q«&“@/ Agile Software Development

Dario Campagna

MANIFESTO FOR AGILE SOF TWARE DEVELOPMENT

We are uncovering better ways of developing Software by doing it
and helping others do it. Through this work we have come to value:

INDIVIDUALS AND INTERACTIONS —0VER PROCESSES AND TOOLS
WORKING SOFTWARE —O0VER COMPREHENSIVE DOCUMENTATION
CUSTOMER COLLABORATION — OVER CONTRACT NEGOTIATION
RESPONDING TO CHANGE —0VER FOLLOWING A PLAN

That is, while there is value in the items on

the r33h+. we value the items on the left more

Utah, February 2001

A group of 17/ process experts met
to discuss the growing field of what
used to be called lightweight
methods.

=

k K
Y/

\

b

Agile, why?

~ 7

We are uncovering better
ways of developing software
py doing It and helping others

do It.

We are uncovering better
ways of developing software
py doing It and helping others
do It.

Ilterative and Incremental Development

W. Shewhart
“plan-do-study-

act” (PDSA) cycles at
Bell Labs

W. E. Deming va
vigorously Project Mercury#&
promoting

PDSA

1930 1940 1950 1960 1970

lterative and Incremental Development

(UM

/tQ\ \2
Iterate to evaluate and Increment to make additions The two tactics can be
make changes to what conjoined

you've already made

From IBM FSD to Agile Methods

IBMFSD

e Trident submarine

e Light Airborne
Multipurpose System

e Space shuttle
software

Books and publications
promoting incremental
and iterative practices

Scrum

Lightweight methods

FDD, Crystal, DSDM

Extreme Programming (XP)

1970

1980

1990

2000

Toyota Production System and Lean Thinking

TPS is the precursor to the Toyota
Deming Way, a.k.a. Lean Thinking

Ohno

Agile methods have been
influenced by Lean Thinking

: Correspondence and
Poppendieck, .
Poppendieck complementary qualities of lean to
agile methods

J

We are uncovering better
ways of developing software
by doing It and helping others
do It.

Strict, document-driven, single-pass waterfall model

Analysis ﬁ

Design —\

Implementation /j

Testing ~\

Operations

Strict, document-driven, single-pass waterfall model

Barry Boehm
Software Engineering

W. Royce “Managing

the Development of Department of Defense
Large Software DoD-Std-2167
Systems”

1960 1970 1980 1990 2000

— MILESTONE | MILESTONE 1) MILESTONE 111
otn:::&ﬂon CONCEPT PROGRAM AND
SELECTION GO AHEAD DEPLOYMENT
) I I |)
CONCEPT oeuounaunou € DEVEL EN‘T. n%non
AN F A VELOPM
EXPLORATION VALIDATION ULL SCALE DEVELOPMENT % } FULL SCAL DEPLOYMENT
7
7~ l
- ~ SYSTEM DEVELOPMENT CYCLE I
7~
/ HWC |
s TESTING l
- -~ FABRICATION
e ~ DETAILED '
g DESIGN |
7~ PRELIMINARY
-~ DESIGN
|/ HARDWARE |
REQUIREMENTS
| SYSTEM/MARDWARE ANALYSIS I
REQUIREMENTS l
ANALYSIS '

|
|
l

SYSTEM/SOF TWARE | | I I
REQUIREMENTS | |
ANALYSIS I
SOF TWARE
REQUIREMENTS |
ANALYSIS |
PRELIMINARY I
DETAILED D I t
DESIGN CODING, UNIT S p Oy men
TESTING AND CSC
— =
: resTinG | SRR - SYSTEM REQUIREMENTS REVIEW
c—— SDR - SYSTEM DESIGN REVIEW
| | SSR - SOFTWARE SPECIFICATION REVIEW
]

PDR - PRELIMINARY DESIGN REVIEW
- — L CONFIGURATION — —_——— CDR - CRITICAL DESIGN REVIEW
COde TRR - TEST READINESS REVIEW

. FCA - FUNCTIONAL CONFIGURATION AUDIT
PRODUCT PCA - PHYSICAL CONFIGURATION AUDIT
FOR - FORMAL QUALIFICATION REVIEW

FIGURE 1. System development cycle within the system life cycle. FIGURE 1. System development cycle within the system life cycle. (continued)

Strict, document-driven, single-pass waterfall model

Barry Boehm
Software Engineering

W. Royce “Managing

the Development of Department of Defense
Large Software DoD-5td-2167
Systems”

DoD experiencing
significant failures

1960 1970 1980 1990 2000

Why did projects fail?

1987 report of the Defense Science Board Task Force on Military Software.

Directive 5000.29 not only does not encourage this best modern practice, it essentially
forbids it. We recommend that it be revised immediately to .mandate and facilitate early
prototyping before the baseline specifications are established (Rec. #23).

DoD-STD-2167 likuwise needs a radical overhaul to reflect best modern practice. Draft
DoD-STD-2167A is a step, but it does not go nearly far enough. As drafted, it continues to
reinforce exactly thdcument-dnven, specify-then-build approach that lies at the heart

Why did projects fail?

1994 report of the Defense Science Board Task Force on Acquiring Defense Software
Commercially.

Principal Reasons DoD Software
Programs Get Into Trouble

Poor Requirements Definition

- Lack of User Involvement in Development Process
- Inability of Users to Foresee Benefits of Automation Without Incremental Capability

Inadequate Software Process Management and Control by Contractor

Lack of Integratcd Product Teams
- Failure to Establish “Team” With Vendors and Users
= Little Participation of Functional Area Experts

Ineffective Subcontractor Management
Lack of Consistent Attention to Software Process
Too Little Attention to Software Architecture

Poorly Defined and Inadeguately Controlled Interfaces Betwzen Computer
Hardware, Communications and Software

Assumption That Software Upgrades Can “Fix” Hardware Deficiencies
(Without Assessment of Cost and Schedule Risks)

Focus on Innovation Rather than Cost and Risk

Limited or No Tailoring of Military Specifications Based on Continuing
Cost-Benefit Evaluations

Strict, document-driven, single-pass waterfall model

Task Forces studies highlighting
DoD experiencing issues and giving recommendations
significant failures

Department of Defense

Department of Defense Mil-Std-498

DoD-Std-2167

Department of Defense
DoD 5000.2

1970 1980 1990 2000 2010

The Problem with Requirements

computes s | WL LU LET TR

Newsletter of the University of
Marsh 3973 London Computer Center

March 1973
NN

No. 59
AS PROPORED uMWM AS GPECIFIED TN THE PROTECT rEquesT

AS DESIGANSD tymm R System S AS PRobucED BY THE Proged MMERS

23

AS INSTALLED AT THE USERYS S1TE WHAT THE USER WANTED

Management Theories

Scientific Management

e Best practices should be pushed
throughout the organization

e Planning and improvement work
separated from normal work

General and Industrial Management

Responsibilities of managers
e Planning

e Organizing

e Coordinating

e Commanding

e Controlling

Charlie and Jane

;

/

N

W a~

N

A

)
\

=

b

Characteristics of Agile

~ 7

Adaptability

Adaptability as adriver Common misunderstanding

4 Agility/Adaptability Agility # Fast

|

Agility # Cheap

Adaptive Vs lterative

Iterative ﬂ%nﬁnue N%m‘inue ﬂcom‘inue

A~ A

\Adapﬁve § &chlang &chlang gkeplan

|||||||||||||||||

Empirical Vs Defined Process

© Pierluigi Pugliese

Continuous Improvement

i

25

Manifesto for Agile Software Development

7

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:
XoverY]

Thatis, while there is value in the items on
the right, we value the items on the left more.

J

We value...

Individuals and

N \ //Interactions \\
o B

— Over

—

“

Processes and
Tools

© Pierluigi Pugliese

J

We value...

\

Comprehensive
Documentation

Working Software miwmimininin
UL UL ECEL SR
SRR R
Over Bi of (o] Le](ol19l 9
e ——

© Pierluigi Pugliese

J

We value...

Customer
Collaboration

— Over

Contract
Negotiation

We value...

Respondin
to Change

Over

Ilowing a Plan

© Pierluigi Pugliese

J

Agile Manifesto Principles

Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work

4 together daily throughout the project.

Build projects around motivated individuals.
5 Give them the environment and support they
need, and trust them to get the job done.

The most efficient and effective method of
6 conveying information to and within a
development team is face-to-face conversation.

Agile Manifesto Principles

Working software is the primary measure of 10 Simplicity - the art of maximizing the amount

/ progress. of work not done - is essential.

Agile processes promote sustainable
development. The sponsors, developers, and 11 The best architectures, requirements, and

users should be able to maintain a constant designs emerge from self-organizing teams.
pace indefinitely.

At regular intervals, the team reflects on how
12 to become more effective, then tunes and
adjusts its behavior accordingly.

Continuous attention to technical excellence
and good design enhances agility.

2

/

\J

VWhat happened after 20017

~ 7

During the last 18 years

Agile starts getting
recognition outside of
software development

Agileinlarge IT

firms, e.g., Amazon,

Spotify
Agile spreadsin the For Agile “it’s the
software development best and the worst
world of times”

1990 2000 2010 2020 2030

Agile is enjoying both

The best of times

e \Ways to deliver instant, intimate,
iIncremental, risk-free value at
scale

e Spreading from IT Department to
all parts, and all kinds, of
organizations

e Ridicule of Agile turned to envy

The worst of times

e Agile implemented as a superficial
patch on traditional management

e Some consultant and coaches are
selling “get Agile quick” schemes

e Huge amount of “fake Agile” going on

e Risk that Agile is being dumbed
down as to become a shadow of the
real thing

N

F

/

N

W a~

N

A

)
\

=

b

Quick introduction to Scrum

~ 7

Takeuchi and Nonaka

)

“The New New Product Development Game’

= Used the term Scrum

= Referred to the game of rugby to stress the
importance of teams

= Their research showed that teams requires
autonomy to achieve excellence

Scrumiis...

A lightweight framework for project —
management.
The Scrum Guide™

The Definitive Guide to Scrum:
The Rules of the Game

November 2017

= Few but clearly defined roles
= Self-organizing team *
= Time boxed iterations W
» Founded on empirical process control theory oo and s by S et en Schter nd e Sserions
= Simple tounderstand
= Difficult to master

https://scrumguides.org

SC
bul

within which you can employ various

UM 1S

ding p

NOot a process or a technique for

roducts: rather, it is a framework

processes and technigues. Scrum makes
clear the relative efficacy of yo

management and development

U

=

~product
oractices

SO that you can improve.

Ken Schwaber and Jeff Sutherland - The Scrum Guide™

Process Overview

Paily Scrum:
Tactical Co-ordination

Sprint Review:
Sprint Planning : Share Results,
What do we do next? Get Feedback
= == B2
Sprint w \ﬁ} Product
Backlog Increment

Product ot oo
Backlog Sprint <= 1 Month

Sprint
Replan, Retfrospective:
Repeat Become Better

U © Pierluigi Pugliese

References

7\ \ Agile Manifesto

; Scrum Guide
Jeff Sutherland, Ken Schwaber

https://agilemanifesto.org
https://scrumguides.org

