right)$ is:

$$
P\left(d_{1} \mid q\right)=w_{1,1}+w_{1,2} \cdot \frac{1}{M}+w_{1,3}
$$

In general:

$$
P\left(d_{j} \mid q\right)=\sum_{i: p_{i} \in \operatorname{Pa}\left(d_{j}\right)} w_{i, j} P\left(t_{j} \mid q\right)
$$

ADDING DEPENDENCIES

AT LEAST AMONG TERMS

Until now we have considered the term independent from one another. We can now add some form of dependency between terms while keeping the graph acyclic.

Now we need a way to set the probabilities for root nodes (without any parent) and for nodes with parents.

For root nodes we already have:

t_{i}	not t_{i}
$1 / M$	$1-1 / M$

ADDING DEPENDENCIES

SETTING THE WEIGHTS

We can use the idea for the Jaccard coefficient of "similarity" among terms
Given a "configuration" x of the parent terms (i.e., which terms are present and which are not) let $A_{\bar{t}_{i}, x}$ be the set of documents not containing t_{i} and containing the exact "configuration" x of the parent node. Similarly, define $A_{\bar{t}_{i}}$ and A_{x}. Then:
t_{3}

$$
\begin{aligned}
& P\left(t_{i}=0 \mid \operatorname{Pa}\left(t_{i}\right)=x\right)=\frac{\left|A_{\bar{t}_{i}, x}\right|}{\left|A_{\bar{t}_{i}}\right|+\left|A_{x}\right|-\left|A_{\bar{t}_{i}, x}\right|} \\
& P\left(t_{i}=1 \mid \operatorname{Pa}\left(t_{i}\right)=x\right)=1-P\left(t_{i}=0 \mid \operatorname{Pa}\left(t_{i}\right)=x\right)
\end{aligned}
$$

BAYESIAN NETWORKS

FINAL REMARKS

- We have seen only one model of IR using Bayesian networks.
- We can actually also add some dependencies between documents.
- In any case we must find a way to design or learn the dependencies. E.g., by estimating $P\left(d_{i} \mid d_{j}\right)$ and linking the "top documents"
- Other models are possible, including ones with completely different topologies, like mapping document to terms and then to "general concepts".

