
Chapter 1
Piecewise Polynomial Approximation in 1D

Abstract In this chapter we introduce a type of functions called piecewise poly-
nomials that can be used to approximate other more general functions, and which
are easy to implement in computer software. For computing piecewise polynomial
approximations we present two techniques, interpolation and L2-projection. We also
prove estimates for the error in these approximations.

1.1 Piecewise Polynomial Spaces

1.1.1 The Space of Linear Polynomials

Let I D Œx0; x1� be an interval on the real axis and let P1.I / denote the vector space
of linear functions on I , defined by

P1.I / D fv W v.x/ D c0 C c1x; x 2 I; c0; c1 2 Rg (1.1)

In other words P1.I / contains all functions of the form v.x/ D c0 C c1x on I .
Perhaps the most natural basis for P1.I / is the monomial basis f1; xg, since

any function v in P1.I / can be written as a linear combination of 1 and x. That
is, a constant c0 times 1 plus another constant c1 times x. In doing so, v is
clearly determined by specifying c0 and c1, the so-called coefficients of the linear
combination. Indeed, we say that v has two degrees of freedom.

However, c0 and c1 are not the only degrees of freedom possible for v. To see
this, recall that a line, or linear function, is uniquely determined by requiring it to
pass through any two given points. Now, obviously, there are many pairs of points
that can specify the same line. For example, .0; 1/ and .2; 3/ can be used to specify
v D xC1, but so can .�1; 0/ and .4; 5/. In fact, any pair of points within the interval
I will do as degrees of freedom for v. In particular, v can be uniquely determined
by its values ˛0 D v.x0/ and ˛1 D v.x1/ at the end-points x0 and x1 of I .

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__1, © Springer-Verlag Berlin Heidelberg 2013

1



2 1 Piecewise Polynomial Approximation in 1D

To prove this, let us assume that the values ˛0 D v.x0/ and ˛1 D v.x1/ are given.
Inserting x D x0 and x D x1 into v.x/ D c0 C c1x we obtain the linear system

�
1 x0

1 x1

� �
c0

c1

�
D

�
˛0

˛1

�
(1.2)

for ci , i D 1; 2.
Computing the determinant of the system matrix we find that it equals x1 � x0,

which also happens to be the length of the interval I . Hence, the determinant is
positive, and therefore there exist a unique solution to (1.2) for any right hand side
vector. Moreover, as a consequence, there is exactly one function v in P1.I /, which
has the values ˛0 and ˛1 at x0 and x1, respectively. In the following we shall refer
to the points x0 and x1 as the nodes.

We remark that the system matrix above is called a Vandermonde matrix.
Knowing that we can completely specify any function in P1.I / by its node values

˛0 and ˛1 we now introduce a new basis f�0; �1g for P1.I /. This new basis is called
a nodal basis, and is defined by

�j .xi / D
(

1; if i D j

0; if i ¤ j
; i; j D 0; 1 (1.3)

From this definition we see that each basis function �j , j D 0; 1, is a linear function,
which takes on the value 1 at node xj , and 0 at the other node.

The reason for introducing the nodal basis is that it allows us to express any
function v in P1.I / as a linear combination of �0 and �1 with ˛0 and ˛1 as
coefficients. Indeed, we have

v.x/ D ˛0�0.x/ C ˛1�1.x/ (1.4)

This is in contrast to the monomial basis, which given the node values requires
inversion of the Vandermonde matrix to determine the corresponding coefficients c0

and c1.
The nodal basis functions take the following explicit form on I

�0.x/ D x1 � x

x1 � x0

; �1.x/ D x � x0

x1 � x0

(1.5)

This follows directly from the definition (1.3), or by solving the linear system (1.2)
with Œ1; 0�T and Œ0; 1�T as right hand sides.

1.1.2 The Space of Continuous Piecewise Linear Polynomials

A natural extension of linear functions is piecewise linear functions. In constructing
a piecewise linear function, v, the basic idea is to first subdivide the domain of v
into smaller subintervals. On each subinterval v is simply given by a linear function.



1.1 Piecewise Polynomial Spaces 3

x0 x1 x2 x3 x4 x5

v(x)

x

Fig. 1.1 A continuous
piecewise linear function v

Continuity of v between adjacent subintervals is enforced by placing the degrees of
freedom at the start- and end-points of the subintervals. We shall now formalize this
more mathematically stringent.

Let I D Œ0; L� be an interval and let the n C 1 node points fxi gn
iD0 define a

partition

I W 0 D x0 < x1 < x2 < : : : < xn�1 < xn D L (1.6)

of I into n subintervals Ii D Œxi�1; xi �, i D 1; 2 : : : ; n, of length hi D xi � xi�1.
We refer to the partition I as to a mesh.

On the mesh I we define the space Vh of continuous piecewise linear functions
by

Vh D fv W v 2 C 0.I /; vjIi 2 P1.Ii /g (1.7)

where C 0.I / denotes the space of continuous functions on I , and P1.Ii / denotes
the space of linear functions on Ii . Thus, by construction, the functions in Vh are
linear on each subinterval Ii , and continuous on the whole interval I . An example
of such a function is shown in Fig. 1.1

It should be intuitively clear that any function v in Vh is uniquely determined by
its nodal values

fv.xi /gn
iD0 (1.8)

and, conversely, that for any set of given nodal values f˛i gn
iD0 there exist a function v

in Vh with these nodal values. Motivated by this observation we let the nodal values
define our degrees of freedom and introduce a basis f'j gn

j D0 for Vh associated with
the nodes and such that

'j .xi / D
(

1; if i D j

0; if i ¤ j
; i; j D 0; 1; : : : ; n (1.9)

The resulting basis functions are depicted in Fig. 1.2.
Because of their shape the basis functions 'i are often called hat functions. Each

hat function is continuous, piecewise linear, and takes a unit value at its own node xi ,
while being zero at all other nodes. Consequently, 'i is only non-zero on the two



4 1 Piecewise Polynomial Approximation in 1D

1
'0 'i

x0 x1 xi−1 xi+1xi xn
x

Fig. 1.2 A typical hat
function 'i on a mesh. Also
shown is the “half hat” '0

intervals Ii and IiC1 containing node xi . Indeed, we say that the support of 'i is
Ii [IiC1. The exception is the two “half hats” '0 and 'n at the leftmost and rightmost
nodes a D x0 and xn D b with support only on one interval.

By construction, any function v in Vh can be written as a linear combination
of hat functions f'ign

iD0 and corresponding coefficients f˛ign
iD0 with ˛i D v.xi /,

i D 0; 1; : : : ; n, the nodal values of v. That is,

v.x/ D
nX

iD0

˛i 'i .x/ (1.10)

The explicit expressions for the hat functions are given by

'i D

8̂̂
<
ˆ̂:

.x � xi�1/=hi ; if x 2 Ii

.xiC1 � x/=hiC1; if x 2 IiC1

0; otherwise

(1.11)

1.2 Interpolation

We shall now use the function spaces P1.I / and Vh to construct approximations,
one from each space, to a given function f . The method we are going to use is
very simple and only requires the evaluation of f at the node points. It is called
interpolation.

1.2.1 Linear Interpolation

As before, we start on a single interval I D Œx0; x1�. Given a continuous function f

on I , we define the linear interpolant �f 2 P1.I / to f by

�f .x/ D f .x0/'0 C f .x1/'1 (1.12)

We observe that interpolant approximates f in the sense that the values of �f and
f are the same at the nodes x0 and x1 (i.e., �f .x0/ D f .x0/ and �f .x1/ D f .x1/).



1.2 Interpolation 5

x0 x1

f(x)

p f(x)

x

Fig. 1.3 A function f and its
linear interpolant �f

In Fig. 1.3 we show a function f and its linear interpolant �f .
Unless f is linear, �f will only approximate f , and it is therefore of interest to

measure the difference f � �f , which is called the interpolation error. To this end,
we need a norm. Now, there are many norms and it is not easy to know which is the
best. For instance, should we measure the interpolation error in the infinity norm,
defined by

kvk1 D max
x2I

jv.x/j (1.13)

or the L2.I /-norm defined, for any square integrable function v on I , by

kvkL2.I / D
�Z

I

v2 dx

�1=2

(1.14)

We shall use the latter norm, since it captures the average size of a function,
whereas the former only captures the pointwise maximum.

In this context we recall that the L2.I /-norm, or any norm for that matter, obeys
the Triangle inequality

kv C wkL2.I / � kvkL2.I / C kwkL2.I / (1.15)

as well as the Cauchy-Schwarz inequality
Z

I

vw dx � kvkL2.I /kwkL2.I / (1.16)

for any two functions v and w in L2.I /.
Then, using the L2-norm to measure the interpolation error, we have the

following results.

Proposition 1.1. The interpolant �f satisfies the estimates

kf � �f kL2.I / � C h2kf 00kL2.I / (1.17)

k.f � �f /0kL2.I / � C hkf 00kL2.I / (1.18)

where C is a constant, and h D x1 � x0.



6 1 Piecewise Polynomial Approximation in 1D

Proof. Let e D f � �f denote the interpolation error.
From the fundamental theorem of calculus we have, for any point y in I ,

e.y/ D e.x0/ C
Z y

x0

e0 dx (1.19)

where e.x0/ D f .x0/ � �f .x0/ D 0 due to the definition of �f .
Now, using the Cauchy-Schwarz inequality we have

e.y/ D
Z y

x0

e0 dx (1.20)

�
Z y

x0

je0j dx (1.21)

�
Z

I

1 � je0j dx (1.22)

�
�Z

I

12 dx

�1=2 �Z
I

e02 dx

�1=2

(1.23)

D h1=2

�Z
I

e02 dx

�1=2

(1.24)

or, upon squaring both sides,

e.y/2 � h

Z
I

e02 dx D hke0k2
L2.I /

(1.25)

Integrating this inequality over I we further have

kek2
L2.I /

D
Z

I

e.y/2 dy �
Z

I

hke0k2
L2.I /

dy D h2ke0k2
L2.I /

(1.26)

since the integrand to the right of the inequality is independent of y. Thus, we have

kekL2.I / � hke0kL2.I / (1.27)

With a similar, but slightly different argument, we also have

ke0kL2.I / � hke00kL2.I / (1.28)

Hence, we conclude that

kekL2.I / � hke0kL2.I / � h2ke00kL2.I / (1.29)



1.2 Interpolation 7

0 = x0 x1 x2 x3 x4 x5 = 1

3

2

f(x)

p f(x)

x

Fig. 1.4 The function
f .x/ D 2x sin.2�x/ C 3 and
its continuous piecewise
linear interpolant �f .x/ on a
uniform mesh of I D Œ0; 1�

with six nodes xi ,
i D 0; 1; : : : ; 5

from which the first inequality of the proposition follows by noting that since �f

is linear e00 D f 00. The second inequality of the proposition follows similarly
from (1.26)

The difference in argument between deriving (1.27) and (1.28) has to do with the
fact that we can not simply replace e with e0 in (1.19), since e0.x0/ ¤ 0. However,
noting that e.x0/ D e.x1/ D 0, there exist by Rolle’s theorem a point Nx in I such
that e0. Nx/ D 0, which means that

e0.y/ D e0. Nx/ C
Z y

Nx
e00 dx D

Z y

Nx
e00 dx (1.30)

Starting instead from this and proceeding as shown above (1.28) follows. ut
Examining the proof of Proposition 1.1 we note that the constant C equals unity

and could equally well be left out. We have, however, chosen to retain this constant,
since the estimates generalize to higher spatial dimensions, where C is not unity.
The important thing to understand is how the interpolation error depends on the
interpolated function f , and the size of the interval h.

1.2.2 Continuous Piecewise Linear Interpolation

It is straight forward to extend the concept of linear interpolation on a single interval
to continuous piecewise linear interpolation on a mesh. Indeed, given a continuous
function f on the interval I D Œ0; L�, we define its continuous piecewise linear
interpolant �f 2 Vh on a mesh I of I by

�f .x/ D
nX

iD1

f .xi /'i .x/ (1.31)

Figure 1.4 shows the continuous piecewise linear interpolant �f .x/ to f .x/ D
2x sin.2�x/ C 3 on a uniform mesh of I D Œ0; 1� with 6 nodes.

Regarding the interpolation error f � �f we have the following results.



8 1 Piecewise Polynomial Approximation in 1D

Proposition 1.2. The interpolant �f satisfies the estimates

kf � �f k2
L2.I /

� C

nX
iD1

h4
i kf 00k2

L2.Ii /
(1.32)

k.f � �f /0k2
L2.I /

� C

nX
iD1

h2
i kf 00k2

L2.Ii /
(1.33)

Proof. Using the Triangle inequality and Proposition 1.1, we have

kf � �f k2
L2.I /

D
nX

iD1

kf � �f k2
L2.Ii /

(1.34)

�
nX

iD1

C h4
i kf 00k2

L2.Ii /
(1.35)

which proves the first estimate. The second follows similarly. ut
Proposition 1.2 says that the interpolation error vanish as the mesh size hi tends to
zero. This is natural, since we expect the interpolant �f to be a better approximation
to f where ever the mesh is fine. The proposition also says that if the second
derivative f 00 of f is large then the interpolation error is also large. This is also
natural, since if the graph of f bends a lot (i.e., if f 00 is large) then f is hard to
approximate using a piecewise linear function.

1.3 L2-Projection

Interpolation is a simple way of approximating a continuous function, but there
are, of course, other ways. In this section we shall study so-called orthogonal-, or
L2-projection. L2-projection gives a so to speak good on average approximation,
as opposed to interpolation, which is exact at the nodes. Moreover, in contrast to
interpolation, L2-projection does not require the function we seek to approximate
to be continuous, or have well-defined node values.

1.3.1 Definition

Given a function f 2 L2.I / the L2-projection Phf 2 Vh of f is defined by

Z
I

.f � Phf /v dx D 0; 8v 2 Vh (1.36)



1.3 L2-Projection 9

f

Ph f

f − Ph f

v

Vh

Fig. 1.5 Illustration of the function f and its L2-projection Phf on the space Vh

0 = x0 x1 x2 x3 x4 x5 = 1

1

2

3

f(x)

Ph f(x)
x

Fig. 1.6 The function
f .x/ D 2x sin.2�x/ C 3 and
its L2-projection Phf on a
uniform mesh of I D Œ0; 1�

with six nodes, xi ,
i D 1; 2; : : : ; 6

In analogy with projection onto subspaces of Rn, (1.34) defines a projection of f

onto Vh, since the difference f � Phf is required to be orthogonal to all functions
v in Vh. This is illustrated in Fig. 1.5.

As we shall see later on, Phf is the minimizer of minv2Vh
kf � vkL2.I /, and

therefore we say that it approximates f in a least squares sense. In fact, Phf is the
best approximation to f when measuring the error f � Phf in the L2-norm.

In Fig. 1.6 we show the L2-projection of f .x/ D 2x sin.2�x/ C 3 computed on
the same mesh as was used for showing the continuous piecewise linear interpolant
�f in Fig. 1.4. It is instructive to compare these two approximations because it
highlights their different characteristics. The interpolant �f approximates f exactly
at the nodes, while the L2-projection Phf approximates f on average. In doing
so, it is common for Phf to over and under shoot local maxima and minima of
f , respectively. Also, both the interpolant and the L2-projection have difficulty
with approximating rapidly oscillating or discontinuous functions unless the node
positions are adjusted appropriately.



10 1 Piecewise Polynomial Approximation in 1D

1.3.2 Derivation of a Linear System of Equations

In order to actually compute the L2-projection Phf , we first note that the defini-
tion (1.36) is equivalent to

Z
I

.f � Phf /'i dx D 0; i D 0; 1; : : : ; n (1.37)

where 'i , i D 0; 1; : : : ; n, are the hat functions. This is a consequence of the fact
that if (1.36) is satisfied for v anyone of the hat functions, then it is also satisfied
for v a linear combination of hat functions. Conversely, since any function v in Vh is
precisely such a linear combination of hat functions, (1.37) implies (1.36).

Then, since Phf belongs to Vh it can be written as the linear combination

Phf D
nX

j D0

�j 'j (1.38)

where �j , j D 0; 1; : : : ; n, are n C 1 unknown coefficients to be determined.
Inserting the ansatz (1.38) into (1.37) we get

Z
I

f 'i dx D
Z

I

0
@ nX

j D0

�j 'j

1
A 'i dx (1.39)

D
nX

j D0

�j

Z
I

'j 'i dx; i D 0; 1; : : : ; n (1.40)

Further, introducing the notation

Mij D
Z

I

'j 'i dx; i; j D 0; 1; : : : ; n (1.41)

bi D
Z

I

f 'i dx; i D 0; 1; : : : ; n (1.42)

we have

bi D
nX

j D0

Mij �j ; i D 0; 1; : : : ; n (1.43)

which is an .n C 1/ � .n C 1/ linear system for the n C 1 unknown coefficients �j ,
j D 0; 1; : : : ; n. In matrix form, we write this

M � D b (1.44)



1.3 L2-Projection 11

where the entries of the .n C 1/ � .n C 1/ matrix M and the .n C 1/ � 1 vector b

are defined by (1.41) and (1.42), respectively.
We, thus, conclude that the coefficients �j , j D 0; 1; : : : ; n in the ansatz (1.38)

satisfy a square linear system, which must be solved in order to obtain the L2-
projection Phf .

For historical reasons we refer to M as the mass matrix and to b as the load
vector.

1.3.3 Basic Algorithm to Compute the L2-Projection

The following algorithm summarizes the basic steps for computing the L2-
projection Phf :

Algorithm 1 Basic algorithm to compute the L2-projection
1: Create a mesh with n elements on the interval I and define the corresponding space of

continuous piecewise linear functions Vh.
2: Compute the .n C 1/ � .n C 1/ matrix M and the .n C 1/ � 1 vector b, with entries

Mij D
Z

I

'j 'i dx; bi D
Z

I

f 'i dx (1.45)

3: Solve the linear system
M � D b (1.46)

4: Set

Phf D
nX

jD0

�j 'j (1.47)

1.3.4 A Priori Error Estimate

Naturally, we are interested in knowing how good Phf is at approximating f . In
particular, we wish to derive bounds for the error f � Phf . The next theorem gives
a key result for deriving such error estimates. It is a so-called a best approximation
result.

Theorem 1.1. The L2-projection Phf , defined by (1.36), satisfies the best approx-
imation result

kf � Phf kL2.I / � kf � vkL2.I /; 8v 2 Vh (1.48)

Proof. Using the definition of the L2-norm and writing f �Phf D f �vCv�Phf ,
with v an arbitrary function in Vh, we have



12 1 Piecewise Polynomial Approximation in 1D

kf � Phf k2
L2.I /

D
Z

I

.f � Phf /.f � v C v � Phf / dx (1.49)

D
Z

I

.f � Phf /.f � v/ dx C
Z

I

.f � Phf /.v � Phf / dx

(1.50)

D
Z

I

.f � Phf /.f � v/ dx (1.51)

� kf � Phf kL2.I /kf � vkL2.I / (1.52)

where we used the definition of the L2-projection to conclude that
Z

I

.f � Phf /.v � Phf / dx D 0 (1.53)

since v � Phf 2 Vh. Dividing by kf � Phf kL2.I / concludes the proof. ut
This shows that Phf is the closest of all functions in Vh to f when measuring in
the L2-norm. Hence, the name best approximation result.

We can use best approximation result together with interpolation estimates to
study how the error f � Phf depends on the mesh size. In doing so, we have the
following basic so-called a priori error estimate.

Theorem 1.2. The L2-projection Phf satisfies the estimate

kf � Phf k2
L2.I /

� C

nX
iD1

h4
i kf 00k2

L2.Ii /
(1.54)

Proof. Starting from the best approximation result, choosing v D �f the interpolant
of f , and using the interpolation error estimate of Proposition 1.1, we have

kf � Phf k2
L2.I /

� kf � �f k2
L2.I /

(1.55)

�
nX

iD1

kf � �f k2
L2.Ii /

(1.56)

�
nX

iD1

C h4
i kf 00k2

L2.Ii /
(1.57)

which proves the estimate. ut
Defining h D max1�i�n hi we conclude that

kf � Phf kL2.I / � C h2kf 00kL2.I / (1.58)

Thus, the L2-error kf �Phf kL2.I / tends to zero as the maximum mesh size h tends
to zero.



1.4 Quadrature 13

1.4 Quadrature

To compute the L2-projection we need to compute the mass matrix M whose entries
are integrals involving products of hat functions. One way of doing this is to use
quadrature, or, numerical integration. To this end, f be a continuous function on
the interval I D Œx0; x1�, and consider the problem of evaluating, approximately,
the integral

J D
Z

I

f .x/ dx (1.59)

A quadrature rule is a formula that is used to compute integrals approximately.
It it usually derived by first interpolating the integrand f by a polynomial and then
integrating the interpolant. Depending on the degree of the interpolating polynomial
one obtains quadrature rules of different computational complexity and accuracy.
Evaluating a quadrature rule generally involves summing values of the integrand f

at a set of carefully selected quadrature points within the interval I times the interval
length h D x1 �x0. We shall next describe three classical quadrature rules called the
Mid-point rule, the Trapezoidal rule, and Simpson’s formula, which corresponds to
using polynomial interpolation of degree 0, 1, and 2 on f , respectively.

1.4.1 The Mid-Point Rule

Interpolating f with the constant f .m/, where m D .x0 C x1/=2 is the mid-point
of I , we get

J � f .m/h (1.60)

which is the Mid-point rule. Geometrically this means that we approximate the area
under the integrand f with the area of the square f .m/h, see Fig. 1.7. The Mid-
point rule integrates linear polynomials exactly.

1.4.2 The Trapezoidal Rule

Continuing, interpolating f with the line passing through the points .x0; f .x0// and
.x1; f .x1// we get

J � f .x0/ C f .x1/

2
h (1.61)

which is the Trapezoidal rule. Geometrically this means that we approximate the
area under f with the area under the trapezoidal with the four corner points .x0; 0/,



14 1 Piecewise Polynomial Approximation in 1D

x0 m x1
x

f(x)

Fig. 1.7 The area of the
shaded square approximates
J D R

I f .x/ dx

x0 x1
x

f(x)

Fig. 1.8 The area of the
shaded trapezoidal
approximates
J D R

I f .x/ dx

.x0; f .x0//, .x1; 0/, and .x1; f .x1//, see Fig. 1.8. The Trapezoidal rule is also exact
for linear polynomials.

1.4.3 Simpson’s Formula

This rule corresponds to a quadratic interpolant using the end-points and the mid-
point of the interval I as nodes. To simplify things a bit let I D Œ0; l� be the interval
of integration and let g.x/ D c0Cc1xCc2x2 be the interpolant. Since g interpolates
f at the points .0; f .0//, . l

2
; f . l

2
//, and .l; f .l// (i.e., its graph passes trough these

points) their coordinates must satisfy the equation for g. This yields the following
linear system for c0, c1, and c2.

2
4 0 0 1

1
4
l2 1

2
l 1

l2 l 1

3
5

2
4c0

c1

c2

3
5 D

2
4f .0/

f . l
2
/

f .l/

3
5 (1.62)

Solving this one readily finds

c0 D 2.f .0/ � 2f . l
2
/ Cf .l//= l2; c1 D � .3f .0/ � 4f . l

2
/ Cf .l//= l; c2 D f .0/

(1.63)

Now, integrating g from 0 to l one eventually ends up with



1.5 Computer Implementation 15

Z l

0

g.x/ dx D f .0/ C 4f . 1
2
l/ C f .l/

6
l (1.64)

which is Simpson’s formula.
On the interval I D Œx0; x1� Simpson’s formula takes the form

J � f .x0/ C 4f .m/ C f .x1/

6
h (1.65)

with m D 1
2
.x0 C x1/ and h D x1 � x0.

Simpson’s formula is exact for third order polynomials.

1.5 Computer Implementation

1.5.1 Assembly of the Mass Matrix

Having studied various quadrature rules, let us now go through the nitty gritty details
of how to assemble the mass matrix M and load vector b. We begin by calculating
the entries Mij D R

I
'i 'j dx of the mass matrix. Because each hat 'i is a linear

polynomial the product of two hats is a quadratic polynomial. Thus, Simpson’s
formula can be used to integrate Mij exactly. In doing so, since the hats 'i and
'j lack common support for ji � j j > 1 only Mii , MiiC1, and MiC1i need to be
calculated. All other matrix entries are zero by default. This is clearly seen from
Fig. 1.9 showing two neighbouring hat functions and their support. This leads to the
observation that the mass matrix M is tridiagonal.

Starting with the diagonal entries Mii and using Simpson’s formula we have

Mii D
Z

I

'2
i dx (1.66)

D
Z xi

xi�1

'2
i dx C

Z xiC1

xi

'2
i dx (1.67)

D 0 C 4 � . 1
2
/2 C 1

6
hi C 1 C 4 � . 1

2
/2 C 0

6
hiC1 (1.68)

D hi

3
C hiC1

3
; i D 1; 2; : : : ; n � 1 (1.69)

where xi � xi�1 D hi and xiC1 � xi D hiC1. The first and last diagonal entry are
M00 D h1=3 and Mnn D hn=3, respectively, since the hat functions '0 and 'n are
only half.

Continuing with the subdiagonal entries MiC1 i , still using Simpson’s formula,
we have



16 1 Piecewise Polynomial Approximation in 1D

1

'i−1 'i

xi−2 xi−1 xi+1xi
x

Fig. 1.9 Illustration of the
hat functions 'i�1 and 'i and
their support

MiC1 i D
Z

I

'i'iC1 dx (1.70)

D
Z xiC1

xi

'i 'iC1 dx (1.71)

D 1 � 0 C 4 � . 1
2
/2 C 0 � 1

6
hiC1 (1.72)

D hiC1

6
; i D 0; 1; : : : ; n (1.73)

A similar calculation shows that the superdiagonal entries are Mi iC1 D hiC1=6.
Hence, the mass matrix takes the form

M D

2
666666664

h1

3
h1

6
h1

6
h1

3
C h2

3
h2

6
h2

6
h2

3
C h3

3
h3

6
: : :

: : :
: : :

hn�1

6
hn�1

3
C hn

3
hn

6
hn

6
hn

3

3
777777775

(1.74)

From (1.74) it is evident that the global mass matrix M can be written as a sum
of n simple matrices, viz.,

M D

2
66666664

h1

3
h1

6
h1

6
h1

3

3
77777775

C

2
66666664

h2

3
h2

6
h2

6
h2

3

3
77777775

C : : : C

2
66666664 hn

3
hn

6
hn

6
hn

3

3
77777775

(1.75)

D M I1 C M I2 C : : : C M In (1.76)

Each matrix M Ii , i D 1; 2 : : : ; n, is obtained by restricting integration to one
subinterval, or element, Ii and is therefore called a global element mass matrix.
In practice, however, these matrices are never formed, since it suffice to compute
their 2 � 2 blocks of non-zero entries. From the sum (1.75) we see that on each



1.5 Computer Implementation 17

element I this small block takes the form

M I D 1

6

�
2 1

1 2

�
h (1.77)

where h is the length of I . We refer to M I as the local element mass matrix.
The summation of the element mass matrices into the global mass matrix is

called assembling. The assembly process lies at the very heart of finite element
programming because it allows the forming of the mass matrix through the use of a
single loop over the elements. It also generalizes to higher dimensions.

The following algorithm summarizes how to assemble the mass matrix M :

Algorithm 2 Assembly of the mass matrix
1: Allocate memory for the .n C 1/ � .n C 1/ matrix M and initialize all matrix entries to zero.
2: for i D 1; 2; : : : ; n do
3: Compute the 2 � 2 local element mass matrix M I given by

M I D 1

6

�
2 1

1 2

�
h (1.78)

where h is the length of element Ii .
4: Add M I

11 to Mii

5: Add M I
12 to MiiC1

6: Add M I
21 to MiC1i

7: Add M I
22 to MiC1iC1

8: end for

The following MATLAB routine assembles the mass matrix.

function M = MassAssembler1D(x)
n = length(x)-1; % number of subintervals
M = zeros(n+1,n+1); % allocate mass matrix
for i = 1:n % loop over subintervals

h = x(i+1) - x(i); % interval length
M(i,i) = M(i,i) + h/3; % add h/3 to M(i,i)
M(i,i+1) = M(i,i+1) + h/6;
M(i+1,i) = M(i+1,i) + h/6;
M(i+1,i+1) = M(i+1,i+1) + h/3;

end

Input to this routine is a vector x holding the node coordinates. Output is the global
mass matrix.



18 1 Piecewise Polynomial Approximation in 1D

1.5.2 Assembly of the Load Vector

We next calculate the load vector b. Because the entries bi D R
i
f 'i dx depend on

the function f , we can not generally expect to calculate them exactly. However, we
can approximate entry bi using a quadrature rule. Using the Trapezoidal rule, for
instance, we have

bi D
Z

I

f 'i dx (1.79)

D
Z xiC1

xi�1

f 'i dx (1.80)

D
Z xi

xi�1

f 'i dx C
Z xiC1

xi

f 'i dx (1.81)

� .f .xi�1/'i .xi�1/ C f .xi /'i .xi //hi=2 (1.82)

C .f .xi /'i .xi / C f .xiC1/'i .xiC1//hiC1=2 (1.83)

D .0 C f .xi //hi =2 C .f .xi / C 0/hiC1=2 (1.84)

D f .xi /.hi C hiC1/=2 (1.85)

The approximate load vector then takes the form

b D

2
666666664

f .x0/h1=2

f .x1/.h1 C h2/=2

f .x2/.h2 C h3/=2
:::

f .xn�1/.hn�1 C hn/=2

f .xn/hn=2

3
777777775

(1.86)

Splitting b into a sum over the elements yields the n global element load vectors
bIi

b D

2
666664

f .x0/

f .x1/

3
777775

h1=2 C

2
666664

f .x1/

f .x2/

3
777775

h2=2 C : : : C

2
666664f .xn�1/

f .xn/

3
777775

hn=2 (1.87)

D bI1 C bI2 C : : : C bIn : (1.88)



1.5 Computer Implementation 19

Each vector bIi , i D 1; 2; : : : ; n, is obtained by restricting integration to element Ii .
The assembly of the load vector b is very similar to that of the mass matrix as the
following algorithm shows:

Algorithm 3 Assembly of the load vector
1: Allocate memory for the .n C 1/ � 1 vector b and initialize all vector entries to zero.
2: for i D 1; 2; : : : ; n do
3: Compute the 2 � 1 local element load vector bI given by

bI D 1

2

�
f .xi�1/

f .xi /

�
h (1.89)

where h is the length of element Ii .
4: Add bI

1 to bi�1

5: Add bI
2 to bi

6: end for

A MATLAB routine for assembling the load vector is listed below.

function b = LoadAssembler1D(x,f)
n = length(x)-1;
b = zeros(n+1,1);
for i = 1:n
h = x(i+1) - x(i);
b(i) = b(i) + f(x(i))*h/2;
b(i+1) = b(i+1) + f(x(i+1))*h/2;

end

Here, f is assumed to be a separate routine specifying the function f . This needs
perhaps a little bit of explanation. MATLAB has a something called function
handles, which provide a way of passing a routine as argument to another routine.
For example, suppose we have written a routine called Foo1 to specify the function
f .x/ D x sin.x/

function y = Foo1(x)
y=x.*sin(x)

To assemble the corresponding load vector, we type

b = LoadAssembler1D(x,@Foo1)

This passes the routine Foo1 as argument to LoadAssembler1D and allows it to be
evaluated inside the assembler. The at sign @ creates the function handle. Indeed,
function handles provide means for writing flexible and reusable code.

In this context we mention that if Foo1 is a small routine, then it can be inlined
and called, viz.,

Foo1 = inline(’x.*sin(x)’,’x’)
b = LoadAssembler1D(x,Foo1)



20 1 Piecewise Polynomial Approximation in 1D

Note that there is no at sign in the call to the load vector assembler.
Putting it all together we get the following main routine for computing L2-

projections.

function L2Projector1D()
n = 5; % number of subintervals
h = 1/n; % mesh size
x = 0:h:1; % mesh
M = MassAssembler1D(x); % assemble mass
b = LoadAssembler1D(x,@Foo1); % assemble load
Pf = M\b; % solve linear system
plot(x,Pf) % plot L^2 projection

1.6 Problems

Exercise 1.1. Let I D Œx0; x1�. Verify by direct calculation that the basis functions

�0.x/ D x1 � x

x1 � x0

; �1.x/ D x � x0

x1 � x0

for P1.I / satisfies �0.x/ C �1.x/ D 1 and x0�0.x/ C x1�1.x/ D x. Give
a geometrical interpretation by drawing �0.x/, �1.x/, �0.x/ C �1.x/, x0�0.x/,
x1�1.x/ and x0�0.x/ C x1�1.x/.

Exercise 1.2. Let 0 D x0 < x1 < x2 < x3 D 1, where x1 D 1=6 and x2 D 1=2, be
a partition of the interval I D Œ0; 1� into three subintervals, and let Vh be the space
of continuous piecewise linear functions on this partition.

(a) Determine analytical expressions for the hat function '1.x/ and draw it.
(b) Draw the function v.x/ D �'0.x/ C '2.x/ C 2'3.x/ and its derivative v0.x/.
(c) Draw the piecewise constant mesh function h.x/ D hi on each subinterval Ii .
(d) What is the dimension of Vh?

Exercise 1.3. Determine the linear interpolant �f 2 P1.I / on the single interval
I D Œ0; 1� to the following functions f .

(a) f .x/ D x2.
(b) f .x/ D 3 sin.2�x/.

Make plots of f and �f in the same figure.

Exercise 1.4. Let Vh be the space of all continuous piecewise linears on a uniform
mesh with four nodes of I D Œ0; 1�. Draw the interpolant �f 2 Vh to the following
functions f .

(a) f .x/ D x2 C 1.
(b) f .x/ D cos.�x/.



1.6 Problems 21

Can you think of a better partition of I assuming we are restricted to three
subintervals?

Exercise 1.5. Calculate kf k1 with f D x.x � 1=2/.x � 1=3/ on the interval
I D Œ0; 1�.

Exercise 1.6. Let I D Œ0; 1� and f .x/ D x2 for x 2 I .

(a) Calculate
R

I
f dx analytically.

(b) Compute
R

I
f dx using the Mid-point rule.

(c) Compute
R

I
f dx using the Trapezoidal rule.

(d) Compute the quadrature errors in (b) and (c).

Exercise 1.7. Let I D Œ0; 1� and f .x/ D x4 for x 2 I .

(a) Calculate
R

I
f dx analytically.

(b) Compute
R

I
f dx using Simpson’s formula on the single interval I .

(c) Divide I into two equal subintervals and compute
R

I
f dx using Simpson’s

formula on each subinterval.
(d) Compute the quadrature errors in (b) and (c). By what factor has the error

decreased?

Exercise 1.8. Let I D Œ0; 1� and let f .x/ D x2 for x 2 I .

(a) Let Vh be the space P1.I / of linear functions on I . Compute the L2-projection
Phf 2 Vh of f .

(b) Divide I into two subintervals of equal length and let Vh be the corresponding
space Vh of continuous piecewise linear functions. Compute the L2-projection
Phf 2 Vh of f .

(c) Plot your results and compare with the nodal interpolant �f .

Exercise 1.9. Show that
R

˝.f � Phf /v dx D 0 for all v 2 Vh, if and only ifR
˝.f � Phf /'i dx D 0, for i D 0; 1; : : : ; n, where f'ign

iD0 � Vh is the usual basis
of hat functions.

Exercise 1.10. Let .f; g/ D R
I

fg dx and kf k2
L2.I /

D .f; f / denote the L2-scalar
product and norm, respectively. Also, let I D Œ0; ��, f D x, g D cos.x/, and
h D 2 cos.3x/ for x 2 I .

(a) Calculate .f; g/.
(b) Calculate .g; h/. Are g and h orthogonal?
(c) Calculate kf kL2.I / and kgkL2.I /.

Exercise 1.11. Let V be a linear subspace of R
n with basis fv1; : : : ; vmg with

m < n. Let P x 2 V be the orthogonal projection of x 2 R
n onto the subspace V .

Derive a linear system of equations that determines P x. Note that your results are
analogous to the L2-projection when the usual scalar product in R

n is replaced by
the scalar product in L2.I /. Compare this method of computing the projection P x

to the method used for computing the projection of a three dimensional vector onto a
two dimensional subspace. What happens if the basis fv1; : : : ; vmg is L2-orthogonal?



22 1 Piecewise Polynomial Approximation in 1D

Exercise 1.12. Show that f1; x; .3x2 �1/=2g form a basis for the space of quadratic
polynomials P2.I /, on I D Œ�1; 1�. Then compute and draw the L2-projections
Phf 2 P2.I / on I for the following two functions f .

(a) f .x/ D 1 C 2x.
(b) f .x/ D x3.

Exercise 1.13. Show that the hat function basis f'j gn
j D0 of Vh is almost orthogonal.

How can we see that it is almost orthogonal by looking at the non-zero elements
of the mass matrix? What can we say about the mass matrix if we had a fully
orthogonal basis?

Exercise 1.14. Modify L2Projector1D and compute the L2-projection Phf of
the following functions f .

(a) f .x/ D 1.
(b) f .x/ D x3.x � 1/.1 � 2x/.
(c) f .x/ D arctan..x � 0:5/=�/, with � D 0:1 and 0:01.

Use a uniform mesh I of the interval I D Œ0; 1� with n D 5, 25, and 100 subintervals.



http://www.springer.com/978-3-642-33286-9


	1 Piecewise Polynomial Approximation in 1D
	1.1 Piecewise Polynomial Spaces
	1.1.1 The Space of Linear Polynomials
	1.1.2 The Space of Continuous Piecewise LinearPolynomials

	1.2 Interpolation
	1.2.1 Linear Interpolation
	1.2.2 Continuous Piecewise Linear Interpolation

	1.3 L2-Projection
	1.3.1 Definition
	1.3.2 Derivation of a Linear System of Equations
	1.3.3 Basic Algorithm to Compute the L2-Projection
	1.3.4 A Priori Error Estimate

	1.4 Quadrature
	1.4.1 The Mid-Point Rule
	1.4.2 The Trapezoidal Rule
	1.4.3 Simpson's Formula

	1.5 Computer Implementation
	1.5.1 Assembly of the Mass Matrix
	1.5.2 Assembly of the Load Vector

	1.6 Problems


