Data Visualization

VISUAL PERCEPTION (2)

Color

Color

Motivation
Color perception
Color specification
Color use

Motivation

Motivation

Color is a very powerful visual channel

Often used to

- Detect patterns (for example, in heat maps)
- Label data to distinguish between categories
- Highlight specific objects (to draw attention)

Color (mis)use

Above all, do no harm

Edward Tufte

Color perception

Light

The human eye

Rods and cones

Filling in the blanks

We don't see images with our eyes, we see them with our brains.

Stephen Few

Filling in the blanks

Sensitivity of rods and cones

Wavelength of Light (nm)

Trichromatic theory of color

We have three kinds of color receptors
$\circ S=$ short wavelength ("blue" cones)

- $\mathrm{M}=$ medium wavelength ("green" cones)
- L = long wavelength ("red" cones)

Any visible color can be expressed as a combination of three primary colors

However, we don't perceive color in terms of amount of blue, green and red

Color opponent process theory

Achromatic System

Chromatic System

Color opponent process theory

Facts that seem to corroborate the theory

- We don't perceive neither the "red-green color" nor the "blue-yellow color"
- Colorblind people tend to be blind on exactly these two axes (most often red-green and lest often blue-yellow)
- The following example

Color opponent process theory

Facts that seem to corroborate the theory

- We don't perceive neither the "red-green color" nor the "blue-yellow color"
- Colorblind people tend to be blind on exactly these two axes (most often red-green and lest often blue-yellow)
- The previous example

After staring at these colors, the sensors inhibit them and you see their opposites

Color perception summary

Human eye

- Fovea
- Rods (low light conditions, no colors)
- Cones (colors when enough light)

Trichromacy

- Three receptors of color

Opponent process theory

- Signals from the eye transformed in the visual cortex to black-white, red-green and blue-yellow axes

Color
 specification

Color specification

Every color can be expressed as the sum of three colors (in a 3-D space)

Color spaces

A color space is a (3-D) system that describes colors

The gamut of the color space is the whole set of colors that can be reproduced by this color space

Not all color spaces are equivalent

RGB Color Model

Properties of color spaces

	Intuitive	Perceptually uniform
RGB		
HSL / HSV		
CIE Lab		
CIE LCh / HCL		

RGB

- $R=$ red
$\circ \mathrm{G}=$ green
o $B=$ blue
Commonly used in digital devices

RGB

RGB

Red - Currently set to 126

Green - Currently set to 255

Blue - Currently set to 255

RGB

G and B fixed ($G=192, B=0$), changes only in R

Properties of color spaces

	Intuitive	Perceptually uniform
RGB	\star	\star
HSL / HSV		
CIE Lab CIE LCh $/ \mathrm{HCL}$		

HSL / HSV

o $\mathrm{H}=$ hue
○ $\mathrm{S}=$ saturation

- L/V = lightness/value
lightness $=0.5$

A MOST EXCELLENT HSL COLOR PICKER
 CREATED FOR YOUR ENJOYMENT, BY BRANDON MATHIS

\#2b7ad4
rgba(43, 122, 212, 1)
hsla(212, 66\%, 50\%, 1)

HSL / HSV

Properties of color spaces

	Intuitive	Perceptually uniform
RGB	\star	\star
HSL / HSV	\bullet	\star
CIE Lab		
CIE LCh / HCL		

CIE Lab

CIE (International Commission on Illumination)

Specified according to the opponent process theory

- L* $=$ lightness
- $a^{*}=$ green-red axis
ob* = blue-yellow axis
Designed to be perceptually linear

CIE Lab

Top view

Front view

CIE Lab

David Johnstone

Lch and Lab colour and gradient picker

Page background colour: White \hat{v}
Colour selection mode: Lab \hat{v}
Number of stops: 1

CIE Lab

Properties of color spaces

	Intuitive	Perceptually uniform
RGB	\star	\star
HSL / HSV	\bullet	\star
CIE Lab	\star	\otimes
CIE LCh / HCL		

CIE LCh / HCL

Transformation of CIE Lab to cylindrical coordinates

- L* $=$ lightness (as in CIE Lab)
\circ C $^{*}=$ chroma (corresponds to saturation)
- h = hue

CIE LCh / HCL

CIE LCh / HCL

David Johnstone

Lch and Lab colour and gradient picker

Page background colour: White \hat{v}

Colour selection mode: Lch \hat{v}
Number of stops: 1

CIE LCh / HCL

Color specification summary

	Intuitive	Perceptually uniform
RGB	\otimes	\otimes
HSL / HSV	\star	\otimes
CIE Lab	\otimes	\otimes
CIE LCh / HCL	\otimes	\otimes

Color use

Color use

Color maps
Semantics of color
Color blindness
Importance of size
Importance of contrast
Importance of background
Importance of surrounding color

Data attributes

Color maps

Sequential color maps
Diverging color maps
Categorical color maps

Bivariate color maps

Sequential color maps

Desired properties
-Perceived differences correspond to value differences -High discriminability

Single hue

Multi-hue

Sequential color maps

Sequential color maps: rainbow

Do not use it!

- Hue (that has no perceptual order) is used to indicate order
- Perceptual nonlinearity: divisions between hues create edges in visualization that have nothing to do with the data

Sequential color maps: rainbow

Do not use it!

- The details are harder to see
- Only advantage: Colors can be easily named
- Overused because chosen as the default color map on many software

Sequential color maps

Cubehelix

- Continuous increase in lightness
- Named colors
- Suitable for grayscale printing (scientific papers)

A color map generator

Diverging color maps

Encode two properties at the same time

- Above/below threshold (usually zero)
- Magnitude above/below threshold

Desired properties

- Perceived differences correspond to value differences
- High discriminability
- Same luminance "ramp" on both sides

Diverging color maps

Categorical color maps

Desired properties

- Uniform saliency (nothing stands out)
- High discriminability

Use colors that can be named
Do not use too many different colors/categories

Categorical color maps

Univariate color maps

Sequential color maps

Diverging color maps

Categorical color maps

Bivariate color maps

Sequential

Bivariate color maps

Existing color maps

Custom color maps

(3) Check and configure the resulting palette

- correct lightnessbezier interpolation

This palette is colorblind-safe.

Semantics of color

Green = good
Red = bad
Gray perceived as "no color"

- Missing data
- Uncategorized data
- Non-emphasized data

Very powerful when used appropriately

Semantics of color

Russians Are Turning Their Backs On Vodka

Liters of pure alcohol consumed per capita in Russia by beverage

(c) (1)
@StatistaCharts Source: World Health Organization
statistar

Semantics of color

Use color consistently
Example from US politics

- Republicans = red
- Democrats = blue

ELECTORAL	TRUMP		ClunTon
VOTES	304	other: 7	$\mathbf{2 2 7}$

304

Semantics of color

Meaning changes depending on culture

```
A Western / American
B Japanese
C Findu
D Native American
E Chinese
F Asian
G Eastern European
H Arab
I African
J South American
```


Semantics of color

Floor of a children's hospital

Color blindness

Red-green color blindness affects up to 8% of males and 0.5% of females of Northern European descent

Color blindness

Color blindness

indistinguishable colors in color blindness

Color blindness

Color blindness

Color	Color name	RGB (1-255)	CMYK (\%)	P	D
	Black	$0,0,0$	$0,0,0,100$		
	Orange	$230,159,0$	$0,50,100,0$		
	Sky blue	$86,180,233$	$80,0,0,0$		
	Bluish green	$0,158,115$	$97,0,75,0$		
	Yellow	$240,228,66$	$10,5,90,0$		
	Blue	$0,114,178$	$100,50,0,0$		
	Vermillion	$213,94,0$	$0,80,100,0$		
	Reddish purple	$204,121,167$	$10,70,0,0$		

Wong, B. (2011) Points of view: Color blindness. Nature Methods 8:441.

Color blindness

(3) Check and configure the resulting palette
\checkmark correct lightnessbezier interpolation

This palette is colorblind-safe.

Color blindness

Color blindness

Use colorblind safe palettes
Blue/orange and blue/red normally safe
Test design with color blindness simulators

Importance of size

Small size hurts discriminability

Small area \Rightarrow high saturation
Large area $\boldsymbol{\rightarrow}$ low saturation

Importance of contrast

CONTRAST RATIOS

Contrast is most easily changed using luminance/lightness

Importance of contrast

Colour Contrast Check

Date created: January 11, 2005
Date last modified: January 11, 2015

$\left[\begin{array}{ll|}\text { Results } \\ \begin{array}{ll}\text { This is example text. Some of it bolded. } \\ \text { Some of it italicized. }\end{array} \\ \hline \text { Brightness Difference: (>= 125) } & 49.524 \\ \text { Colour Difference: (>= 500) } & 192 \\ \text { Are colours compliant? } & \text { NO } \\ \text { Contrast Ratio } & 1.618 \\ \text { WCAG } 2 \text { AA Compliant } & \text { NO } \\ \text { WCAG } 2 \text { AA Compliant (18pt+) } & \text { NO } \\ \text { WCAG } 2 \text { AAA Compliant } & \text { NO } \\ \text { WCAG } 2 \text { AAA Compliant (18pt+) } & \text { NO } \\ \hline\end{array}\right.$

Importance of background

Importance of surrounding color

Color use summary

Use color sparingly
Use color consistently
Be thoughtful of the tone that color conveys

- Enforce emotions
- Consider culture

Design with colorblind in mind
Keep in mind the effect of contrast, background color and surrounding color

Color use summary

Colorbrewer is your friend!

