
Solution of the heat equation on structured grids

2

Contents

1 Boundary-fitted grids 5

2 Elliptic mesh generation for boundary-fitted grids 9

A Meshing strategies for CFD 21

3

4 CONTENTS

Chapter 1

Heat conduction within
anisotropic media: solution
via finite-difference method
in curvilinear coordinates

In this section, the Fourier’s model for anisotropic heat conduction, taken
for granted in a Cartesian coordinate system, is extended to general curvilin-
ear coordinates. In the following, (x1, x2, x3) denote cartesian coordinates,
(y1, y2, y3) denote curvilinear coordinates. No orthogonality constraint is as-
sumed for the curvilinear coordinate system. The Cartesian unit basis vec-
tors are denoted by (e1, e2, e3) while the covariant and contravariant basis
vectors for the curvilinear coordinate system are (g1, g2, g3) and (g1, g2, g3),
respectively. Fourier’s law of heat conduction through anisotropic media in
Cartesian coordinates is taken for granted:

q = qi ei; qi = −Ki j ∂T

∂xj
(1.1)

The contravariant components q̃i of q, in the curvilinear coordinates system,
are defined by:

q = q̃i gi (1.2)

and are related to the Cartesian components of q by:

q̃i = q · gi = qj ej · gi (1.3)

5

6 CHAPTER 1. BOUNDARY-FITTED GRIDS

Recalling that

gi = gi k gk = gi k
∂xm

∂yk
em (1.4)

yields

ej · gi = gi k
∂xm

∂yk
δj m = gi k

∂xj

∂yk
(1.5)

Thus:

q̃i = qj gi k
∂xj

∂yk
= −Kj p ∂T

∂xp
gi k

∂xj

∂yk
(1.6)

Applying the chain rule for differentiaion yields:

q̃i = −Kj p ∂T

∂yl
∂yl

∂xp
∂xj

∂yk
gi k (1.7)

It is easily proved that, as long as (x1, x2, x3) are Cartesian coordinates, the
contravariant metric tensor is given by

gi k =
∂yi

∂xn
∂yk

∂xn
(1.8)

Namely, the contravariant metric tensor is the inverse of the covariant metric
tensor and

gj k
∂yi

∂xn
∂yk

∂xn
=
∂xm

∂yj
∂xm

∂yk
∂yi

∂xn
∂yk

∂xn
= δij (1.9)

Substituting (1.8) in (1.7) yields:

q̃i = −Kj p ∂T

∂yl
∂yl

∂xp
∂xj

∂yk
∂yk

∂xn
∂yi

∂xn

= −Kj p ∂T

∂yl
∂yl

∂xp
δjn

∂yi

∂xn

= −Kj p ∂T

∂yl
∂yl

∂xp
∂yi

∂xj

= −
[
Kj p ∂y

l

∂xp
∂yi

∂xj

]
∂T

∂yl

(1.10)

7

Let us recall that the l-th covariant component of the gradient is given by

Gl(T) =
∂T

∂yl
; ∇T = Gl g

l

Letting

K̃i l := Kj p ∂y
i

∂xj
∂yl

∂xp
(1.11)

define the contravariant thermal conductivity tensor, Fourier’s law for anisotropic
heat conduction becomes:

q̃i = −K̃i l ∂T

∂yl

q = q̃i gi

(1.12)

The energy conservation equation for steady heat conduction in curvi-
linear coordinates is easily derived:

∇ · q = S (1.13)

1
√
g

∂

∂yi
(√
g q̃i
)

= S (1.14)

− 1
√
g

∂

∂yi

(
√
g K̃i j ∂T

∂yj

)
= S (1.15)

8 CHAPTER 1. BOUNDARY-FITTED GRIDS

Chapter 2

Elliptic mesh generation for
boundary-fitted grids

9

A, /,,rer,L,+!**j
L<

t- {t J* M; zD

T[r 3D LVDca-"L ffie
I

t*il
\/,4/t

D,vd)r"Y*G

/
d' ll"ttl ilvtil

z

^

3

\= nn \ 4^ f* t-l^ Wfladhol). ll4z
/) A r o1

l,t*^ Lu ,o blo": <t //o"l
.

/\

J

I

We gt* W
- tnw{1t (, [^r^^, d*

l?x| --'--,5

2J
1t--2<

/

-'a7

2x

2r< 2Y 2X "/=+= ?g?7 =f ?9
/LU(

1 + ! ry?LL?1,Z J D "r ,Z[D %)

= Lry? ll +] -)-"J-?ir?Jl- bTtT [b
?Lj -;77,1D'z]

^f=c(:, il4Ffl-+?zF?r]
"x ? t-r zz[+ %1 = o+ 4.;S J; - "r,(,[c "z]/L

= /q4l*4-;4+l*4)

b
J-4-Yt

-ts'_ D-'7 D

= -t74({y) +bT?Lt*Y,)

ry+F4) (*

r ry+v ?+F4^

A/=c (-)

I
-

19

Rearranging the equations for x and y (with some effort) we end up with:

αx,ξξ − 2β x,ξη + γ x,ηη = 0

α y,ξξ − 2β y,ξη + γ y,ηη = 0

A Matlab implementation can be found here.

20CHAPTER 2. ELLIPTICMESH GENERATION FOR BOUNDARY-FITTEDGRIDS

Appendix A

Meshing strategies for CFD

21

1

Lecture 7 - Meshing

Applied Computational Fluid Dynamics

Instructor: André Bakker

http://www.bakker.org
© André Bakker (2002-2006)
© Fluent Inc. (2002)

2

Outline

• Why is a grid needed?
• Element types.
• Grid types.
• Grid design guidelines.
• Geometry.
• Solution adaption.
• Grid import.

3

Why is a grid needed?
• The grid:

– Designates the cells or elements on which the flow is solved.
– Is a discrete representation of the geometry of the problem.
– Has cells grouped into boundary zones where b.c.’s are applied.

• The grid has a significant impact on:
– Rate of convergence (or even lack of convergence).
– Solution accuracy.
– CPU time required.

• Importance of mesh quality for good solutions.
– Grid density.
– Adjacent cell length/volume ratios.
– Skewness.
– Tet vs. hex.
– Boundary layer mesh.
– Mesh refinement through adaption.

4

Geometry can be very simple... … or more complex

geometry for
a “cube”

Geometry

• The starting point for all problems is a “geometry.”
• The geometry describes the shape of the problem to be analyzed.
• Can consist of volumes, faces (surfaces), edges (curves) and

vertices (points).

5

Geometry creation

• Geometries can be created top-down or bottom-up.
• Top-down refers to an approach where the computational domain

is created by performing logical operations on primitive shapes
such as cylinders, bricks, and spheres.

• Bottom-up refers to an approach where one first creates vertices
(points), connects those to form edges (lines), connects the
edges to create faces, and combines the faces to create volumes.

• Geometries can be created using the same pre-processor
software that is used to create the grid, or created using other
programs (e.g. CAD, graphics).

6

Typical cell shapes

• Many different cell/element and grid types are available. Choice
depends on the problem and the solver capabilities.

• Cell or element types:

– 2D:

– 3D:

triangle
(“tri”)

2D prism
(quadrilateral
or “quad”)

tetrahedron
(“tet”)

pyramid

prism with
quadrilateral base
(hexahedron or “hex”)

prism with
triangular base
(wedge)

arbitrary polyhedron

7

node

face

cell

face
cell

node

edge

2D computational grid

3D computational grid

cell
center

Terminology

• Cell = control volume into which
domain is broken up.

• Node = grid point.
• Cell center = center of a cell.
• Edge = boundary of a face.
• Face = boundary of a cell.
• Zone = grouping of nodes, faces,

and cells:
– Wall boundary zone.
– Fluid cell zone.

• Domain = group of node, face
and cell zones.

8

Grid types: structured grid

• Single-block, structured grid.
– i,j,k indexing to locate neighboring cells.
– Grid lines must pass all through domain.

• Obviously can’t be used for very complicated geometries.

9

• Different types of hexahedral grids.
• Single-block.

– The mesh has to be represented in a single block.
– Connectivity information (identifying cell neighbors) for entire mesh is

accessed by three index variables: i, j, k.

Single-block geometry Logical representation.

• Single-block meshes may include 180 degree corners.

+ +

+ +

Face meshing: structured grids

10

Grid types: multiblock

• Multi-block, structured grid.
– Uses i,j,k indexing within each

mesh block.

– The grid can be made up of
(somewhat) arbitrarily-connected
blocks.

• More flexible than single block,
but still limited.

Source: www.cfdreview.com

11

• Different types of hexahedral grids.
– Multi-block.
– The mesh can be represented in multiple blocks.

Multi-block geometry Logical representation.

– This structure gives full control of the mesh grading, using edge
meshing, with high-quality elements.

– Manual creation of multi-block structures is usually more time-
consuming compared to unstructured meshes.

Face meshing: multiblock

12

Grid types: unstructured

• Unstructured grid.
– The cells are arranged in an arbitrary fashion.
– No i,j,k grid index, no constraints on cell layout.

• There is some memory and CPU overhead for unstructured
referencing.

Unstructured mesh on a dinosaur

13

Unstructured Grid

Face meshing: unstructured grids

• Different types of hexahedral grids.
– Unstructured.
– The mesh has no logical representation.

14

Face meshing: quad examples

• Quad: Map.

• Quad: Submap.

• Quad: Tri-Primitive.

• Quad: Pave and Tri-Pave.

15

Grid types: hybrid

• Hybrid grid.
– Use the most appropriate cell type in any combination.

• Triangles and quadrilaterals in 2D.

• Tetrahedra, prisms and pyramids in 3D.

– Can be non-conformal: grids lines don’t need to match at block
boundaries.

triangular surface mesh
on car body is quick and
easy to create

prism layer
efficiently resolves
boundary layer

tetrahedral
volume mesh
is generated
automatically

non-conformal
interface

16

Complex Geometries

Surface mesh for a grid
containing only tetrahedra

Tetrahedral mesh

• Start from 3D boundary mesh
containing only triangular faces.

• Generate mesh consisting of
tetrahedra.

17

• Flow alignment well defined in
specific regions.

• Start from 3D boundary and
volume mesh:
– Triangular and quadrilateral

faces.
– Hexahedral cells.

• Generate zonal hybrid mesh,
using:
– Tetrahedra.
– Existing hexahedra.

– Transition elements: pyramids. Surface mesh for a grid containing
hexahedra, pyramids, and tetrahedra
(and prisms)

Zonal hybrid mesh

18

• Parametric study of complex
geometries.

• Nonconformal capability allows
you to replace portion of mesh
being changed.

• Start from 3D boundary mesh or
volume mesh.

• Add or replace certain parts of
mesh.

• Remesh volume if necessary.

Nonconformal mesh
for a valve port

nonconformal
interface

Nonconformal mesh

19

Mesh naming conventions - topology

• Structured mesh: the mesh follows a structured i,j,k convention.
• Unstructured mesh: no regularity to the mesh.
• Multiblock: the mesh consists of multiple blocks, each of which

can be either structured or unstructured.

20

Mesh naming conventions – cell type

• Tri mesh: mesh consisting entirely of triangular elements.
• Quad mesh: consists entirely of quadrilateral elements.
• Hex mesh: consists entirely of hexahedral elements.
• Tet mesh: mesh with only tetrahedral elements.
• Hybrid mesh: mesh with one of the following:

• Triangles and quadrilaterals in 2D.

• Any combination of tetrahedra, prisms, pyramids in 3D.
• Boundary layer mesh: prizms at walls and tetrahedra everywhere else.

• Hexcore: hexahedra in center and other cell types at walls.

• Polyhedral mesh: consists of arbitrary polyhedra.
• Nonconformal mesh: mesh in which grid nodes do not match up

along an interface.

21

1. Create, read (or import)
boundary mesh(es).

2. Check quality of boundary mesh.
3. Improve and repair boundary

mesh.
4. Generate volume mesh.
5. Perform further refinement if

required.
6. Inspect quality of volume mesh.
7. Remove sliver and degenerate

cells.
8. Save volume mesh.

Surface mesh for a grid
containing only tetrahedra

Mesh generation process

22

• Two phases:
– Initial mesh generation:

Triangulate boundary mesh.

– Refinement on initial mesh:
Insert new nodes. Initial mesh

Boundary refinement Cell zone refinement

Tri/tet grid generation process

23

Mesh quality

• For the same cell count, hexahedral meshes will give more
accurate solutions, especially if the grid lines are aligned with the
flow.

• The mesh density should be high enough to capture all relevant
flow features.

• The mesh adjacent to the wall should be fine enough to resolve
the boundary layer flow. In boundary layers, quad, hex, and
prism/wedge cells are preferred over tri’s, tets, or pyramids.

• Three measures of quality:
– Skewness.
– Smoothness (change in size).
– Aspect ratio.

24

• Two methods for determining
skewness:
1. Based on the equilateral

volume:
• Skewness =

• Applies only to triangles and
tetrahedra.

• Default method for tris and tets.

2. Based on the deviation from a
normalized equilateral angle:

• Skewness (for a quad) =

• Applies to all cell and face
shapes.

• Always used for prisms and
pyramids.

max max minθ θ− −





90

90

90

90
,

minθ

maxθ

optimal (equilateral) cell

actual cell

circumcircle

optimal cell size cell size

optimal cell size

−

Mesh quality: skewness

• Common measure of quality is based on equiangle skew.
• Definition of equiangle skew:

where:
– θmax = largest angle in face or cell.
– θmin = smallest angle in face or cell.
– θe = angle for equiangular face or cell.

• e.g., 60 for triangle, 90 for square.

• Range of skewness:








 −
−
−

e

mine

e

emax ,
180

max
θ
θθ

θ
θθ

θ min

θ max

0 1
best worst

Equiangle skewness

26

• Change in size should be gradual (smooth).

• Aspect ratio is ratio of longest edge length to shortest edge
length. Equal to 1 (ideal) for an equilateral triangle or a square.

smooth change large jump in
in cell size cell size

aspect ratio = 1 high-aspect-ratio quad

aspect ratio = 1 high-aspect-ratio triangle

Mesh quality: smoothness and aspect ratio

Value of
Skewness

0-0.25 0.25-0.50 0.50-0.80 0.80-0.95 0.95-0.99 0.99-1.00

Cell Quality excellent good acceptable poor sliver degenerate

Striving for quality

• A poor quality grid will cause inaccurate solutions and/or slow
convergence.

• Minimize equiangle skew:
– Hex and quad cells: skewness should not exceed 0.85.
– Tri’s: skewness should not exceed 0.85.
– Tets: skewness should not exceed 0.9.

• Minimize local variations in cell size:
– E.g. adjacent cells should not have ‘size ratio’ greater than 20%.

• If such violations exist: delete mesh, perform necessary
decomposition and/or pre-mesh edges and faces, and remesh.

28

inadequate betterflow

OK!

Grid design guidelines: resolution

• Pertinent flow features should be adequately resolved.

• Cell aspect ratio (width/height) should be near one where flow is
multi-dimensional.

• Quad/hex cells can be stretched where flow is fully-developed
and essentially one-dimensional.

Flow Direction

29

Grid design guidelines: smoothness

• Change in cell/element size should be gradual (smooth).

• Ideally, the maximum change in grid spacing should be <20%:

smooth change
in cell size

sudden change
in cell size —AVOID!

• • •

∆xi ∆xi+1

2.1
x

x

i

1i ≤
∆

∆ +

30

Grid design guidelines: total cell count

• More cells can give higher accuracy. The downside is increased
memory and CPU time.

• To keep cell count down:
– Use a non-uniform grid to cluster cells only where they are needed.
– Use solution adaption to further refine only selected areas.

• Cell counts of the order:
– 1E4 are relatively small problems.
– 1E5 are intermediate size problems.
– 1E6 are large. Such problems can be efficiently run using multiple

CPUs, but mesh generation and post-processing may become slow.
– 1E7 are huge and should be avoided if possible. However, they are

common in aerospace and automotive applications.
– 1E8 and more are department of defense style applications.

31

Solution adaption

• How do you ensure adequate grid resolution, when you don’t
necessarily know the flow features? Solution-based grid adaption!

• The grid can be refined or coarsened by the solver based on the
developing flow:
– Solution values.
– Gradients.
– Along a boundary.
– Inside a certain region.

32

Grid adaption

• Grid adaption adds more cells where needed to resolve the flow
field.

• Fluent adapts on cells listed in register. Registers can be defined
based on:

– Gradients of flow or user-defined variables.
– Isovalues of flow or user-defined variables.

– All cells on a boundary.

– All cells in a region.
– Cell volumes or volume changes.

– y+ in cells adjacent to walls.

• To assist adaption process, you can:
– Combine adaption registers.

– Draw contours of adaption function.

– Display cells marked for adaption.
– Limit adaption based on cell size and number of cells.

33

Adaption example: final grid and solution

2D planar shell - contours of pressure
final grid

2D planar shell - final grid

34

Main sources of errors

• Mesh too coarse.
• High skewness.
• Large jumps in volume between adjacent cells.
• Large aspect ratios.
• Interpolation errors at non-conformal interfaces.
• Inappropriate boundary layer mesh.

35

Summary

• Design and construction of a quality grid is crucial to the success
of the CFD analysis.

• Appropriate choice of grid type depends on:
– Geometric complexity.
– Flow field.
– Cell and element types supported by solver.

• Hybrid meshing offers the greatest flexibility.
• Take advantage of solution adaption.

	Boundary-fitted grids
	Elliptic mesh generation for boundary-fitted grids
	Meshing strategies for CFD

