Regeneration of the entire human epidermis using transgenic stem cells

 Roberta Contin 5, Elena Enzo ${ }^{5}$, Irena Jurman ${ }^{8}$, Sonia Carulli ${ }^{9}$, Frank Jacobsen ${ }^{1}$, Thomas Luecke ${ }^{10}$, Marcus Lehnhardt ${ }^{1}{ }^{1}$, Meike Fischer ${ }^{2}$, Maximilian Kueckelhaus ${ }^{1}$, Daniela Quaglino ${ }^{7}$, Michele Morgante ${ }^{8}$, Silvio Bicciato ${ }^{7}$, Sergio Bondanza ${ }^{9}$ \& Michele De Luca ${ }^{5}$
unctional epidermolysis bullosa (JEB) is a severe and often lethal genetic disease caused by mutations in genes encodin the basement membrane component laminin-332. Surviving patients with JEB develop chronic wounds to the skin and mucosa, which impair their quality of life and lead to skin cancer. Here we show that autologous transgenic keratinocyte cultures regenerated an entire, fully functional epidermis on a seven-year-old child suffering from a devastating, lifehreatening form of JEB. The proviral integration pattern was maintained in vivo and epidermal renewal did not cause any clonal selection. Clonal tracing showed that the human epidermis is sustained not by equipotent progenitors, but and produce progenitors that replenish terminally differentiated keratinocytes. This study provides a blueprint that can be applied to other stem cell-mediated combined ex vivo cell and gene therapies

Epidermal stem cells

EUROPEAN MEDICINES AGENCY

What is compassionate use?

Compassinate use is a way of making available to patients with an unmet medical need a promising medicine which has not yet been authorised (licensed) for their condition.

A medicine can be marketed in the European Union (EU) only after it has been authorised. However, it is sometimes in the interest of patients to have access to medicines before authorisation. Special programmes can be set up to make these medicines available to them under defined conditions. This is known as 'compassionate use'

Which medicines can be made available in this way?

Compassionate use programmes can only be put in place for medicines that are expected to help patients with life-threatening, long-lasting or seriously disabling illnesses. These programmes are expected to benefit seriously ill patients who currently cannot be treated satisfactorily with authorised medicines, or who have a disease for which no medicine has yet been authorised. The compassionate use route may be a way for patients who cannot enrol in an ongoing clinical trial to obtain treatment with a potentially life-saving medicine.

At this stage in the development of the medicine, what is known of the medicine's safety may be limited. Generally, toxicology studies will have been completed and analysed, and early studies looking at how the medicine is handled by the body will have been completed. However, there may still be some uncertainties about the best way to give the medicine to patients, such as the exact dose to use, and the dose frequency, and the medicine's safety profile (which side effects it can cause) is not yet fully established.

Junctional epidermolysis bullosa (JEB)

structural and mechanical fragility of the integuments, blisters and erosions of the skin and mucosa within the lamina lucida of the basement membrane in response to minor trauma
massive chronic skin wounds, recurrent infections and scars, predisposition to skin cancer.

mutations in three genes-LAMA3, LAMB3 or
LAMC2 - that jointly encode laminin-332 (a heterotrimeric protein, also known as laminin 5, consisting of $\alpha 3, \beta 3$, and $\gamma 2$ chains), collagen XVII and a6 $\beta 4$ integrins.
deleterious mutations that cause an absence of laminin- 332 are usually lethal early in life. in nonlethal cases, laminin- 332 is strongly reduced and hemidesmosomes are rudimentary or absent no cure
40% of patients die before adolescenc

The patient
June 2015: a seven-year-old child admitted to the Burn Unit of the Children's Hospital, Ruhr-University, Bochum, Germany
Homozygous acceptor splice site mutation (C1977-1G> A, IVS 14-1G>A) within intron 14 of LAMB3
Since birth, blisters all over his body, particularly on his limbs, back and flanks. Condition deteriorated severely six weeks before admission, owing to infection with Staphylococcus aureus and Pseudomonas aeruginosa.

Shortly after admission, complete epidermal loss on about 60% of his total body surface area (TBSA). At the time of the first surgery, the patient had complete epidermal loss on approximately 80% TBSA

Informed consent by parents and authorisation by regional regulatory uthorities for compassionate use of combined ex vivo cell and gene therapy.
 green. Fleshh-coloured areasi indicate c currently nonbblistering
skin. Transgenic grafss wer applied on both red and green areas

Regeneration of epidermis by transgenic cultures

A $4-\mathrm{cm}^{2}$ biopsy, taken from a currently nonblistering area of the patient's left inguinal region, was used to establish primary keratinocyte cultures, which were then transduced with a retroviral vector expressing the ful-leng LAMB3 CDNA virus long terminal repeat.

Sufficient $0.85-\mathrm{m} 2$ transgenic epidermal grafts, enough to cover all of the patient's denuded body surface, were applied sequentially on a properly prepared dermal wound bed

Ten punch biopsies were taken randomly, 4,8 and 21 months after grafting. The epidermis had normal morphology without blisters, erosions or epidermal detachment from the underlying dermis

Integration profile of transgenic epidermis

Previously, transgenic epidermal sheets have been cultivated on plastic, enzymatically detached from the vessel and mounted on a non-adhering gauze. Keratinocyte cultivation on a fibrin substrate-currently used to treat massive ski
and ocular burns-eliminates cumbersome procedures for graft preparation and transplantation and avoids epidermal shrinkage, allowing the production of larger grafts from the same number of clonogenic cells as are needed to produce plastic-cultured grafts. Because degradation of fibrin after transplantation, which is critical to allow cell engraftment, had never been assessed in a wound bed of a patient with JEB, at the first surgery we compared plastic- and fibrin-cultured

Approximately 80% of the patient's TBSA was restored by the transgenic epidermis.
(more than 20 epidermal renewing cycles), the
regenerated epidermis adhered firmly to the regenerated epidermis adhered firmly to
underlying dermis, even after induced underlying dermis, even after induced mechanical stress, healed normally and did not
form blisters, including in areas where foll biopsies were taken (arrow)

Transduced keratinocytes restored a proper adhesion machinery

Absence of humoral immune response to the transgene product on monkey oesophagus and human skin (NH-SS) sections, using the patient's plasma
21 months after transplantation.

Genes containing an integration functionally
enriched in Gene Ontology categories related

Although the follow-up of this patient was shorter and does not allow us to draw definitive conclusions, the frequency of considered that patients with severe JEB are likely to develop aggressive squamous cell carcinoma as a consequence of the progression of the disease

The transgenic epidermis is sustained by holoclones

integrations per cm^{2} of regenerated epidermis, and all clonogenic cells contained in $4 \mathrm{Mc}, 8 \mathrm{Mc} 1$ and 8 Mc 2 cultures would have had independent integrations.
Instead, if the transgenic epidermis were sustained by only a restricted number of stem cells (continuously generating pools of transient amplifying progenitors), we would have recovered only a few hundred integrations, and meroclones and paraclones contained in $4 \mathrm{Mc}, 8 \mathrm{Mcl}$ and 8 Mc 2 cultures would have had the same integrations as were found in the corresponding holoclones.
The number of integrations detected in post-graft cultures is consistent with the number of stem cells that have been transplanted, and therefore strongly supports the latter hypothesis, which was verified by proviral analyses at clonal level

Integration profile of stem and transient amplifying cells

Clonal analysis scheme

Sub-confuent cultures were inoculated (0.5 cells per well) onto 96 -multiwell plates containing irradiated 373 -J2 cells. After 7 days or vodanine B for clones were transferred to two dishes. One dish (one-quarter of the clone) was fixed 12 days later and stained the founding cell.
The second dish (three-quarters of the clone) was used for integration analysis after 7 days of cultivation

i) PGc consisted of a mixture of independent transgenic holoclones, meroclones and paraclones
(ii) meroclones and paraclones are transient amplifying progenitors, do not self-renew and are progressively lost during altivation and in vivo epidermal renewal, and therefore do not contribute to the long-term maintenance of the epidermis (iii) the transgenic epidermis is sustained only by long-lived stem cells detected as holoclones
(iv) founder stem cells contained in the original primary culture must have undergone extensive self-renewal (in vitro and in vivo) to ultimately sustain the regenerated epidermis

