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1.1 Introduction

Parabolic PDEs behave much like initial-value ODE problems and, therefore,
are somewhat easier to approach than hyperbolic or elliptic problems. Let’s
derive the canonical parabolic equation by considering a specific physical
problem: unsteady thermal diffusion through a plane wall. Applying the
energy conservation principle to a plane slab of thickness dx, width B and
height H, under the assumption of one-dimensional thermal diffusion, yields:

∂

∂t
(ρ c T BH dx) = −k ∂T

∂x

∣∣∣∣
x

BH −
[
−k ∂T

∂x

∣∣∣∣
x+dx

BH

]
Assuming constant thermophysical properties we are left with:

∂T

∂t
= α

∂2T

∂x2
(1.1)

where the thermal diffusivity α is defined as

α ≡ k

ρ c

Let’s assume that the temperatures of the wall’s exposed faces are known:

T (x = 0, t) = T1; T (x = L, t) = T2 (1.2)

These equations provide two boundary conditions. The initial temperature
distribution across the slab provides the initial condition:

T (x, t = 0) = f(x) (1.3)

Using non-dimensional quantities,

ϑ ≡ T − T1

T2 − T1
; y ≡ x

L
; Fo ≡ t α

L2

the problem can be recast as

∂ϑ

∂Fo
=
∂2ϑ

∂y2
(1.4a)

ϑ(y = 0,Fo) = 0; ϑ(y = 1,Fo) = 1 (1.4b)
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ϑ(y,Fo = 0) =
f(y)− T1

T2 − T1
(1.4c)

Changing the dependent variable as

Θ ≡ ϑ− y

allows to enforce homogeneous boundary conditions:

∂Θ

∂Fo
=
∂2Θ

∂y2
(1.5a)

Θ(y = 0,Fo) = 0; Θ(y = 1,Fo) = 0 (1.5b)

Θ(y,Fo = 0) =
f(y)− T1

T2 − T1
− y =: g(y) (1.5c)

Parameters for the dimensional problem:

α; L; T1; T2; f(x); x; t

Parameters for the non-dimensional form:

g(y); y; Fo

Problem (1.5) looks like an ODE-IVP in time and an ODE-BVP in
space. For this reason, in attempting a numerical solution of it, we start by
approximating the spatial derivative in much the same way as it is treated
in direct methods for the numerical solution of ODE-BVPs. Using a second-
order, central differencing scheme on a uniform grid yields a system of IVPs
in time:

dΘ

dFo
=

Θj+1 − 2 Θj + Θj−1

(∆y)2 , j = 1, . . . , N (1.6a)

Θ0 = ΘN+1 = 0 ∀ Fo > 0 (1.6b)

Θj = g(yj), j = 1, . . . , N for Fo = 0 (1.6c)
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where ∆y ≡ 1/(N + 1).

In matrix form:

dΘ

dFo
= AΘ (1.7)

Θ(Fo = 0) = g (1.8)

where

A ≡ 1

(∆y)2 Tr (N ; [1 − 2 1])

The boundary conditions (1.5b) are accounted for in matrix A.

A is a real, symmetric, tridiagonal matrix with constant coefficients
along the diagonals. According to Appendix A, it admits a set of real eigen-

values {λk}Nk=1, with corresponding eigenvectors
{
Θ(k)

}N
k=1

:

λm =
1

(∆y)2

[
−2 + 2 cos

(
mπ

N + 1

)]
= (N + 1)2

[
−2 + 2 cos

(
mπ

N + 1

)]
The eigenvalues are all negative with magnitude increasing with m. The
lowest-magnitude eigenvalue is

λ1 = (N + 1)2

[
−2 + 2 cos

(
π

N + 1

)]
−→ −π2 as N −→ +∞

The largest-magnitude eigenvalue is

λN = (N + 1)2

[
−2 + 2 cos

(
N π

N + 1

)]
≈ −4 (N + 1)2 for large N

The corresponding eigenvectors are (see Appendix A):

Θ
(m)
j = (−1)j sin

(
j mπ

N + 1

)
, j = 1, . . . , N (1.9)

The eigenvectors are mutually orthogonal w.r.t. the discrete inner product

({fj} , {gi}) ≡
2

N + 1

N∑
j=1

fj gj
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and form a basis of RN . The eigenvectors (1.9) form an orthonormal basis
of RN :

Θ(k) ·Θ(j) = δj k

What is important here is that we are allowed to write any arbitrary Θ ∈ RN
as a unique linear combination of the eigenvector’s basis:

Θ(Fo) =

N∑
j=1

cj(Fo) Θ(j)

Substituting in (1.7) yields:

N∑
j=1

·
cj (Fo) Θ(j) = A

(
N∑
k=1

·
ck (Fo) Θ(k)

)
=

N∑
k=1

·
ck (Fo)λk Θ(k)

Using orthogonality (or recalling that
{
Θ(k)

}N
k=1

is a set of linearly inde-
pendent vectors) yields:

·
ck= λk ck; ∀ k = 1, . . . , N =⇒ ck(Fo) = ck(0) eλk Fo

The constants {ck(0)}Nk=1 can be determined using the initial condition:

g ·Θ(m) = cm(0)

Thus:

Θ(Fo) =
N∑
m=1

[
g ·Θ(m)

]
Θ(m) eλm Fo (1.10)

This concludes the formal solution of the problem. Yet, this method is
impractical whenever the eigenvalues and eigenvectors are unknown and
can not be easily extended to non-linear problems. Nevertheless, it allows
to study the behavior of numerical methods for parabolic PDEs.

The largest-magnitude expansion terms decay more rapidly, so that, in
the considered case, the long-time behavior of the solution is controlled by
the lower-index components. The spectral radius of the matrix tends to∣∣∣∣λMλ1

∣∣∣∣ ≈ 4

π2
(N + 1)2 (1.11)

showing that, for large N , the system of ODEs (1.7) is quite stiff : this
is a key point in the selection of proper numerical methods for parabolic
PDEs. Due to the stiffness of the semi-dicrete system of ODEs, the stability
requirement will force explicit methods to take very small time-steps.
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Example 1.1.1. Let’s attempt an explicit Euler, second-order finite-difference
solution of the heat equation:

Ψn+1
j −Ψn

j =
∆Fo

(∆y)2

(
Ψn
j+1 − 2 Ψn

j + Ψn
j−1

)
The Euler method is stable (why? For what model equation?) as long as

|λl| ∆Fo < 2 ∀l = 1, . . . , m

The most stringent constraint is imposed by the largest-magnitude eigen-
value:

|λmax| ∆Fo < 2 =⇒ 4
∆Fo

(∆y)2
< 2

This, in turn, implies

α∆t

(∆y)2
<

1

2

The dimensionless group
α∆t

(∆y)2
can be interpreted as a ratio between the

time-step and a diffusion time-scale. Notice that ∆t ∼ (∆y)2, while the
stability limit for advection, expressed in terms of the CFL number, provides
∆t ∼ ∆x. Since diffusion is of major importance in high-gradient regions,
as boundary- or shear-layers, the need of refining the mesh in these regions
is likely to conflict with the stability limit imposed by diffusion, more than
that imposed by advection.

Remark 1.1.2. From dimensional analysis, the numerical solution of the
1D diffusion equation can be recast as:

Ψ = f (∆y, α, ∆t, L, Ψ0) =⇒ Ψ

Ψ0
= g

(
L

∆y
,
α∆t

(∆y)2

)
= g

(
N,

α∆t

(∆y)2

)
Exercise 1.1.3. Solve the 1D diffusion equation with the explicit-Euler /
central finite-difference method AND with the explicit-Euler / compact 4th-
order scheme. Consider the following initial solution

Ψ(y, 0) = 1− cos (2π y)

and Dirichlet, homogeneous boundary conditions. Derive a-priori stability
limits for the two methods (compute numerically the eigenvalues, when using
the compact scheme).
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Remark 1.1.4. According to the aforementioned remarks, explicit methods
might not be the most reasonable choice for solving parabolic PDEs except,
perhaps, when high accuracy is sought and, therefore, small time-steps must
be used anyway. Also, notice that λmax = 4 (N + 1)2 is a consequence of
the adopted spatial discretization method. Should more accurate spatial dis-
cretization methods be used, λmax would become even larger.

1.2 Physical interpretation of the stability Fourier
number

We have already recognized that the stability limits of discretization meth-
ods for the 1D heat equation can be expressed in terms of the dimensionless
group Fo∆, henceforth referred to as the stability Fourier number :

Fo∆ =
α∆t

(∆x)2
(1.12)

In this section, we aim to provide a physical interpretation for Fo∆. To
this end, let us consider a specific problem: a rod of length L, made of
a homogeneous, isotropic material with thermal diffusivity α, is initially
at uniform temperature T0. The rod is thermally insulated at its right
end, while for t > 0 its left end stays connected with a thermal source at
constant temperature T1 > T0. Heat diffuses progressively throughout the
rod, so that, after a sufficiently long elapsed time, the bar attains a nearly
uniform temperature T1. How long does it take in order that the thermal
disturbance propagates through the bar?

The aforementioned diffusion problem is described by the following PDE
problem:

∂T

∂t
= α

∂2T

∂x2
(1.13a)

T (x, 0) = T0 (1.13b)

T (0, t) = T1 (1.13c)

∂T

∂x

∣∣∣∣
(L,t)

= 0 (1.13d)
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In terms of the dimensionless quantities

τ ≡ α t

L2
; ϑ ≡ T − T0

T1 − T0
; z ≡ x

L
(1.14)

the PDE problem is recast as:

∂ϑ

∂τ
=
∂2ϑ

∂z2
(1.15a)

ϑ(z, 0) = 0 (1.15b)

T (0, τ) = 1 (1.15c)

∂ϑ

∂z

∣∣∣∣
(1,τ)

= 0 (1.15d)

We attempt a finite-difference solution on a uniform grid, endowing only
three nodes: node i = 1 is located on the left boundary, node i = 2 is
located in the middle of the rod, node i = 3 lies on the right boundary.
Using the boundary conditions,

ϑ(0, τ) = 1 =⇒ ϑ1 = 1;
∂ϑ

∂z

∣∣∣∣
(1,τ)

= 0 =⇒ ϑ3 = ϑ2

yields the following IVP for node i = 2:

dϑ2

dτ
= 4 (1− ϑ2)

ϑ2(0) = 0

(1.16)

which yields the time dependence of ϑ2 as:

ϑ2(τ) = 1− e−4 τ (1.17)

The tangent line to the graph of ϑ2 in τ = 0 attains a value of 1.0 for τ =
0.25 =: τR. Thus, τR may be considered as a dimensionless-time scale for the
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propagation of the thermal disturbance throughout the bar. In dimensional
terms:

τR =
α tR
L2

= 0.25 =⇒ tr = 0.25
L2

α
=

(L/2)2

α

tR can be interpreted as the time required so that a thermal disturbance
propagates through a distance L/2.

The stability Fourier number can now be interpreted as the ratio between
two time intervals: the time-step ∆t and the diffusion time scale (∆x)2/α,
required so that a thermal disturbance travels across a single computational
cell. It is rather intuitive that the time-step must be shorter than the diffu-
sion time scale: otherwise, the computational cell would not feel the passage
of the disturbance.

1.3 Von Neumann analysis

Let us consider the heat equation in an unbounded domain:

∂u

∂t
= α

∂2u

∂x2
(1.18)

u(x, 0) = h(x) (1.19)

Applying the Fourier Transform (in space) yields

∂û

∂t
= −α v2 û (1.20)

û(v, 0) = ĥ(u) (1.21)

where

û(v, t) =
1√
2π

+∞∫
−∞

u(x, t) e−i v x dx

and

u(x, t) =
1√
2π

+∞∫
−∞

û(v, t) ei v x dv

yielding

û(v, t) = ĥ(v) e−αv
2 t (1.22)
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Then,

u(x, t) =
1√
2π

+∞∫
−∞

ĥ(v) e−αv
2 t ei v x dv (1.23)

A similar approach is used to figure out the solution of the semi-disctrete
system of equations resulting from a central-difference discretization of (1.18):

∂u

∂t
= α

uj+1 − 2uj + uj−1

(∆x)2
(1.24)

In this case we assume (M+1)-periodicity in space so that {uj}Mj=0 can be
represented by a Discrete Fourier Transform:

ûk(t) =

M∑
j=0

uj(t) e
−i

2π j k

M + 1

uj(t) =
1

M + 1

M∑
k=0

ûk(t) e
i

2π j k

M + 1

The following solution is readily found:

ûk(t) = ûk(0) e−λ t (1.25)

with

λ =
2α

(∆x)2

[
1− cos

(
2π k

M + 1

)]
(1.26)

Equation (1.25) provides an alternative physical interpretation of the reso-
lution error induced by the central difference approximation. Namely, let us
recast (1.25) as:

ûk(t) = ûk(0) e−αnum k̂2 t (1.27)

where

∆x ≡ L

M + 1
; k̂ ≡ 2π k

(M + 1) ∆x
; k̃ ≡ k̂∆x =

2π k

M + 1
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and

αnum ≡ 2α
1− cos (k̃)

k̃2

The k-th Fourier mode of the exact solution is instead

ûk(t) = ûk(0) e−α k̂
2 t (1.28)

Comparing (1.22) with (1.28) provides the following interpretation of the res-
olution error induced by the central-difference approximation of the second-
derivative in the heat equation: the physical diffusivity α is replaced by an
artificial diffusivity αnum. The ratio αnum/α is shown in figure 1.1. The

0 0.5 1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

1

k̃

αnum

α

Figure 1.1: Numerical diffusivity.

highest-wavenumber modes are damped less efficiently in the numerical so-
lution than in the exact solution: the numerical diffusivity αnum depends on
the modified wavenumber k̃, whereas the physical diffusivity in constant. A
favorable feature of the central difference scheme is that, as evident from
figure 1.1, the numerical diffusivity is always positive and, therefore, the all
Fourier modes are progressively damped (i.e., no counter-diffusion occurs).

Exercise 1.1. Derive and interpret the numerical dissipation for the case
when the second derivative in the heat equation is approximated as

δ2

δx2

∣∣∣∣
j

=
fj − 2 fj−1 + fj−2

(∆x)2
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1.3.1 Oscillatory instability for the heat equation
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1.4 Fourier-Galerkin solution of the heat equation



( f(x) a media nulla su [0,L] ed 
f(0) = f(L) = 0 )

ad es. doppia tenda...
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1.5 Pseudo-spectral solution of the heat equation

Pseudo-spectral methods are collocation methods, i.e., the residual of the
PDE is enforced to be zero at a set of collocation nodes. Let’s consider the
same problem faced already, i.e.

∂u

∂t
= α

∂2u

∂x2
x ∈ [0, L]

u(x, t) = 0 t ≥ 0

u(L, t) = 0 t ≥ 0

u(x, 0) = f(x) x ∈ [0, L]

We seek for an approximation û(x, t) to the exact solution, in the form of a
truncated sine series expansion:

û(x, t) =
N∑
k=1

ck(t) sin

(
2π k x

L

)
The expansion inherently satisfies the boundary conditions. Since û is in-
herently odd and zero-mean, we assume that the same properties hold for
the initial condition f(x).

The residual of the PDE reads:

R(û) =
∂û

∂t
− α ∂

2û

∂x2
=

N∑
k=1

[
·
ck (t) +

4π2 k2

L2
ck(t)

]
sin

(
2π k x

L

)
In collocation methods, the residual is requested to be zero at the collocation
nodes, which, in the present case, we define as

xj ≡
j L

N + 1
, j = 1, . . . , N

The conditions on the residual result in the following system of ODEs:

0 =
N∑
k=1

[
·
ck (t) +

4π2 k2

L2
ck(t)

]
sin

(
2π k xj
L

)
, j = 1, . . . , N (1.29)

These equations can be de-coupled by introducing the following, discrete
inner product:

〈f, g〉 ≡ 2

N + 1

N∑
j=0

f(xj) g(xj)
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which, for sine functions, can be re-defined as

〈f, g〉 ≡ 2

N + 1

N∑
j=1

f(xj) g(xj)

The following orthogonality conditions do hold:〈
sin

(
2π k xj
L

)
, sin

(
2πmxj

L

)〉
= δmk

Taking the inner product of (1.29) with all the sine functions in the expansion
yields:

·
ck (t) +

4π2 k2

L2
ck(t) = 0, k = 1, . . . , N

This is the same set of ODEs derived by the spectral-Galerkin method and
its numerical solution is subject to the same stability constraints already
mentioned. There is a minor difference in the calculation of the initial
conditions, though:

f(xj) =

N∑
k=1

ck(0) sin

(
2π k xj
L

)
=⇒

〈
sin

(
2πmx

L

)
, f(x)

〉
= cm(0), m = 1, . . . , N

That is, c0(t) is calculated via the discrete inner product rather via the L2

inner product.

1.6 Homework

Derive the PDE modelling unsteady water flooding through a saturated,
permeable soil. Water is considered compressible:

ρw = ρw(pw); γ ≡ 1

ρw

dρw
dpw

In this example, a rigid porous matrix is assumed. Darcy’s law relates the
water flow through the porous media with the applied pressure gradient:

q′′w = −k
µ
∇ (pw − ρw g · x)

Given a surface S within the porous matrix, the water flow rate through the
surface is given by

Qw =

∫
S

q′′w · dS

You must use two main concepts:
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1. water flows throughout the boundaries of a control volume under the
action of a pressure gradient

2. when pressure increases, water is squeezed: so, a larger mass of water
can be stored within the pores of the porous media

Then, suggest an approach for solving the 1D-PDE with, say, Dirichlet
boundary conditions.

Eventually, implement the proposed algorithm in a computer program
and simulate a flow through a porous medium.

1.7 More accurate time-stepping schemes for the
heat equation

1.7.1 Leapfrog method

Let’s start by applying the Leapfrog time-stepping scheme to the heat equa-
tion:

un+1 − un−1

2 ∆t
= α

δun

δx2
(1.30)

Applying the von Neumann analysis with the second-order, central difference
scheme for δ2/δx2 yields a difference equation, for the Fourier mode with
modified wavenumber k̂:

σ2 + 4β σ
(

1− cos
(
k̂
))
− 1 = 0 (1.31)

with general solution

σn = Aλn+ +B λn− (1.32)

where

λ± = −2β
(

1− cos (k̂)
)
±
√

1 + 4β2
(

1− cos (k̂)
)2
∈ R

Using the explicit Euler method as starting scheme, we end up with:

σ1 = σ0
(

1− 2β
(

1− cos (k̂)
))

The constants A and B are derived from the initial conditions:

σ0 = A+B

σ1 = Aλ+ +B λ−
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It is worth noticing that |λ−| ≥ 1 for any k̂ and any β, showing that
the method is unconditionally unstable, unless the starting time-stepping
scheme and the initial solution are chosen in such a way to annihilate B.

1.7.2 Dufort-Frankel method

Dufort and Frankel tried to cure the Leapfrog method by replacing the
second difference δ2un/δx2 with:

∂2u

∂x2

∣∣∣∣
xj ,t

≈
unj+1 − (un+1

j + un−1
j ) + unj−1

(∆x)2

yielding the following approximation for the heat equation:

(1 + 2β) un+1
j = (1− 2β) un−1

j + (2β) unj−1 + (2β) unj+1 (1.33)

Carrying out the von Neumann analysis highlights some peculiarities of the
method:

• The method is absolutely stable.

• Considering for simplicity the highest modified wavenumber, k̂ = π,
yields the following two roots for the amplification factor σ:

σ± =
−2β ± 1

1 + 2β

Thus, the magnitude of σ+ is smaller than unity, while σ− equals −1,
irrespective of the value of β. This shows that one of the components
of the solution is not damped at all and changes sign from step to step.
This, in turn, suggests that the method is not convergent, in general.

• For β > 0.5 also σ+ becomes negative, and both components of the
solution switch sign from a time-step to the next.

The dependence of un+1
j from the values of u at the neighboring locations

and previous time-steps is shown in figure 1.2: it is not what would be
expected for a parabolic equation.

The modified PDE associated to the heat equation via the Dufort-Frankel
method is:

∂u

∂t
−α ∂

2u

∂x2
= −(∆t)2

6

∂3u

∂t3
+
α (∆x)2

12

∂4u

∂x4
−α

(
∆t

∆x

)2 ∂2u

∂t2
− α (∆t)4

12 (∆x)2

∂4u

∂t4
+. . .

(1.34)

Equation (1.34) is noteworthy in several respects:
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Figure 1.2: Computational molecule for the Dufort-Frankel scheme.

1. It shows that the method is inconsistent unless, besides ∆t and ∆x
tending to zero, also ∆t/∆x tends to zero.

2. Whenever ∆t and ∆x are small but, at the same time, (∆t/∆x)2 is
not, the modified PDE takes on a hyperbolic character:(

∆t

∆x

)2 ∂2u

∂t2
− ∂2u

∂x2
≈ − 1

α

∂u

∂t

1.8 Towards a cost-effective solution of multi-dimensional,
parabolic problems

1.8.1 Stability limit for the explicit solution of the two-dimensional
heat equation on a rectangular domain

Let’s consider the two-dimensional heat equation on a rectangular domain,
with Dirichlet boundary conditions on ∂Ω:

ut = α (uxx + uyy) x ∈ Ω ≡ [a, b]× [c, d]; t > 0

u = γ(x, t) x ∈ ∂Ω, t > 0

u = φ(x) x ∈ Ω ∪ ∂Ω, t = 0

(1.35)

With suitable changes of dependent variable it is readily recognized that
the solution of (1.35) can be obtained by combining a particular solution of
a stationary Poisson problem with homogeneous boundary conditions with
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the solution of a homogeneous heat equation with homogeneous boundary
conditions: ∆u1 = 0 in Ω

u1 = γ on ∂Ω
(1.36a)


∂u2

∂t
− α∆u2 = 0 in Ω

u2 = 0 on ∂Ω

u2 = φ− u1 at t = 0

(1.36b)

Therefore, we focus the following analysis to the heat equation with homo-
geneous Dirichlet conditions on the boundary.

Consider an explicit-Euler / second-order central difference discretiza-
tion. The eigenvectors of the two-dimensional, difference operator satisfying
homogeneous Dirichlet boundary conditions are obtained as tensor product
of the corresponding eigenvectors for the 1D operator:

v
(mn)
j k = sin

(
mπ j

M

)
sin

(
nπ k

N

)
, j = 1, . . . , M, k = 1, . . . , N

They are mutually orthogonal w.r.t. the conventional inner product in
RM×N . Expanding the finite-difference solution as a linear conbination of
eigenvectors and substituting in the finite-difference equations yields the
amplification factor ρ(m,n) for the (m,n) component as:

ρ(m,n) = 1− 2
[
β̂x + β̂y

]
where

β̂x ≡ βx
(

1− cos
(mπ

M

))
; β̂y ≡ βy

(
1− cos

(nπ
N

))
and

βx ≡
α∆t

(∆x)2
; βy ≡

α∆t

(∆y)2

The most stringent stability condition
∣∣ρ(m,n)

∣∣ ≤ 1 applies for m = M and
n = N and, for M , N large, yields:

βx + βy ≤
1

2

If ∆x = ∆y the stability requirement is α∆t/(∆x)2 ≤ 1/4, which is more
restrictive than in one dimension. Thus, there is an even greater motivation
to study implicit methods in two dimensions.
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1.9 Alternate Direction Implicit methods

An ADI method (in 2D) is a two-step iteration process that alternately
updates the column and row spaces of an approximate solution to AX −
XB = C, where X, C ∈ RM×N , A ∈ RM×M , B ∈ RN×N .

1.9.1 Peaceman - Rachford method

The Peaceman - Rachford method (PRM) is a predictor-corrector method
for the solution of parabolic equations. In the following, the PRM is applied
for the numerical solution of the unsteady, two-dimensional heat equation
on a Cartesian grid, which is uniform along each independet coordinate di-
rection. The mesh spacings along x and y are denoted by hx and hy, respec-
tively. The time-step is denoted by ∆t. When discrete, space-differenting
operators are not specified, they are denoted as δ2/δx2 and δ2/δy2.

Predictor step The predictor step may be interpreted as a mixed Backward-
Euler / Forward-Euler time-stepping scheme, over a step length ∆t/2 from
tn to tn+1/2:

u
n+1/2
i j − uni j = α

∆t

2

[
δ2u

n+1/2
i j

δx2
+
δ2uni j
δy2

]
(1.37)

Corrector step The corrector step may be interpreted as a mixed Backward-
Euler / Forward-Euler time-stepping scheme, over a step length ∆t/2 from
tn+1/2 to tn+1. The Backward- and Forward- time-stepping schemes are
applied to the discrete, second-difference operators with inverse order with
respect to the predictor step.

un+1
i j − u

n+1/2
i j = α

∆t

2

[
δ2u

n+1/2
i j

δx2
+
δ2un+1

i j

δy2

]
(1.38)

The PRM can be interpreted as a combination of a mid-point time-
stepping scheme for δ2/δx2 and a trapezoidal time-stepping scheme for
δ2/δy2. Indeed, summing up equations (1.37) and (1.38) yields:

un+1
i j − u

n
i j = α∆t

δ2u
n+1/2
i j

δx2
+ α

∆t

2

[
δ2un+1

i j

δy2
+
δ2uni j
δy2

]
(1.39)

This would suggest that the PRM is second-order accurate in time.
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The issue of boundary conditions

The question arises, about the proper boundary conditions to apply to
un+1/2. Indeed, un+1/2 is a rather poor (o(∆t)) approximation to the exact
solution at tn + ∆t/2. We can single-out un+1/2 from equations (1.37) and
(1.38). To this end, let’s get δ2un+1/2/δx2 from (1.37) and substitute it into
(1.38), to get:

u
n+1/2
i j =

un+1
i j + uni j

2
− α ∆t

4

[
δ2un+1

i j

δy2
−
δ2uni j
δy2

]
=

1

2

[
1 + α

∆t

2

δ2

δy2

]
uni j +

1

2

[
1− α ∆t

2

δ2

δy2

]
un+1
i j

(1.40)

Let’s define the arithmetic mean of ui j between tn and tn+1,

ui j :=
un+1
i j + uni j

2

and the jump in ui j between tn and tn+1,

∆ui j := un+1
i j − u

n
i j

Equation (1.40) can be rewritten as

u
n+1/2
i j = ui j − α

∆t

2

δ2∆u

δy2
(1.41)

Equation (1.41) provides proper boundary conditions for the intermediate
field un+1/2. Nevertheless, these conditions are rarely applied due to the
inherent complexity of evaluating the second derivatives at the boundaries.
In addition notice that, when the boundary conditions are independent of
time, (1.41) is equivalent to the standard boundary condition

u
n+1/2
i j = un+1

i j (1.42)

Von Neumann stability analisys

Let’s assume that the heat equation is solved on a rectangular mesh, com-
posed of (Nx+1)×(Ny+1) nodes. Periodic boundary conditions are enforced
between opposite boundaries: thus, ui j = ui+Nx j+Ny∀ i, j. The following
DFT representation can be used:

umn =
1

NyNy

Nx−1∑
p=0

Ny−1∑
q=0

Up q ei
2π pm
Nx e

i
2π q n
Ny (1.43)
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where

Up q =

Nx−1∑
m=0

Ny−1∑
n=0

umn e−i
2π pm
Nx e

−i 2π q n
Ny (1.44)

The following sets of Fourier coefficients are identified:

unr s ←→ Unp q

u
n+1/2
r s ←→ U

n+1/2
p q

un+1
r s ←→ Un+1

p q

The following orthogonality property holds:

( , )Nx,Ny :=
1

NxNy

Nx−1∑
r=0

Ny−1∑
s=0

ei
2π p r
Nx e

i
2π q s
Ny = δp, q (1.45)

Substituting the DFT expansions into (1.37) and (1.38) while using
(1.45) yields:

For the predictor step:

0 = Un+1/2
p q −Unp q +βx

[
1− cos

(
2π p

Nx

)]
Un+1/2
p q +βy

[
1− cos

(
2π q

Ny

)]
(1.46)

or, equivalently,

Un+1/2
p q = Unp q

1− β̂y
1 + β̂x

(1.47)

where

β̂x ≡ βx

[
1− cos

(
2π p

Nx

)]
β̂y ≡ βy

[
1− cos

(
2π q

Ny

)]
Defining the modified wavenumbers k̂x and k̂y as

k̂x :=
2π p∆x

Nx ∆x
; k̂y :=

2π q∆y

Ny ∆x
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we end up with

β̂x ≡ βx

[
1− cos

(
k̂x

)]
β̂y ≡ βy

[
1− cos

(
k̂y

)]
For the corrector step:

Un+1
p q = Un+1/2

p q

1− β̂x
1 + β̂y

(1.48)

Amplification factor for the Peaceman - Rachford method Gath-
ering (1.47) and (1.48) yields:

Un+1
p q = Unp q

1− β̂x
1 + β̂y

1− β̂y
1 + β̂x

(1.49)

Thus, the amplification factor for the numerical solution is:

ρ
(
k̂x, k̂y

)
:=

Un+1
p q

Unp q
=

1− β̂x
1 + β̂y

1− β̂y
1 + β̂x

(1.50)

The magnitude of the amplification factor is invariably smaller than unity.

Higher wavenumbers, corresponding to higher β̂ for fixed β, are damped
more significantly than lower wavenumbers. The amplification factor van-

ishes for β̂x = 1 or β̂y = 1.

The amplification factor is represented in figure 1.3 with the (rather
reasonable) assumption β̂x = β̂y ≡ β̂.

The amplification factor for the exact solution is:

ρ̃(k̂x, k̂y) = e−k̂2x βx e−k̂2y βy = 1−βx k̂2
x−βy k̂2

y+
1

2

[
βx k̂

2
x + βy k̂

2
y

]2
+. . .+

1

2

(
βy k̂

2
y

)2

(1.51)

The Taylor expansion of ρ is instead:

ρ(k̂x, k̂y) = 1− βx k̂2
x − βy k̂2

y +
1

12
βx k̂

4
x +

1

12
βy k̂

4
y + . . . (1.52)
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Figure 1.3: Aplification factor for the Peaceman-Rachford method.

Thus:

ρ− ρ̃ = βx
3 k̂8x
16 − βx

3 k̂6x
12 +

βx
2 βy k̂6x k̂

2
y

12 +
βx

2 βy k̂4x k̂
4
y

24 + βx
2 k̂8x

160

− βx
2 k̂6x
12 +

βx βy
2 k̂4x k̂

4
y

24 +
βx βy

2 k̂2x k̂
6
y

12 +
βx βy k̂6x k̂

2
y

360

+
βx βy k̂4x k̂

4
y

144 − βx βy k̂4x k̂
2
y

12 +
βx βy k̂2x k̂

6
y

360 − βx βy k̂2x k̂
4
y

12

− βx k̂10x
1814400 + βx k̂8x

20160 −
βx k̂6x
360 + βx k̂4x

12 +
βy

3 k̂8y
16 − βy

3 k̂6y
12

+
βy

2 k̂8y
160 −

βy
2 k̂6y
12 − βy k̂10y

1814400 +
βy k̂8y
20160 −

βy k̂6y
360 +

βy k̂4y
12

(1.53)

This shows that, for fixed wavenumbers, the method is only first-order ac-
curate in time.

1.9.2 Approximate-Factorization method

Let’s apply an implicit-Euler discretization in time of the two-dimensional
heat equation:

un+1 − un = α∆t

[
δ2un+1

δx2
+
δ2un+1

δy2

]
(1.54)

Consider the following approximate factorization:(
1− α∆t

δ

δx2

) (
1− α∆t

δ

δy2

)
un+1 = un+1−α∆t

[
δ

δx2
+

δ

δy2

]
+o
(
(∆t)2

)
(1.55)
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Then, let’s solve an approximate form of the heat equation:(
1− α∆t

δ

δx2

)
u∗ = un (1.56)

(
1− α∆t

δ

δy2

)
un+1 = u∗ (1.57)

What are the boundary conditions for u∗? Answ: they can be derived
from (1.57).

Von Neumann analysis

uj,l =
1

M N

∑
kx=0M−1

N−1∑
ky=0

ûkx, ky exp i
2πjkx
M

exp i
2πlky
N

δu

δx2
=

1

M N

∑
kx=0M−1

N−1∑
ky=0

β(kx)

(∆x)2
ûkx, ky exp i

2πjkx
M

exp i
2πlky
N

with

β(kx) ≡ −2

[
1− cos

(
2π kx
M

)]
Introducing the modified wavenumber:

k̂x :=
2π kx
M

yields:

β(k̂x) ≡ −2
[
1− cos k̂x

]
Substituting into (1.56) and (1.57):[

1− α∆t

(∆x)2
β
(
k̂x

)]
û∗
k̂x,k̂x

= ûn
k̂x,k̂x[

1− α∆t

(∆x)2
β
(
k̂x

)]
ûn+1

k̂x,k̂x
= û∗

k̂x,k̂x

The amplification factor turns out to be:

ρ̂

(
k̂x, k̂y,

α∆t

(∆x)2
, ,
α∆t

(∆y)2

)
:=

ûn+1

k̂x,k̂x

ûn
k̂x,k̂x

=
1[

1− α∆t

(∆x)2
β(k̂x)

] [
1− α∆t

(∆y)2
β(k̂y)

]
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Let’s compare the Taylor series expansions of the numerical (ρ̂) and exact
(ρ̂∗) solutions. As for the numerical solution, assuming ∆x = ∆y:

ρ̂

(
k̂x, k̂y,

α∆t

(∆x)2
, ,
α∆t

(∆y)2

)
= 1−D

[
k̂2
x + k̂2

y −
k̂4
x + k̂4

y

12

]
+D2

[
k̂4
x + k̂2

x k̂
2
y + k̂4

y

]
+. . .

ρ̂∗
(
k̂x, k̂y,

α∆t

(∆x)2
, ,
α∆t

(∆y)2

)
= 1−D

[
k̂2
x + k̂2

y

]
+
D2

2

[
k̂2
x + k̂2

y

]2
+ . . .

Thus, the Approximate-Factorization method is only first-order accurate in
time.... (convergence error).

1.10 Finite-volume solution for the 2D heat equa-
tion on a Cartesian, non-uniform grid

The two-dimensional heat equation is solved on a Cartesian, non-uniform
mesh by a cell-centred, second-order accurate both in space and time, finite-
volume method. The Peacemann-Rachford ADI method is used to efficiently
decouple the solution along the two coordinate directions. The ghost-cell
method is used to enforce the boundary conditions. At each time-step, the
coordinate directions treated implicitly within each ADI sub-step are inter-
changed. A co-located mesh arrangement is used. The algorithm has been
implemented both in Fortran90 and in Matlab.

The diffusive fluxes across the cell’s boundaries are approximated as
follows:

δu

δx

∣∣∣∣
w

=
ui,j − ui−1,j

δxi−1

δu

δx

∣∣∣∣
e

=
ui+1,j − ui,j

δxi

δu

δy

∣∣∣∣
s

=
ui,j − ui,j−1

δyj−1

δu

δy

∣∣∣∣
n

=
ui,j+1 − ui,j

δyj

Let’s write down the algebraic equations to be solved during each sub-
step.
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Sub-step 1 The x direction is treated implicitly. For any cell (i, j):

(
u
n+1/2
i,j − uni,j

)
∆xi ∆yj =

α∆t

2

[
δu

δx

∣∣∣∣
e

− δu

δx

∣∣∣∣
w

]n+1/2

∆yj+
α∆t

2

[
δu

δy

∣∣∣∣
n

− δu

δy

∣∣∣∣
s

]n
∆xi

(1.58)

A set of N independent linear, tridiagonal, algebraic M×M systems must be
solved, one for each j = 1, . . . , N . The boundary conditions on the west and
east boundaries are used to calculate u0,j and uM+1,j . Considering Dirichlet
conditions applied on the west boundary x = xw, u(xw, y, t) = fw(y), the
equation (i = 1, j) can be modified as follows:

AW1,j u0,j +AP1,j u1,j +AE1,j u2,j = b1,j (1.59)

u0,j + u1,j

2
≈ fw(ycj) =⇒ u0,j = −u1,j + 2 fw(ycj)

where ycj denotes the y−coordinate of the j−th row of cells. Substituting
into (1.59):

(AP1,j −AW1,j)u1,j +AE1,j u2,j = b1,j + 2AW1,j fw(ycj)

Similarly, the boundary condition

−α ∂u

∂x

∣∣∣∣
xw

= qw(ycj)

yields:

−α u1,j − u0,j

δx0
≈ qw(ycj) =⇒ u0,j = u1,j − qw(ycj)

δx0

α

(AP1,j +AW1,j)u1,j +AE1,j u2,j = b1,j +AW1,j qw(ycj)
δx0

α

Sub-step 2 The y direction is treated implicitly. For any cells (i, j):(
un+1
i,j − u

n+1/2
i,j

)
∆xi ∆yj =

α∆t

2

[
δu

δy

∣∣∣∣
n

− δu

δy

∣∣∣∣
s

]n+1

∆xi

+
α∆t

2

[
δu

δx

∣∣∣∣
e

− δu

δx

∣∣∣∣
w

]n+1/2

∆yj

(1.60)

A set of M independent linear, tridiagonal, algebraic N×N systems must be
solved, one for each i = 1, . . . , M . The boundary conditions on the south
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and north boundaries are used to calculate ui,0 and ui,N+1. Considering
Dirichlet conditions applied on the south boundary y = ys, u(x, ys, t) =
fs(x), the equation (i, j = 1) can be modified as follows:

ASi,1 ui,0 +APi,1 ui,1 +ANi,1 ui,2 = bi,1 (1.61)

ui,0 + ui,1
2

≈ fs(xci) =⇒ ui,0 = −ui,1 + 2 fs(xci)

Substituting into (1.61):

(APi,1 −ASi,1)ui,1 +ANi,1 ui,2 = bi,1 + 2ASi,1 fs(xci)

Similarly, the boundary condition

−α ∂u

∂y

∣∣∣∣
ys

= qs(xci)

yields:

−α ui,1 − ui,0
δy0

≈ qs(xci) =⇒ ui,0 = ui,1 − qs(xci)
δy0

α

(APi,1 +ASi,1)ui,1 +ANi,1 ui,2 = bi,1 +ASi,1 qs(xci)
δy0

α

A Matlab implementation...
Some results in figure 1.4.
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Figure 1.4: From left to right: numerical solution, analytical solution, abso-
lute error.
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An M × M tridiagonal matrix with constant, real coefficients a, b, c
along the lower, main and upper diagonals, respectively, is denoted by
Tr (M : a, b, c). The first issue we aim to face is the calculation of the deter-
minant of such a tridiagonal matrix and to figure out under which conditions
the matrix is singular.

A.1 Recursion relation for det [Tr (M : a, b, c)]

Let DM denote the determinant of the considered tridiagonal matrix, i.e.

DM ≡ det [Tr (M : a, b, c)]

Thus:

DM = bdet





b c 0 . . . . . . . . . . 0
a b c 0 . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . 0 a b c
0 . . . . . . . . . . 0 a b


︸ ︷︷ ︸

Tr(M−1:a,b,c)


− cdet





a c 0 . . . . . . . . . . 0
0 b c 0 . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . 0 a b c
0 . . . . . . . . . . 0 a b


︸ ︷︷ ︸

∈R(M−1)×(M−1)



= bdet [Tr (M − 1 : a, b, c)]− c adet





b c 0 . . . . . . . . . . 0
a b c 0 . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . 0 a b c
0 . . . . . . . . . . 0 a b


︸ ︷︷ ︸

Tr(M−2:a,b,c)


= bdet [Tr (M − 1 : a, b, c)]− c adet [Tr (M − 2 : a, b, c)]

= bDM−1 − c aDM−2

Therefore, DM can be computed by the recursion relation

DM = bDM−1 − c aDM−2 (A.1a)
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initiated with the conditions

D0 = 1; D1 = b (A.1b)

or

D−1 = 0; D0 = 1 (A.1c)

The recurrence relation (A.1) is an initial-value problem associated with
a second-order, linear difference equation (A.1a).

The validity of the recurrence relation (A.1a) can be verified using the
Matlab code reported below.

% Use the recurrence relation derived in the notes to

% calculate the determinant of a tridiagonal matrix of

% order M and constant entries along the diagonals.

M = 15; a = 1; b = -2; c = 1;

% Form the tridiagonal matrix

ld = a*ones(M-1,1); md = b*ones(M,1); ud = c*ones(M-1,1);

A = diag(ld,-1) + diag(md,0) + diag(ud,1);

% Compute the determinant using the built-in Matlab function "det"

detA = det(A);

% Compute the determinant using the recursive relation

Dold = 0; D = 1;

for j=1:M

Doldold = Dold; Dold = D;

D = b*Dold-a*c*Doldold;

end;

A.2 Conditions yielding DM = 0

We face the problem of figuring out the conditions under which DM =
0 by solving the difference equation (A.1a), then imposing the additional
constraint DM = 0. A solution to (A.1a) is sought in the form

Dj ≡ ϑj , ϑ ∈ C
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Substituting this tentative solution into (A.1a) yields

ϑj − b ϑj−1 + a c ϑj−2 = 0

which gives

ϑ2 − b ϑ+ a c = 0 =⇒ ϑ± =
b±
√

∆

2

with

∆ ≡ b2 − 4 a c

The general solution of (A.1) is thus:

Dj = αϑj− + β ϑj+ for ∆ 6= 0

Dj = α j ϑj + β ϑj for ∆ = 0

where α, β ∈ C are constants to be determined by enforcing the initial
conditions.

A.2.1 The case ∆ = 0

In this case,

ϑ =
b

2

and

b = 2 a c

Thus,

DM = αM ϑM + β ϑM

Using (A.1b) yields

α = β = 1

and, in turn,

DM = (M + 1)

(
b

2

)M
It is evident that, whenever ∆ = 0, it follows that DM = 0 iff b = 0 and
a c = 0, i.e., the matrix has at most an upper or a lower non-zero diagonal.
This is not an interesting case in the applications considered in these notes.
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A.2.2 The case ∆ 6= 0

Let us consider the case ∆ > 0 first. Enforcing the initial conditions (A.1b)
yields

α = − ϑ−√
∆

; β =
ϑ+√

∆

DM =
ϑM+1

+ − ϑM+1
−√

∆

Thus, asking for DM = 0 implies ϑM+1
+ = ϑM+1

− , a condition that can not
be fulfilled when ∆ > 0 (recall that ϑ± are purely real for ∆ > 0). Thus,
DM 6= 0 whenever ∆ > 0.

As for the case ∆ < 0, let us first notice that

b2 − 4 a c < 0 =⇒ a c > 0

The roots of the characteristic polynomial of the difference equation are now

ϑ+ =
b+ i γ

2
; ϑ− =

b− i γ
2

where

γ ≡
√
|∆|

The initial conditions (A.1b) yield

α = i
ϑ−
γ

; β = −i ϑ+

γ

Again, the singularity condition gives

ϑM+1
+ = ϑM+1

− =⇒
(
ϑ+

ϑ−

)M+1

= 1 (A.2)

Since we have to deal with complex numbers, equation (A.2) requires that(
ϑ+

ϑ−

)
= ei ϕ, ϕ =

2mπ

M + 1
∀0 ≤ m ≤M

The case m = 0 has to be rejected as it implies ϑ+ = ϑ− and, therefore,
∆ = 0. We are left with:

ϑ+

ϑ−
=
b+ i γ

b− i γ
=
b2 − γ2 + i 2 b γ

b2 + γ2
= cos

(
2mπ

M + 1

)
+i sin

(
2mπ

M + 1

)
, m = 1, . . . , M
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(A.3)

Equating the real parts on both sides of (A.3) results in

2 b2 − 4 a c = 4 a c cos

(
2mπ

M + 1

)
= 4 a c

[
2

(
cos

(
mπ

M + 1

))2

− 1

]

yielding

b = ±2
√
a c cos

(
mπ

M + 1

)
, m = 1, . . . , M (A.4)

Notice that, due to the presence of the cosine factor in (A.4), the ± sign is
unnecessary:

b = 2
√
a c cos

(
mπ

M + 1

)
, m = 1, . . . , M (A.5)

A.3 Eigenvalues and eigenvectors of Tr (M : a, b, c)

The eigenvalues λm of Tr (M : a, b, c) are solutions, if any, of

det [Tr (M : a, b− λm, c)] = 0 (A.6)

We already know that if equation (A.6) is satisfied by real eigenvalues, they
must satisfy the inequality ∆ < 0, i.e.

(b− λm)2 − 4 a c < 0

Thus, a necessary condition for Tr (M : a, b− λm, c) having real eigenvalues
is a c > 0.

Using the result (A.5) yields

λm = b− 2
√
a c cos

(
mπ

M + 1

)
, m = 1, . . . , M (A.7)

The eigenvalues can be either complex, when a c < 0, or purely real when
a c > 0. When a c < 0, there are M distinct eigenvalues appearing in
complex-conjugate pairs. When a c > 0 there are M distinct real eigen-
values. In both cases, there exists a basis of eigenvectors (of either RM ,
considered as a R-vector space, or of CM , considered as a C-vector space)
and Tr (M : a, b, c) can be diagonalized.
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As an application, let us calculate the eigenvalues of Tr (M : 1,−2, 1),
a finite difference operator arising from the FTCS discretization of the one
dimensional heat equation:

λm = −2

[
1 + cos

(
mπ

M + 1

)]
, m = 1, . . . , M (A.8)

It is interesting to notice that the eigenvalues of maximum and minimum
magnitude are, respectively,

λmax = λ1 −→ 4 for M −→ +∞

and

λmin = λM −→ 0 as

(
π

M + 1

)2

for M −→ +∞

Thus, the spectral radius of Tr (M : 1,−2, 1) increases quadratically with
M1:

|λmax|
|λmin|

=
λ1

λM
=

−2

[
1 + cos

(
π

M + 1

)]
−2

[
1 + cos

(
M π

M + 1

)] −→ 4

π2
(M + 1)2 (A.9)

Let us compute the eigenvectors of Tr (M : a, b, c). This task is readily
accomplished by simply applying the definition of right eigenvectors:

Tr (M : a, b, c) v(m) = λm v(m)

yielding

a v
(m)
j−1+b v

(m)
j +c v

(m)
j+1 = λm v

(m)
j , j = 1, . . . , M −→

√
c

a
v

(m)
j−1+2 cos

(
mπ

M + 1

)
v

(m)
j +

√
a

c
v

(m)
j+1 = 0

(A.10)

Equation (A.10) holds for 2 ≤ j ≤M−1 but has been extended to apply also

for j = 1 and j = M by assuming v
(m)
0 = 0 = v

(m)
M+1, providing two boundary

conditions for the difference equation (A.10). The associated characteristic
polynomial is√

c

a
z2 + 2 cos

(
mπ

M + 1

)
z +

√
a

c
= 0

1Comment for me: I verified numerically this limit. It’s okay.
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with roots:

z1,2 =

− cos

(
mπ

M + 1

)
±

√(
cos

(
mπ

M + 1

))2

− 1√
c

a

= −
√
a

c

[
cos

(
mπ

M + 1

)
± i sin

(
mπ

M + 1

)]

A general solution of the difference equation is thus:

v
(m)
j =

(
−
√
a

c

)j [
A cos

(
mπ

M + 1

)
+B sin

(
mπ

M + 1

)]
, A, B ∈ C

The boundary condition v
(m)
0 = 0 yields A = 0, while the condition v

(m)
M+1 =

0 is automatically satisfied. Thus, the eigenvectors are

v
(m)
j =

(
−
√
a

c

)j
sin

(
j mπ

M + 1

)
, j = 1, . . . , M (A.11)

The eigenvectors given by Eq. (A.11) are not normalized w.r.t the Euclidean
norm.
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