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Chapter 1

Compact, finite-difference
schemes
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(using the von Neumann approach)



3rd-order Runge-Kutta:
y' = f(t,y)
yn+1 = yn + (K1+4K2+K3)/6
K1 = f(tn,yn)
K2 = f(tn+h/2,yn+(h/2)K1)
K3 = f(tn+1,yn-hK1+2hK2)
When f = f(t), this turns out to be Simpson's quadrature rule.
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1.1 Filtering

The idea is to filter out the high-wavenumber components of the solution
vector f , which are most likely related to numerical errors (as aliasing). Lele
[1992] conceives filtering as a in-place interpolation:

β f̂i−2+α f̂i−1+f̂i+α f̂i+1+β f̂i+2 = a fi+
b

2
(fi+1 + fi−1)+

c

2
(fi+2 + fi−2)+

d

2
(fi+3 + fi−3)

Taking the DFT of f and exploting orthonormality of the Fourier modes
yields:

f̂i = T (w) ei w si

where w ≡ k h is the modified wavenumber and si ≡ xi/h. The transfer
function T (w) reads:

T (w) =
a+ b cosw + c cos 2w + d cos 3w

1 + 2α cosw + 2β cos 2w

The formal accuracy of the filtering scheme is set by enforcing conditions on
the derivatives at w = 0:

d(k)T

dw(k)

∣∣∣∣∣
w=0

= 0, k = 0, 1, . . .

Low-pass filtering conditions are reported by [Lele, 1992] in the form:

T (π) = 0; T ′′(π) = 0; T iv(π) = 0

Each condition on the 2k-th order derivative at w = π automatically implies
the vanishing of the derivative of order 2k + 1 at w = π (for symmetric
schemes).
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