CORSO DI LABORATORIO di BIOLOGIA MOLECOLARE -2° esercitazione a.a. 2019-20

ESTRAZIONE DI DNA PLASMIDICO E GENOMICO

1) ESTRAZIONE DI DNA PLASMIDICO BATTERICO

La stessa procedura deve essere seguita in parallelo per ciascuno dei 2 campioni, costituiti entrambi da un *pellet* batterico raccolto sul fondo della provetta eppendorf.

STEP di ri-sospensione: il pellet batterico va risospeso in 250µl di buffer A con la pipetta

STEP di lisi: alla risospensione vanno addizionati 250μl di soluzione B, senza mescolare con la pipetta, si chiude il tappo della provetta e si mescola bene per inversione almeno 6 volte, poi si lascia 3' a temperatura ambiente sul bancone

STEP di ri-naturazione: si aggiungono 350μl di soluzione C, senza mescolare con la pipetta, si chiude il tappo della provetta e si mescola bene per inversione almeno 6 volte, poi si può centrifugare

CENTRIFUGAZIONE: bilanciando le provette nella centrifuga, si centrifuga per 10' a 13000rpm

Il sopranatante che si ottiene, nel caso non risultasse limpido lo si centrifuga ancora una volta in una provetta eppendorf nuova e se invece risulta limpido lo si trasferisce, caricando tutti gli **800µl** nella colonnina sistemata all'interno del suo supporto precedentemente siglato.

- si centrifuga a 13000rpm per 1' e poi si scarta il liquido che è passato oltre la colonnina (*flow-through*) nell'apposito recipiente, poi si rimette la colonnina nel supporto
- si caricano nella colonnina **750µl di soluzione W** (lavaggio)
- si centrifuga a 13000rpm per 1' poi si scarta nell'apposito recipiente il *flow-through*, poi si rimette la colonnina nel supporto
- si centrifuga per 1' la colonnina vuota per togliere l'eccesso di liquido
 - si trasferisce la colonnina in una provetta nuova da 1,5mL a cui è stato tagliato via il tappo, vi si caricano dentro 50µl di soluzione E (eluente), si lascia 1' sul banco e poi si centrifuga 13000rpm per per 1', per recuperare l'eluito
- si trasferisce il campione raccolto sul fondo in una provetta col tappo contrassegnato per riconoscere il campione

CONSERVARE I CAMPIONI PER LE ESERCITAZIONI SUCCESSIVE!!! contrassegnandoli bene per riuscire a riconoscerli e ritrovarli fra tutti gli altri campioni

2) ESTRAZIONE DI DNA GENOMICO

La stessa procedura deve essere seguita in parallelo per ciascun componente del gruppo

- -Mettere tutta la soluzione salina (5ml nel tubo falcon) in bocca, masticare a lungo le parete della guancia e poi espellere e raccogliere il tutto nello stesso tubo falcon. Trasferire 1ml in una provetta eppendorf e centrifugare 2' a 13000rpm. Controllare che si sia formato un *pellet* biancastro (ben visibile); in caso negativo eliminare il surnatante e riinserire 1ml della soluzione salina nella stessa eppendorf e ripetere la centrifuga.
- -con la pipetta aspirare il sopranatante per eliminarlo, FACENDO ATTENZIONE A NON andare fino in fondo col puntale. **LASCIARE circa 50µL sopra il pellet** e rispospenderlo manualmente in questo stesso volume. Poi prelevarne 20µL e trasferirli nel tubo contenente i 200µL di matrice, risospendere tutto il volume manualmente e mettere a incubare a 56°C per 5', risospendere manualmente di nuovo e reincubare per altri 5 min.
- -dopo aver nuovamente risospeso il volume, mettere a $\,$ incubare nel bagno a secco a 98°C per 5', poi risospendere manualmente e centrifugare 5' a 6000x
- prelevare **80µL del sopranatante** che verranno analizzati allo spettrofotometro per stimare la concentrazione e la qualità del campione di DNA, determinando l'assorbanza a 260 e 280nm.
- Dopo aver azzerato lo spettrofotometro con due cuvettes contenenti 1ml di acqua, questi 80µL di campione vengono addizionati direttamente in una delle due cuvettes per la lettura spettrofotometrica.

PREPARAZIONE SOLUZIONE per EF su gel di agarosio

pesare sulla bilancia tecnica 1g di agarosio (sulla stagnola) e trasferirlo nella bottiglia pirex

- addizionare 100ml di tampone TAE 1x
- AGGIUNGERE 5µL di GelRed
- contrassegnare la bottiglia Pirex col nome del gruppo

Visualizzazione del DNA estratto:

- -sciogliere il gel di agarosio per elettroforesi nel forno a microonde
- -preparare una capsulina petri di diametro 3,5cm segnando all'esterno sul fondo 4 quadratini di circa 5mm di lato, 2 per ciascun campione
- -prelevare circa 3mL di gel sciolto e colarlo nella capsulina senza introdurre bolle in modo che si formi uno strato di 3-4mm di gel sul fondo della capsulina
- -lasciare che si raffreddi e si formi il gel
- -depositare nella zona delimitata dai quadratini 1µl e 2µl di ciascuno dei 2 DNA plasmidici eluiti e 5µl di ciascun campione di DNA genomico
- -lasciare asciugare bene e osservare il segnale al transilluminatore

ALLESTIMENTO REAZIONI DIGESTIONE CON ENZIMI DI RESTRIZIONE da DNA PLASMIDICO

Di uno dei due plasmidi preparati (a scelta), prelevare:

- 10μL e trasferirli nel tubo eppendorf con la miscela di restrizione con 1 solo ER (5μL), mescolare bene e accertarsi che tutto il volume rimanga nel fondo del tubo (eventualmente centrifugare); mettere a incubare a 37°C.
- 10μL e trasferirli nel tubo eppendorf con la miscela di restrizione con tutti e 2 ER (5μL), mescolare bene e accertarsi che tutto il volume rimanga nel fondo del tubo (eventualmente centrifugare); mettere a incubare a 37°C.
- 10μL e trasferirli nel tubo eppendorf con la miscela di restrizione SENZA ER (5μL), mescolare bene e accertarsi che tutto il volume rimanga nel fondo del tubo (eventualmente centrifugare); mettere a incubare a 37°C.