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MATRIX DECOMPOSITION



ASSUMING KNOWLEDGE OF EIGENVALUES

A BRIEF RECAP

• We want to write a matrix as a product of other matrices… 

• …usually with some “interesting” properties. 

• We will recall two matrix decompositions: 

• Symmetric diagonal decomposition 

• Singular value decomposition (SVD) 

• We recall how SVD can be used to provide an approximation of 
the original matrix.



SYMMETRIC DIAGONAL DECOMPOSITION

Let  be a square  matrix which is: 

• Real-valued 

• Symmetric 

• With  linearly independent eigenvectors 

Then there exists a symmetric diagonal decomposition: 

S M × M

M

S = Q Λ QT



SYMMETRIC DIAGONAL DECOMPOSITION

 

Where: 

• The columns of  are orthogonal eigenvectors of  

• All columns of  are of vectors of unit length 

• All entries of  are real-valued 

•  is the diagonal matrix containing the eigenvalues of  in the 
diagonal (by convention in non-increasing order)

S = Q Λ QT

Q S

Q

Q

Λ Q



THE TERM-DOCUMENT MATRIX

1 1 0
0 1 1
1 1 1
1 0 1

d1 d2 d3

t2
t1

t4
t3

Terms in the 
collection

Documents in the collection

The term  is present in 
the document 

t4
d3

Actually, the value in row  and column  can be any “weighting”. 
For example the  for term  in the document .

i j
tf-idf ti dj



THE TERM-DOCUMENT MATRIX

C =

1 1 0
0 1 1
1 1 1
1 0 1

We will need another method to perform a matrix decomposition 
of , since the symmetrical diagonal decomposition is not applicableC

• Not square

• Not symmetric

Some issues with the term-document matrix:



SINGULAR VALUE DECOMPOSITION

Given a real-valued matrix  with  rows and  columns 
of rank , and let: 

•  be the  matrix with the orthonormal eigenvectors of  
as columns. 

•  be the  matrix with the orthonormal eigenvectors of  
as columns. 

Then  can be written as: 

C M N
r ≤ min{M, N}

U M × r CCT

V r × N CTC

C

C = UΣVT



SINGULAR VALUE DECOMPOSITION

 

where: 

• The eigenvalues  are the same for  and . 

•  are in non-increasing order. 

• The matrix  is a square  matrix containing in the diagonal all 
, called the singular values of .

C = UΣVT

λ1, λ2, …, λr CCT CTC

λ1, λ2, …, λr

Σ r × r
λi C



SVD FOR THE TERM-DOCUMENT MATRIX

U =

−0.436 0.707 0.408
−0.436 0 −0.816
−0.655 0 0
−0.436 −0.707 0.408

VT =
−0.577 −0.577 −0.577

0 0.707 −0.707
0.816 −0.408 −0.408

Σ =
2.646 0 0

0 0.999 0
0 0 0.999

[2.646 0.999 0.999]

The values

Are called the singular values of C

Left singular vectors

Right singular vectors



THE TERM-DOCUMENT MATRIX

2 1 2 1
1 2 2 1
2 2 3 2
1 1 2 2

We can consider the matrix :CCT

t2
t1

t4
t3

t1 t2 t3 t4

Number of documents where  and  co-occurt4 t2

Actually, the value in row  and column  is, depending on how  
is constructed, some “measure” of co-occurrence of the terms  and 

i j C
ti tj



LINKING SVD WITH SYMMETRIC DIAGONAL DECOMPOSITION

SOME “STUFF” TO NOTICE

Take CCT

Rewrite  as CT VΣTUTRewrite  as C UΣVT

You get UΣVT VΣTUT

Which is UΣ2UT

In some sense we can view looking at co-occurrence of terms can be 
interpreted as “working” in the space of terms (which we reach using )U



THE TERM-DOCUMENT MATRIX

[
3 2 2
2 3 2
2 2 3]

We can also consider the matrix :CTC

d2

d1

d3

d1 d2 d3

Number of terms in common between 
document  and d3 d2

Actually, the value in row  and column  is, depending on how  
is constructed, some “measure” of “overlap” between  and 

i j C
di dj



BASICS

LOW-RANK APPROXIMATION

• The main idea is that we can reduce the “space occupied” by a 
matrix by reducing its rank… 

• …however we want to minimise the error introduced by the 
approximation. 

• SVD provides a way to efficiently perform this approximation. 

• At least with respect to the Frobenius norm: 

∥X∥F =
M

∑
i=1

N

∑
j=1

X2
i,j



ZEROING OUT SINGULAR VALUES

LOW RANK APPROXIMATIONS WITH SVD

Given a real-valued matrix , compute its SVD decomposition  

Let  be the  singular values of  

Fix  as the rank of the approximation  that we want to 
compute. 

Build  starting from  by zeroing out the smallest  singular 
values (i.e., only  remains). 

Let the approximation  be .

C UΣVT

λ1, …, λr r C

k ∈ ℕ Ck

Σk Σ r − k
λ1, …, λk

Ck UΣkVT



ZEROING OUT SINGULAR VALUES

LOW RANK APPROXIMATIONS WITH SVD

Σ2 =
2.646 0 0

0 0.999 0
0 0 0

Keep only two 
singular values

C =

1 1 0
0 1 1
1 1 1
1 0 1

C2 =

0.667 1.667 0.667
0.667 0.667 0.667

1 1 1
0.667 0.167 1.167

UΣ2VT

Is this a good approximation?

Σ =
2.646 0 0

0 0.999 0
0 0 0.999

Compute SVD

Across all matrices of rank two,  minimises C2 ∥C − C2∥F



WHAT WE NEED TO MEMORISE

LOW RANK APPROXIMATION

−0.436 0.707 0.408
−0.436 0 −0.816
−0.655 0 0
−0.436 −0.707 0.408

−0.577 −0.577 −0.577
0 0.707 −0.707

0.816 −0.408 −0.408

2.646 0 0
0 0.999 0
0 0 0

No need to memorise 
this column

No need to memorise 
this row

U VTΣ2

We can rewrite everything as a “truncated” SVD :U′ kΣ′ kV′ k
T

−0.436 0.707
−0.436 0
−0.655 0
−0.436 −0.707

[2.646 0
0 0.999] [−0.577 −0.577 −0.577

0 0.707 −0.707]



LATENT SEMANTIC INDEXING



MAIN IDEAS

LATENT SEMANTIC INDEXING

• Recall that the vector space representation does not address two 
issues: 

• Synonymy. E.g., when searching for “laptop” we do not find 
the documents that use “notebook” 

• Polysemy. When the same word is used with multiple meanings.  

• We can potentially use a large thesaurus for the first problem… 

• …or we can use the co-occurrence of terms to try to solve the 
problems automatically.



TERMS, DOCUMENTS, AND CONCEPTS

HOW TO USE THE SVD

• We use the SVD as a way to represent documents in a reduced space. 

• Instead of using terms as the basis of out vector space, we will 
employ “pseudo-terms”. 

• Dimensionality reduction is used to provide a compact representation 
of the the documents and queries. 

• The main idea is that we map terms to concepts (i.e., how much each 
term represents a certain concept)… 

• …and then concepts to documents (i.e., how much each document 
contains a certain concept).



(GRAPHICALLY)

MAIN IDEA

Lorry

Truck

Banana

Terms

Two documents use different terms for the same concept. 
If we remap everything in a space where the axes represent 
concepts the two documents will have a higher similarity.

Vehicle

Fruit

Concepts



LET’S GO BACK TO THE SVD

U =

−0.436 0.707 0.408
−0.436 0 −0.816
−0.655 0 0
−0.436 −0.707 0.408

VT =
−0.577 −0.577 −0.577

0 0.707 −0.707
0.816 −0.408 −0.408

Σ =
2.646 0 0

0 0.999 0
0 0 0.999

 is the term-concept matrixU

 is the concept matrixΣ

 is the document-concept matrixV

Each column represents how much each term 
is represented by a certain concept

Each value represents the “weight” 
of a concept

Each row (column in ) represents how 
much a document contains a certain concept.

VT



LET’S GO BACK TO THE SVD

The left singular vectors 
are pseudo-terms

The columns of  are  
a representation 

of the documents  
using the pseudo-terms

VT

U =

−0.436 0.707 0.408
−0.436 0 −0.816
−0.655 0 0
−0.436 −0.707 0.408

VT =
−0.577 −0.577 −0.577

0 0.707 −0.707
0.816 −0.408 −0.408

Σ =
2.646 0 0

0 0.999 0
0 0 0.999



AN EXAMPLE

PSEUDOTERMS

1 1 0
0 1 1
1 1 1
1 0 1

d1 d2 d3
CAT

DOG

TRUCK

BANANA

U =

−0.436 0.707 0.408
−0.436 0 −0.816
−0.655 0 0
−0.436 −0.707 0.408

Second pseudo-term

It represents the concept 
0.707 × CAT − 0.707 × BANANA

While we might hope to obtain things like  to 
represent  concepts like “vehicle”, the construction of the pseudo-terms 
totally depends on the term-document matrix, i.e., on the collection.

0.75 × truck + 0.25 × car



REMAPPING DOCUMENTS

LATENT SEMANTIC INDEXING

• A remapped document  is a column of the matrix . 

• To obtain the original document we perform . 

• Which means that if we want to remap a document in its reduce 
form we have to compute: 

•  (multiply by the inverse of ) 

•  (recall that ) 

•  (since the inverse of  is )

̂di VT

di = UΣ ̂di

(UΣ)−1di = (UΣ)−1UΣ ̂di UΣ

Σ−1U−1di = ̂di (AB)−1 = B−1A−1

̂di = Σ−1UTdi U UT



REMAPPING DOCUMENTS

LATENT SEMANTIC INDEXING

• We can now remap documents by multiplying them by . 

• We can reduce the dimensionality of the “concepts space” by 
selecting  and using  and  

•  represents the number of “important concepts” to keep. 
Usually a few hundreds. 

• How about queries? Like in the vector space model they are like 
documents. 

• Given a query , the remapped query is .

Σ−1UT

k ∈ ℕ Σ′ k U′ k

k

q ̂q = Σ−1UTq



(GRAPHICALLY)

QUERIES

Lorry

Truck

Banana

Terms

We remap the query and compute the similarity in the 
reduced space (for example with cosine similarity)

Vehicle

Fruit

Concepts

q

Σ−1QT

̂q



NOT AS EASY

ADDING DOCUMENTS

• To add a document  in the standard vector space model is easy. 

• To store it in this remapped/reduced representation we must 
remap it first: . 

• However, the space of concept has been generated starting from 
the initial collection. 

• While we add documents the concepts can change, thus we might 
see a degradation of the quality of the retrieval as more 
documents are added. 

• In that case we might need to create a new mapping.

d

̂d = Σ−1QT d



THE GOOD, THE BAD, AND THE UGLY

• Using the latent semantic indexing we can address the problems 
of synonymity and polysemy. 

• By using “concepts” instead of terms we can improve the quality 
of the retrieval. 

• However, computing the SVD is expensive and re-computing it 
when sufficiently new documents arrive is necessary. 

• We can use the same mapping for other tasks: finding synonyms, 
clustering documents according to topics (e.g., with k-means), 
expand a query by adding similar terms, etc.



RECOMMENDER SYSTEMS



YOU PROBABLY KNOW THEM

EXAMPLE OF USES OF RECOMMENDER SYSTEMS 

Spotify

Netflix

Amazon

Youtube



WHAT PROBLEMS NEED SOLVING

BASIC CHARACTERISTICS

• We do not have a “normal” query, only the previous choices of the 
user and of similar users. 

• We have to provide the user with a collection of suggested items/
documents that he/she might like. 

• This is an important feature: according to Google 
“60% of watch time on YouTube comes from recommendations.” 

• Recommendation systems are a kind of information filtering 
systems: we already have all the information, but we need to filter 
the relevant information.



WHAT IS A QUERY

BASIC CHARACTERISTICS

• A “query” for a recommender system is also called a context. 

• It is a combination of information about the user, like: 

• An identifier of the user. 

• The history of interaction by the user 
(e.g. liked video, music listened, watched items). 

• Some additional information, like the time of the day.



Content-based 
filtering

Based on the similarity 
between items

The user likes cat videos… 
…we will suggest more cat video

Collaborative 
filtering

Based on the similarity 
between queries and items 

simultaneously

User A is similar to user B… 
…user B likes the video 

“cute cat #37”… 
…we will propose it to user A

CONTENT-BASED AND COLLABORATIVE

TYPES OF RECOMMENDER SYSTEMS

M
an

y 
re

al
-w

or
ld

 
sy

st
em

s



PROBLEMS FOR RECOMMENDER SYSTEMS

• There are multiple issues that a recommender system must 
address: 

• Cold start. New documents have no ratings/watching/etc., and 
new users haven’t rated/watched/listened anything. 

• Sparsity. Most users rate/watch/listen only a small subset of the 
entire collection. 

• Scalability. The collection can be very large, and the time 
available to make a recommendation quite small.



AN EXAMPLE FROM GOOGLE

DOC #4

DOC #5

DOC #6

STRUCTURE OF A RECOMMENDER SYSTEM

Corpus

DOC #1

DOC #2

DOC #3

Possibly billions of documents

Candidate selection

Up to hundreds 
or thousands 
of documents

DOC #1

DOC #2

DOC #6

DOC #5

DOC #1DOC #2DOC #6 DOC #5

Up to tens of suggestions 
to show to the user Scoring

DOC #1DOC #2DOC #6 DOC #5

Take into account additional 
information: disliked content, 

freshness, etc.
Re-ranking



WHY A SEPARATE STEP

CANDIDATE SELECTION

• We need to provide a subset of the corpus for the next step 

• The corpus can be enormous, thus the retrieval must be fast 

• There can be multiple candidate selection methods: 

• Based on similar items and queries 

• Based on popularity 

• Based on specific user preferences, etc. 

• We can run all of them, it will be the scoring function the one 
performing the actual choice.



RANKING THE CANDIDATES

SCORING

• The same method used for candidate selection can be used for 
scoring… 

• …but we might have multiple candidate selection methods… 

• …and a separate scoring function can also take additional 
features into account, since it operates on fewer documents. 

• For the scoring we can take into account the user history, the time 
of the day, the feature of the document, etc.



DOING RANKING A SECOND TIME

RE-RANKING

• Sometimes it is useful to “arrange” the ranking to ensure 
additional properties, like: 

• Freshness. Take into account new documents, maybe adding 
the “age” of a document as a feature. 

• Diversity. If a user likes “cute cat video #37”, maybe showing 
only “cute cat video #n” for all n is not the best choice.



MATRIX FACTORISATION



IN RECOMMENDATION SYSTEMS

WHAT IS MATRIX FACTORISATION

• This is a particular technique to map users and documents to a 
space of features where similarity can be computed. 

• This might seem familiar…and it is. 

• There are however some important differences. 

• First of all, we only have partial information: 

• We know which documents the user likes/dislikes but this is 
only a small fraction of the documents



A REPRESENTATION

USERS AND DOCUMENTS

d1 d2 d3 d4

u1

u2

u3

We have a matrix  (feedback matrix) of users (rows) and of documents (columns). 
The position  contains if a user liked a document or not.

C
Ci, j

? ?

? ? ?

? ? ?



“YOU KNOW NOTHING JON SNOW”

WHAT ABOUT UNKNOWN VALUES?

• We can have information about the documents the the user has 
liked, rated, etc. 

• Sometimes we can even obtain information indirectly: e.g., 
watching an entire video maybe it is an implicit way of “liking” it. 

• But for most document we know nothing: the user never accessed  
them. For example: videos on Youtube. 

• Depending on the assumptions that we make about the missing 
values we can end un with different results.



MATRIX FACTORISATION

WHAT WE WANT TO DO

Given a  feedback matrix , 
we want to find two matrices  and  such that: 

•  has  rows and  columns. 

•  has  rows and  columns. 

•  is an approximation of  according to some criteria. 

Where the criteria depends on how we treat missing/not observed 
entries, and  is the number of latent factors.

M × N C
U V

U M k

V N k

UVT C

k

These  and  are, in general, not the same we used for SVDU V



WHAT THEY ARE

LATENT FACTORS

U =
0.37 0

0 1
0.85 0

V =

0 1
0.53 0

0 0
0.85 0

User embedding Item embedding

This is the representation 
for the first user 

as a vector of two latent factors

This is the representation 
for the second item 

as a vector of two latent factors

The value  (number of latent factors) represents the size 
of the space in which we are mapping users and items.

k



AND ASSUMPTIONS ON UNOBSERVED VALUES

DIFFERENT OBJECTIVE FUNCTIONS

[
0 1 0 0
1 0 0 0
0 0 0 1]

All unobserved values are 0

[
0 1 0 0
1 0 0 0
0 0 0 1]

All unobserved values are , 
but we weight them with 

0
w0

[
? 1 ? ?
1 ? ? ?
? ? ? 1]

We do not count 
unobserved values

Let  be the approximation of  built using  latent factors. 
Let  be the set of observed positions and  be the set of unobserved ones 

Ck C k
𝖮𝖻𝗌 𝖭𝗈𝖻𝗌

∥C − C′ ∥FWe want to minimise

This actually means that we are performing SVD.

Usually not a good choice since we do not want to force to zero the unknown values!



AND ASSUMPTIONS ON UNOBSERVED VALUES

DIFFERENT OBJECTIVE FUNCTIONS

[
0 1 0 0
1 0 0 0
0 0 0 1]

All unobserved values are 0

[
0 1 0 0
1 0 0 0
0 0 0 1]

All unobserved values are , 
but we weight them with 

0
w0

[
? 1 ? ?
1 ? ? ?
? ? ? 1]

We do not count 
unobserved values

Let  be the approximation of  built using  latent factors. 
Let  be the set of observed positions and  be the set of unobserved ones 

Ck C k
𝖮𝖻𝗌 𝖭𝗈𝖻𝗌

∑
i, j∈𝖮𝖻𝗌

(Ci, j − C′ i, j)2We want to minimise

This is called Observed-only Matrix Factorisation



AND ASSUMPTIONS ON UNOBSERVED VALUES

DIFFERENT OBJECTIVE FUNCTIONS

[
0 1 0 0
1 0 0 0
0 0 0 1]

All unobserved values are 0

[
0 1 0 0
1 0 0 0
0 0 0 1]

All unobserved values are , 
but we weight them with 

0
w0

[
? 1 ? ?
1 ? ? ?
? ? ? 1]

We do not count 
unobserved values

Let  be the approximation of  built using  latent factors. 
Let  be the set of observed positions and  be the set of unobserved ones 

C′ C k
𝖮𝖻𝗌 𝖭𝗈𝖻𝗌

∑
i, j∈𝖮𝖻𝗌

(Ci, j − C′ i, j)2 + w0 ∑
i, j∈𝖭𝗈𝖻𝗌

(Ci, j − C′ i, j)2We want to minimise

The factor  decides how important it is to set the unknown weights to w0 0

This is called Weighted Matrix Factorisation (weighted MF)



SOME OBSERVATIONS

WEIGHTED MF

• We will focus on the Weighted MF, since by changing the 
parameter  it also includes the other two cases. 

• The choice of the parameter  is important, but in practice you 
might also want to weight the observed values: 

• We optimise the function: 
 

w0

w0

∑
i,j∈𝖮𝖻𝗌

wi,j(Ci,j − C′ i,j)2 + w0 ∑
i,j∈𝖭𝗈𝖻𝗌

(Ci,j − C′ i,j)2



SOME OBSERVATIONS

WEIGHTED MF

• How can we perform the optimisation? 

• Start with two matrices  and  and iteratively change them. 
How? 

• Stochastic Gradient Descend (SGD) 

• Weighted Alternating Least Squares (WALS) 

• The last one is specific to this task.

U V



GENERAL IDEA

WEIGHTED ALTERNATING LEAST SQUARES

The main idea of the algorithm is the following: 

• Start with  and  randomly generated. 

• Fix  and find, by solving a linear system, the best . 

• Fix  and find, by solving a linear system, the best . 

• Repeat as needed. 

The algorithm is guaranteed to converge and can be parallelised.

U V

U V

V U


