OPIOIDS

ALKALOIDS IN OPIUM

Heroin 2 -COCH3

% percentage in the opium juice

PHARMACOLOGICAL ACTIONS OF MORPHINE

Central Nervous System

Analgesia

Euphoria

Sedation

(Dysphoria and hallucinations)

Pupillary constriction

Nausea and vomiting

Respiratory depression

Depression of cough reflex

Tolerance and dependence

Gastrointestinal tract

Reduced motility and increased

tone with:

Constipation

Contraction of biliary sphincter

Other actions

Histamine release with:

Urticaria and itching

Bronco constriction

Hypotension and bradycardia

Immunosuppressant effects

OPOIDS RECEPTORS AND THEIR LIGANDS

In the 1950s:

proposal of the presence of specific receptors for opioids

In the 1970s:

Proposal of the presence of three different receptors:

- mu receptors (from Morphine)
 MOR
- kappa receptors (from Ketocyclazocine) KOR
- delta receptors (from Deferent vessels) DOR

Isolation and characterization of endogenous ligands (endorphins):

- Beta-endorphins
- Dynorphins
- Enkephalins

In the 1990s:

- Cloning of MOR, DOR and KOR GPCRs
- Identification of Orphanin FQ/ nociceptin receptor (no affinity towards naloxone)

ENDOGENOUS OPIOID PEPTIDES

OFQ/N

Phe-Gly-Gly-Phe-Thr-Gly-Ala-Arg-Lys-Ser-Ala-Arg-Lys-Leu-Ala-

Asn-Gln

OFQ/N(1-11)

Phe-Gly-Gly-Phe-Thr-Gly-Ala-Arg-Lys-Ser-Ala

OFQ/N(1-7)

Phe-Gly-Gly-Phe-Thr-Gly-Ala

OFQ2

Phe-Ser-Glu-Phe-Met-Arg-Gln-Tyr-Leu-Val-Leu-Ser-Met-Gln-Ser-

Ser-Gln

 $ppOFQ/N_{160-187}$ (mouse)

Phe-Ser-Glu-Phe-Met-Arg-Gln-Tyr-Leu-Val-Leu-Ser-Met-Gln-Ser-

Ser-Gln

Arg-Arg-Arg-Thr-Leu-His-Gln-Asn-Gly-Asn-Val

Nocistatin (human)

Met-Pro-Arg-Val-Arg-Ser-Leu-Phe-Gln-Glu-Glu-Glu-Glu-Pro-Glu-

Pro-Gly-Met-Glu-Glu-Ala-Gly-Glu-Met-Glu-Gln-Lys-Gln-Leu-Gln

Dynorphin A

Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-

Asn-Gln

[Leu⁵]enkephalin

Tyr-Gly-Gly-Phe-Leu

[Met⁵]enkephalin

Tyr-Gly-Gly-Phe-Met

β-Endorphin

Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Glm-Thr-Pro-Leu-Val-

Thr-Leu-Phe-Lys-Asn-Ala-Ile-Ile-Lys-Asn-Ala-His-Lys-Lys-Gly-Gln

Endomorphin 1

Tyr-Pro-Trp-Phe-NH₂

Tyr-Pro-Phe-Phe-NH₂

Endomorphin 2

ENDOGENOUS OPIOID PEPTIDES: SYNTHESIS

METABOLISM OF ENDOGENOUS PEPTIDES

SELECTIVITY OF OPIOID LIGANDS

	MOR	DOR	KOR	NOR
ENDOGENOUS OPIOIDS				
Beta-endorphin Leu-enkephalin Met-enkephalin Dynorphin Orphanin FQ/nociceptin	+++ (++) ++ +	+++ +++ +++ +	+ + + +++	- - - +++
RECEPTOR SELECTIVE DRUGS				
Agonists				
DAMGO DPDPE Enadoline Ro64-6198	+++ - - -	- ++ - -	- +++ -	- - - +++
Antagonists				
CTOP Naltrindole Nor-binaltorphimine	+++ - +	- +++ +	- + +++	-

SB 612111

MOR RECEPTORS SELECTIVE LIGANDS

AGONISTS	PARTIAL AGONISTS	ANTAGONISTS	
Morphine (T1/2 = 2 h) Meperidine Levorphanol Fentanyl Tramadol* Methadone (T1/2 = 14-40 h)	Buprenorphin Nalbuphine Nalorphine	Naloxone Naltrexone	

^{*} also inhibition of NA and 5-HT uptake

MECHANISM OF ACTION

All four types of opioid receptors are Gi/o-protein coupled receptors

- 1. Adenynyl cyclase inhibition
- 2. N and P/Q voltage-dependent calcium channel inhibition
- 3. Activation of GIRK (G protein-inhibited rectifying K+ channels)
- 4. Activation of MAP kinase pathway

CLASSIFICATION OF THE OPIOID RECEPTOR FAMILY

A large number of endogenous ligands (at least 11) converge on only a small number of opioid receptors (4 genes)

Endogenous ligands display poor selectivity towards opioid receptors (with the exception of Dynorphin A for KOR)

Several pharmacological evidence suggest the existence of multiple receptor subtypes

MOP antagonists (e.g. Naloxonazine) block morphine-induced analgesia but not alter respiratory depression, constipation or itching On the other hand, knockout of MOP receptor inhibits all the MOP receptor associated activities

PHARMACOLOGICAL CLASSIFICATION OF THE OPIOID RECEPTOR FAMILY

Three alternative possible mechanisms:

- Alternative splicing of a common gene product
- Functional selectivity (biased agonism)
- Omo and/or hetero-dimerization

1. ALTERNATIVE SPLICING

Exon 1 is necessary for the analgesic activity of morphine

Exon 2 is necessary for the analgesic activity of fentanyl

PROTEIN ISOFORMS

Different ligands influences which G protein associates with the receptor thus promoting distinct coupling efficiencies (distinct intracellular pathways)

DESENSITIZATION of GPCRs: molecular mechanisms

Role of G-protein coupled receptor kinase (GRK) and arrestins

Turning off the signal: desensitization of GPCRs function

Receptor **desensitization** is a reduced response of a receptor that follows a prolonged exposure to an agonist and it is due to uncoupling of a receptor from G proteins

Desensitization also results from receptor **internalization**, the removal of receptors from a plasma membrane by endocytosis (**downregulation**)

Internalization can be followed by receptor recycling (resensitization) or lysosomal degradation

Desensitizantion can cause (pharmocodinamic) tolerance, the need to increase the drug dose to obtain the required effect

FUNCTIONAL SELECTIVITY

Selective ligands of opioid receptors can direct the receptor to favore one or more signaling events

Morphine does not promote MOP receptor internalization and causes tolerance at high degree

In contrast, DAMGO causes robust internalization and low tolerance degree

3. GPCR DIMERIZATION

Potential GPCR dimer interfaces

Contact dimers Domain dimer interfaces

Dimerization affects signal transmission and desensitization

and can explain the differences in efficacy and in abuse potential of different ligands

OMO- and HETERO-DIMERIZATION between Opioid receptor subtypes

Strong response: Reduced internalization

Different signal properties: in DOR absence, MOR dependent tolerance and dependence are reduced

OMO- and HETERO-DIMERIZATION between GPCR

Enhances the potency of morphine

Potentiated phosphorylation of MAPK induced by morphine

SubP causes internalization

FUNCTIONAL EFFECTS ASSOCIATED WITH THE MAIN TYPES OF OPIOID RECEPTOR

	МОР	DOP	KOP	NOP
Analgesia				
supraspinal	+++	-	-	antag
spinal	++	++	+	++
peripheral	++	-	++	-
Respiratory depression	+++	++	-	-
Pupil constriction	++	-	+	-
Reduced gastrointestinal motility	++	++	+	-
Euphoria	+++	-	-	-
Dysphoria and allucinations	-	-	+++	-
Sedation	++	-	++	-
Tolerance and dependence	+++	-	-	-

Pain: a sensorial and emotional experience due to a real or potential tissue damage, associated with somatic and emotional components

Acute: useful, triggers appropriate

protective responses

Chronic: unuseful, with adaptive and emotional mechanisms that can increase pain perception

PAIN PATHWAYS

Afferent nerves stimulated by noxiuos stimula (1)

activate spinal neurones (2)

that take the informations to the sovraspinal centers (3)

The SNC modulates the overall response through efferent control systems (4)

1st ORDER NEURONS

Primary sensory nerves
Nociceptors

Stimulus
sensory

Aδ fibers - fast conductance speed: small myelinated sensitive to mechanical noxiuos stimuli localized pain

conductance speed: small amyelinated sensitive to thermal changes, chemicals, pressure diffuse and strong pain

1st ORDER NEURONS

Nociceptors are activated also by mediators released after tissue injury

PAIN PATHWAYS: 1st and 2nd order neurons

2nd ORDER NEURON

THE TOP-DOWN PATHWAY:

the efferent control systems

facilitatory (ON cells, red)
Yes, pain!

inhibitory (OFF cells, green)
serotonergic (yellow)
No pain....

anterior cingulate cortex (ACC)

hypothalamus (H)

thalamus (T)

periaqueductal grey (PAG)

rostral ventromedial medulla (RVM)

Nature Reviews | Neuroscience

Within the RVM

MOR agonists produce anti-nociceptive effects by inhibiting ON cells and disinhibiting OFF cells

No pain.... Yes, pain!

Pain pathways: an overview

THE MESOLIMBIC DOPAMINE PATHWAY: THE REWARD CIRCUIT AND THE BASIS FOR DRUG ABUSE

THE MESOLIMBIC DOPAMINE PATHWAY: THE REWARD CIRCUIT AND THE BASIS FOR DRUG ABUSE

The dopaminergic neurons activity in the VTA is negatively controlled by the basal activity of GABAergic neurones

All drugs that cause disinhibition of dopaminergic neurons are potentially drug of abuse

Disinhibition mechanism of dopaminergic neurons in the VTA by benzodiazepines

Disinhibition of dopaminergic neurons in the VTA by opioid (1) and cannabinoid (2) receptors expressed on GABAergic neurons