
Programmazione Avanzata per la
Fisica - Modulo “Nuclare”

Mail : ramona.lea@ts.infn.it https://www.ts.infn.it/~lea/cpp2020.html

Ramona Lea
Università degli studi di Trieste

Laurea Magistrale in Fisica
A.A. 2019/2020

Moodle: https://moodle2.units.it/course/view.php?id=5049
Corsi 2019/2020 - 455SM-2 - MODULO 2N 2019

 2

References

● Slides and other material:

http://www.ts.infn.it/~lea/cpp2020.html

● Moodle UniTs

• On line resources:

http://www.learncpp.com

http://www.cplusplus.com

http://root.cern.ch

● Book
● “Programming with C++” John R. Hubbard, Schaum’s outlines

● “C++ How to Program- Fourth Edition”, by H. M. Deitel, P. J. Deitel, Prentice Hall, New
Jersey, 2003, ISBN: 0-13-038474.

● “The C++ programming language” Bjarne Stroustrup, Addison-Wesley Professional, 3
edition (1997), ISBN: 978-0201889543

● “Scientific and Engineering C++: An Introduction with Advanced Techniques and
Examples”, John J. Barton, Lee R. Nackam, Addison Wesley (1994), ISBN: 978-
0201533934

 3

Timetable and final examination

Place:

Monday: Aula T21

Friday : Aula T21

• Timetable:

Moday from 14.00 to ~17.30

Friday from 09.00 to ~12.30

● Monday 02/12 no lesson

● Lectures structure: (a bit of) theory and (a lot of) programming will
be mixed during the afternoon

● Examination, two steps:

– “written part” coding an analysis program (at home)

– “oral part”: running and discussion of the code

● To register the vote the Module1 of the course has to be passed

C++ programming

 5

Compilers

● The essential tools needed to do follow this course are a computer
and a compiler tool-chain able to compile C++ code and build the
programs to run on it

● Computers understand only one language and that language
consists of sets of instructions made of ones and zeros. This
computer language is appropriately called machine language.

Example: A single instruction to a computer could look like this:

● A particular computer's machine language program that allows a
user to input two numbers, adds the two numbers together, and
displays the total could include these machine code instructions:

00000 10011110

00000 10011110

00001 10011110

00010 11110100

00011 11010100

00100 10011110

 6

Compilers

● As you can imagine, programming a computer directly in machine
language using only ones and zeros is very tedious and error prone. To
make programming easier, high level languages have been developed.
High level programs also make it easier for programmers to inspect and
understand each other's programs easier.

● This is a portion of code written in C++ that accomplishes the exact same
purpose:

● Even if you cannot really understand the code above, you should be able
to appreciate how much easier it will be to program in the C++ language
as opposed to machine language.

1 int a, b, sum;
2
3 cin >> a;
4 cin >> b;
5
6 sum = a + b;
7 cout << sum << endl;

00000 10011110

00001 10011110

00010 11110100

00011 11010100

00100 10011110

 7

Compilers

● Because a computer can only understand machine language and
humans wish to write in high level languages high level languages
have to be re-written (translated) into machine language at some
point. This is done by special programs called compilers,
interpreters, or assemblers that are built into the various
programming applications.

● C++ is designed to be a compiled language, meaning that it is
generally translated into machine language that can be understood
directly by the system, making the generated program highly
efficient. For that, a set of tools are needed, known as the
development toolchain, whose core are a compiler and its linker.

 8

Console programs

● Console programs are programs that use text to communicate with
the user and the environment, such as printing text to the screen
or reading input from a keyboard

● Console programs are easy to interact with, and generally have a
predictable behavior that is identical across all platforms. They are
also simple to implement and thus are very useful to learn the
basics of a programming language

● The way to compile console programs depends on the particular
tool you are using.

● If you happen to have a Linux or Mac environment with
development features, you should be able to compile any program
directly from a terminal

 9

Console programs

● Console programs are programs that use text to communicate with
the user and the environment, such as printing text to the screen
or reading input from a keyboard

● Console programs are easy to interact with, and generally have a
predictable behavior that is identical across all platforms. They are
also simple to implement and thus are very useful to learn the
basics of a programming language

● The way to compile console programs depends on the particular
tool you are using.

● If you happen to have a Linux or Mac environment with
development features, you should be able to compile any program
directly from a terminal

Compiler Platform Command

GCC Linux, among others… g++ -std=c++0x example.cpp -o example_program

Clang OS X, among others... clang++ -std=c++11 -stdlib=libc++ example.cpp -o example_program

 10

History of C and C++

● History of C:
● Evolved from two other programming languages (BCPL and B “Typeless” languages)

● Dennis Ritchie (Bell Laboratories): added data typing, other features

● Development language of UNIX

● Hardware independent (Portable programs)

● 1989: ANSI standard

● 1990: ANSI and ISO standard published
● ANSI/ISO 9899: 1990

● History of C++
● Extension of C: Early 1980s: Bjarne Stroustrup (Bell Laboratories), “Spruces up” C

● Provides capabilities for object-oriented programming:
● Objects: reusable software components (Model items in real world)

● Object-oriented programs :Easy to understand, correct and modify

● Hybrid language
● C-like style

● Object-oriented style

● Both

 11

History of C and C++

● History of C:
● Evolved from two other programming languages (BCPL and B “Typeless” languages)

● Dennis Ritchie (Bell Laboratories): added data typing, other features

● Development language of UNIX

● Hardware independent (Portable programs)

● 1989: ANSI standard

● 1990: ANSI and ISO standard published
● ANSI/ISO 9899: 1990

● History of C++
● Extension of C: Early 1980s: Bjarne Stroustrup (Bell Laboratories), “Spruces up” C

● Provides capabilities for object-oriented programming:
● Objects: reusable software components (Model items in real world)

● Object-oriented programs :Easy to understand, correct and modify

● Hybrid language
● C-like style

● Object-oriented style

● Both
In this course C++ and C differences will NOT be pointed out, but you should already be master of C

 12

C++ Standard Library

● C++ programs
● Built from pieces called classes and functions

● C++ standard library
● Rich collections of existing classes and functions

● “Building block approach” to creating programs
● “Software reuse”

 13

The Key Software Trend: Object Technology

● Objects
● Reusable software components that model real world items

● Meaningful software units

● Date objects, time objects, paycheck objects, invoice objects, audio objects, video objects,
file objects, record objects, etc.

● Any noun can be represented as an object

● More understandable, better organized and easier to maintain than
procedural programming

● Favor modularity

● Software reuse

● Libraries
● MFC (Microsoft Foundation Classes)
● Rogue Wave

 14

Basics of a Typical C++ Environment

Phases of C++ Programs:

1)Edit

2)Preprocess

3)Compile

4)Link

5)Load

6)Execute

Loader

Primary
Memory

Program is created in
the editor and stored
on disk.

Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Compiler
Compiler creates
object code and stores
it on disk.

Linker links the object
code with the libraries,
creates a.out and
stores it on disk

Editor

Preprocessor

Linker

CPU

Primary
Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

 15

Executables, compiling and running

|prompt> g++ -c hello.cpp

|prompt> g++ -o hello hello.o

|prompt> ls –lrt hello*

-rw-r--r-- 1 ramona ramona 320 feb 14 17:44 hello.cpp

-rw-r--r-- 1 ramona ramona 2,5K feb 14 17:45 hello.o

-rwxr-xr-x 1 ramona ramona 8,8K feb 14 17:45 hello

source(s)
(.cpp)

object(s)
(.o)

linking
(where to find

.so and .o)

executable
(no extension

or .exe)

g++ ld (g++)

 16

Executables, compiling and running

|prompt> g++ -c hello.cpp

|prompt> g++ -o hello hello.o

|prompt> ls –lrt hello*

-rw-r--r-- 1 ramona ramona 320 feb 14 17:44 hello.cpp

-rw-r--r-- 1 ramona ramona 2,5K feb 14 17:45 hello.o

-rwxr-xr-x 1 ramona ramona 8,8K feb 14 17:45 hello

source(s)
(.cpp)

object(s)
(.o)

linking
(where to find

.so and .o)

executable
(no extension

or .exe)

g++ ld (g++)

 17

Executables, compiling and running

|prompt> g++ -c hello.cpp

|prompt> g++ -o hello hello.o

|prompt> ls –lrt hello*

-rw-r--r-- 1 ramona ramona 320 feb 14 17:44 hello.cpp

-rw-r--r-- 1 ramona ramona 2,5K feb 14 17:45 hello.o

-rwxr-xr-x 1 ramona ramona 8,8K feb 14 17:45 hello

source(s)
(.cpp)

object(s)
(.o)

linking
(where to find

.so and .o)

executable
(no extension

or .exe)

g++ ld (g++)

 18

Executables, compiling and running

|prompt> g++ -c hello.cpp

|prompt> g++ -o hello hello.o

|prompt> ls –lrt hello*

-rw-r--r-- 1 ramona ramona 320 feb 14 17:44 hello.cpp

-rw-r--r-- 1 ramona ramona 2,5K feb 14 17:45 hello.o

-rwxr-xr-x 1 ramona ramona 8,8K feb 14 17:45 hello

source(s)
(.cpp)

object(s)
(.o)

linking
(where to find

.so and .o)

executable
(no extension

or .exe)

g++ ld (g++)

|prompt> g++ -o hello hello.cpp

 19

The simplest C++ program: printing a line of text

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

hello.cpp

 20

The simplest C++ program: printing a line of text

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

Single-line comments

hello.cpp

 21

The simplest C++ program: printing a line of text

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

Preprocessor directive to
include input/output stream
header file <iostream>

hello.cpp

 22

The simplest C++ program: printing a line of text

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

Function main appears exactly
once in every C++ program

hello.cpp

 23

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

The simplest C++ program: printing a line of text

Function main returns an integer
value

hello.cpp

 24

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

The simplest C++ program: printing a line of text

Left brace { begins function body

hello.cpp

 25

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

The simplest C++ program: printing a line of text

Corresponding right brace } ends function body

hello.cpp

 26

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

The simplest C++ program: printing a line of text

Statements end with a semicolon ;

hello.cpp

 27

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

The simplest C++ program: printing a line of text

Stream insertion operator

hello.cpp

 28

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

The simplest C++ program: printing a line of text

Keyword return is one of several
means to exit function; value 0 indicates

program terminated successfully

hello.cpp

 29

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

The simplest C++ program: printing a line of text

Compile it with:

|prompt> g++ hello.cpp –o hello
Execute the program with:

|prompt> ./hello

hello.cpp

 30

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello world!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

The simplest C++ program: printing a line of text

Compile it with:

|prompt> g++ hello.cpp –o hello
Execute the program with:

|prompt> ./hello

Hello world!

hello.cpp

 31

The simplest C++ program: printing a line of text

● Standard output stream object
● std::cout
● “Connected” to screen

● <<
● Stream insertion operator
● Value to right (right operand) inserted into output stream

● Namespace
● std:: specifies using name that belongs to “namespace” std
● std:: removed through use of using statements

● Escape characters
● \
● Indicates “special” character output

 32

The simplest C++ program: printing a line of text

Escape Sequence Description

\n Newline. Position the screen cursor to the
beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next
tab stop.

\r Carriage return. Position the screen cursor to the
beginning of the current line; do not advance to the
next line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double quote
character.

 33

The simplest C++ program: printing a line of text

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {
8 std::cout << "Hello";
9 std::cout << "world!\n";
10 return 0; // indicate that program ended successfully

11

12 } // end function main

Compile it with:

|prompt> g++ hello.cpp –o hello
Execute the program with:

|prompt> ./hello

Multiple stream insertion statements
produce one line of output

Hello world!

 34

The simplest C++ program: printing a line of text

1 // A first program in C++
2 // Filename: hello.cpp

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 std::cout << "Hello\n \nworld!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

Compile it with:

|prompt> g++ hello.cpp –o hello
Execute the program with:

|prompt> ./hello

Using newline characters to print
on multiple lines.

Hello

world!

 35

Proper use of comments - what

Typically, comments should be used for three things. At the library, program,
or function level, comments should be used to describe what the library,
program, or function, does. For example:

// This program calculate the student's final grade

// based on his test and homework scores.

// This function uses newton's method to

// approximate the root of a given equation.

// The following lines generate a random item based

// on rarity, level, and a weight factor.

All of these comments give the reader a good idea of what the program is
trying to accomplish without having to look at the actual code. The user
(possibly someone else, or you if you’re trying to reuse code you’ve already
written in the future) can tell at a glance whether the code is relevant to what
he or she is trying to accomplish. This is particularly important when working
as part of a team, where not everybody will be familiar with all of the code.

 36

Proper use of comments - how

Second, within the library, program, or function described above, comments
should be used to describe how the code is going to accomplish it’s goal.

/* To calculate the final grade, we sum all the
weighted midterm and homework scores and then divide
by the number of scores to assign a percentage. This
percentage is used to calculate a letter grade. */

// To generate a random item, we're going to do the following:

//1) Put all of the items of the desired rarity on a list

//2) Calculate a probability for each item based on level and weight factor

//3) Choose a random number

//4) Figure out which item that random number corresponds to

//5) Return the appropriate item

These comments give the user an idea of how the code is going to

accomplish it’s goal without going into too much detail.

 37

Proper use of comments - why

At the statement level, comments should be used to describe why
the code is doing something. A bad statement comment explains
what the code is doing. If you ever write code that is so complex that
needs a comment to explain what a statement is doing, you probably
need to rewrite your code, not comment it.

● Bad comment:

// Set sight range to 0

sight = 0; (yes, we already can see that sight is being set to 0 by

looking at the statement)

● Good comment:

// The player just drank a potion of blindness
and can not see anything

sight = 0; (now we know WHY the player’s sight is being set to 0)

 38

Proper use of comments

● Bad comment:
// Calculate the cost of the items

cost = items / 2 * storePrice;

(yes, we can see that this is a cost calculation, but why is items divided by 2?)

● Good comment:

// We need to divide items by 2 here because they are bought in
pairs

cost = items / 2 * storePrice;

(now we know!)

 39

Proper use of comments

Programmers often have to make a tough decision between solving a
problem one way, or solving it another way.

Comments are a great way to remind yourself (or tell somebody else)
the reason you made a one decision instead of another.

Good comments:

// We decided to use a linked list instead of an array because

// arrays do insertion too slowly.

// We're going to use newton's method to find the root of a

// number because there is no deterministic way to solve these

// equations.

 40

Proper use of comments

● Finally, comment should be written in a way that makes sense to
someone who has no idea what the code does. It is often the case
that a programmer will say “It’s obvious what this does! There’s no
way I’ll forget about this”. Guess what? It’s not obvious, and you
will be amazed how quickly you forget. :)

● You (or someone else) will thank you later for writing down the
what, how, and why of your code in human language.

● Reading individual lines of code is easy. Understanding what goal
they are meant to accomplish is not.

(http://www.learncpp.com/cpp-tutorial/12-comments/)

● To summarize:
● At the library, program, or function level, describe what

● Inside the library, program, or function, describe how

● At the statement level, describe why

 41

Esercitazione 1 (A)

1)Write a program which print a greeting (cheers.cpp)

Hi!

 42

Variables

● Variables: Location in memory where value can be stored
● Common data types:

● int : integer numbers

● char : characters

● double : floating point numbers

● Declare variables with name and data type before use

● int integer1;

● int integer2;

● int sum;

● Can declare several variables of same type in one declaration Comma-
separated list: int integer1, integer2, sum;

 43

Variables

● Variables
● Variable names

● Valid identifier

● Series of characters (letters, digits,
underscores)

● Cannot begin with digit

● Case sensitive

 44

Two more operators

● Input stream object

>> (stream extraction operator)

● Used with std::cin

● Waits for user to input value, then press Enter (Return) key

● Stores value in variable to right of operator

● Converts value to variable data type

= (assignment operator)

● Assigns value to variable

● Binary operator (two operands)

● Example:

sum = variable1 + variable2;

 45

Another Simple Program: Adding Two Integers

1 // Fig. 1.6: fig01_06.cpp

2 // Addition program.

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 int integer1; // first number to be input by user

9 int integer2; // second number to be input by user

10 int sum; // variable in which sum will be stored

11

12 std::cout << "Enter first integer\n"; // prompt

13 std::cin >> integer1; // read an integer

14

15 std::cout << "Enter second integer\n"; // prompt

16 std::cin >> integer2; // read an integer

17

18 sum = integer1 + integer2; // assign result to sum

19

20 std::cout << "Sum is " << sum << std::endl; // print sum

21

22 return 0; // indicate that program ended successfully

23

24 } // end function main

sumInteger.cpp

 46

Another Simple Program: Adding Two Integers

1 // Fig. 1.6: fig01_06.cpp

2 // Addition program.

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 int integer1; // first number to be input by user

9 int integer2; // second number to be input by user

10 int sum; // variable in which sum will be stored

11

12 std::cout << "Enter first integer\n"; // prompt

13 std::cin >> integer1; // read an integer

14

15 std::cout << "Enter second integer\n"; // prompt

16 std::cin >> integer2; // read an integer

17

18 sum = integer1 + integer2; // assign result to sum

19

20 std::cout << "Sum is " << sum << std::endl; // print sum

21

22 return 0; // indicate that program ended successfully

23

24 } // end function main

Declare integer variables

sumInteger.cpp

 47

Another Simple Program: Adding Two Integers

1 // Fig. 1.6: fig01_06.cpp

2 // Addition program.

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 int integer1; // first number to be input by user

9 int integer2; // second number to be input by user

10 int sum; // variable in which sum will be stored

11

12 std::cout << "Enter first integer\n"; // prompt

13 std::cin >> integer1; // read an integer

14

15 std::cout << "Enter second integer\n"; // prompt

16 std::cin >> integer2; // read an integer

17

18 sum = integer1 + integer2; // assign result to sum

19

20 std::cout << "Sum is " << sum << std::endl; // print sum

21

22 return 0; // indicate that program ended successfully

23

24 } // end function main

Use stream extraction
operator with standard input
stream to obtain user input

sumInteger.cpp

 48

Another Simple Program: Adding Two Integers

1 // Fig. 1.6: fig01_06.cpp

2 // Addition program.

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 int integer1; // first number to be input by user

9 int integer2; // second number to be input by user

10 int sum; // variable in which sum will be stored

11

12 std::cout << "Enter first integer\n"; // prompt

13 std::cin >> integer1; // read an integer

14

15 std::cout << "Enter second integer\n"; // prompt

16 std::cin >> integer2; // read an integer

17

18 sum = integer1 + integer2; // assign result to sum

19

20 std::cout << "Sum is " << sum << std::endl; // print sum

21

22 return 0; // indicate that program ended successfully

23

24 } // end function main

Stream manipulator std::endl
outputs a newline, then “flushes
output buffer”

sumInteger.cpp

 49

Another Simple Program: Adding Two Integers

1 // Fig. 1.6: fig01_06.cpp

2 // Addition program.

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 int integer1; // first number to be input by user

9 int integer2; // second number to be input by user

10 int sum; // variable in which sum will be stored

11

12 std::cout << "Enter first integer\n"; // prompt

13 std::cin >> integer1; // read an integer

14

15 std::cout << "Enter second integer\n"; // prompt

16 std::cin >> integer2; // read an integer

17

18 sum = integer1 + integer2; // assign result to sum

19

20 std::cout << "Sum is " << sum << std::endl; // print sum

21

22 return 0; // indicate that program ended successfully

23

24 } // end function main Concatenating, chaining or cascading
stream insertion operations

 50

Another Simple Program: Adding Two Integers

1 // Fig. 1.6: fig01_06.cpp

2 // Addition program.

3 #include <iostream>

4

5 // function main begins program execution

6 int main()

7 {

8 int integer1; // first number to be input by user

9 int integer2; // second number to be input by user

10 int sum; // variable in which sum will be stored

11

12 std::cout << "Enter first integer\n"; // prompt

13 std::cin >> integer1; // read an integer

14

15 std::cout << "Enter second integer\n"; // prompt

16 std::cin >> integer2; // read an integer

17

18 sum = integer1 + integer2; // assign result to sum

19

20 std::cout << "Sum is " << sum << std::endl; // print sum

21

22 return 0; // indicate that program ended successfully

23

24 } // end function main

Calculations can be performed in output statements: alternative for
lines 18 and 20:

std::cout << "Sum is " << integer1 + integer2 << std::endl;

sumInteger.cpp

 51

Another Simple Program: Adding Two Integers

Enter first integer

45

Enter second integer

72

Sum is 117

sumInteger.cpp

 52

Memory Concepts

● Variable names
● Correspond to actual locations in computer's memory

● Every variable has name, type, size and value

● When new value placed into variable, overwrites previous value

● Reading variables from memory nondestructive

std::cin >> integer1;
Assume user entered 45

std::cin >> integer2;
Assume user entered 72

sum = integer1 + integer2;

integer1 45

integer1 45

integer2 72

integer1 45

integer2 72

sum 117

 53

Arithmetic

● Arithmetic calculations

* Multiplication

/ Division

Remember: Integer division truncates remainder, so 7 / 5 evaluates to 1

% Modulus operator returns remainder

7 % 5 evaluates to 2

● Rules of operator precedence:
● Operators in parentheses evaluated first

● Nested/embedded parentheses

● Operators in innermost pair first

● Multiplication, division, modulus applied next

● Operators applied from left to right

● Addition, subtraction applied last

● Operators applied from left to right

 54

Esercitazione 1 (B)

1)Write a program which asks your name and prints a greeting
(name.cpp)

2)Write a program which asks for the density and the radius of a
sphere and prints out its volume and mass (sphere.cpp)

 55

Decision Making: Equality and Relational Operators

● if structure

● Make decision based on truth or falsity of condition;

● If condition met, body executed

● Else, body not executed

● Equality and relational operators
● Equality operators

● Same level of precedence

● Relational operators

● Same level of precedence

● Associate left to right

 56

Decision Making: Equality and Relational Operators

Standard algebraic
equality operator or
relational operator

C++ equality
or relational
operator

Example
of C++
condition

Meaning of
C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

 >= x >= y x is greater than or equal to y

 <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

 != x != y x is not equal to y

 57

using statements

● using statements

● Eliminate use of std:: prefix

● Write cout instead of std::cout

 58

if Selection Structure

● Selection structure: Choose among alternative courses of action

Pseudocode example:

If student’s grade is greater than or equal to 60 Print “Passed”

● If the condition is true : print statement executed, program
continues to next statement

● If the condition is false :print statement ignored, program
continues

● Indenting makes programs easier to read (C++ ignores whitespace
characters (tabs, spaces, etc.))
● Example:

if (grade >= 60)
 cout << "Passed";

 59

Decision Making: Equality and Relational Operators

1 // Fig. 1.14: fig01_14.cpp

2 // Using if statements, relational

3 // operators, and equality operators.

4 #include <iostream>

5

6 using std::cout; // program uses cout

7 using std::cin; // program uses cin

8 using std::endl; // program uses endl

9

10 // function main begins program execution

11 int main()

12 {

13 int num1; // first number to be read from user

14 int num2; // second number to be read from user

15

16 cout << "Enter two integers, and I will tell you\n"

17 << "the relationships they satisfy: ";

18 cin >> num1 >> num2; // read two integers

19

20 if (num1 == num2)

21 cout << num1 << " is equal to " << num2 << endl;

22

23 if (num1 != num2)

24 cout << num1 << " is not equal to " << num2 << endl;

25

 60

Decision Making: Equality and Relational Operators

1 // Fig. 1.14: fig01_14.cpp

2 // Using if statements, relational

3 // operators, and equality operators.

4 #include <iostream>

5

6 using std::cout; // program uses cout

7 using std::cin; // program uses cin

8 using std::endl; // program uses endl

9

10 // function main begins program execution

11 int main()

12 {

13 int num1; // first number to be read from user

14 int num2; // second number to be read from user

15

16 cout << "Enter two integers, and I will tell you\n"

17 << "the relationships they satisfy: ";

18 cin >> num1 >> num2; // read two integers

19

20 if (num1 == num2)

21 cout << num1 << " is equal to " << num2 << endl;

22

23 if (num1 != num2)

24 cout << num1 << " is not equal to " << num2 << endl;

25

using statements eliminate
need for std:: prefix

firstIf.cpp

 61

Decision Making: Equality and Relational Operators

1 // Fig. 1.14: fig01_14.cpp

2 // Using if statements, relational

3 // operators, and equality operators.

4 #include <iostream>

5

6 using std::cout; // program uses cout

7 using std::cin; // program uses cin

8 using std::endl; // program uses endl

9

10 // function main begins program execution

11 int main()

12 {

13 int num1; // first number to be read from user

14 int num2; // second number to be read from user

15

16 cout << "Enter two integers, and I will tell you\n"

17 << "the relationships they satisfy: ";

18 cin >> num1 >> num2; // read two integers

19

20 if (num1 == num2)

21 cout << num1 << " is equal to " << num2 << endl;

22

23 if (num1 != num2)

24 cout << num1 << " is not equal to " << num2 << endl;

25

Can write cout and cin without
std:: prefix

firstIf.cpp

 62

Decision Making: Equality and Relational Operators

1 // Fig. 1.14: fig01_14.cpp

2 // Using if statements, relational

3 // operators, and equality operators.

4 #include <iostream>

5

6 using std::cout; // program uses cout

7 using std::cin; // program uses cin

8 using std::endl; // program uses endl

9

10 // function main begins program execution

11 int main()

12 {

13 int num1; // first number to be read from user

14 int num2; // second number to be read from user

15

16 cout << "Enter two integers, and I will tell you\n"

17 << "the relationships they satisfy: ";

18 cin >> num1 >> num2; // read two integers

19

20 if (num1 == num2)

21 cout << num1 << " is equal to " << num2 << endl;

22

23 if (num1 != num2)

24 cout << num1 << " is not equal to " << num2 << endl;

25

Declare variables

firstIf.cpp

 63

Decision Making: Equality and Relational Operators

1 // Fig. 1.14: fig01_14.cpp

2 // Using if statements, relational

3 // operators, and equality operators.

4 #include <iostream>

5

6 using std::cout; // program uses cout

7 using std::cin; // program uses cin

8 using std::endl; // program uses endl

9

10 // function main begins program execution

11 int main()

12 {

13 int num1; // first number to be read from user

14 int num2; // second number to be read from user

15

16 cout << "Enter two integers, and I will tell you\n"

17 << "the relationships they satisfy: ";

18 cin >> num1 >> num2; // read two integers

19

20 if (num1 == num2)

21 cout << num1 << " is equal to " << num2 << endl;

22

23 if (num1 != num2)

24 cout << num1 << " is not equal to " << num2 << endl;

25

if structure compares values of
num1 and num2 to test for equality

firstIf.cpp

 64

Decision Making: Equality and Relational Operators

1 // Fig. 1.14: fig01_14.cpp

2 // Using if statements, relational

3 // operators, and equality operators.

4 #include <iostream>

5

6 using std::cout; // program uses cout

7 using std::cin; // program uses cin

8 using std::endl; // program uses endl

9

10 // function main begins program execution

11 int main()

12 {

13 int num1; // first number to be read from user

14 int num2; // second number to be read from user

15

16 cout << "Enter two integers, and I will tell you\n"

17 << "the relationships they satisfy: ";

18 cin >> num1 >> num2; // read two integers

19

20 if (num1 == num2)

21 cout << num1 << " is equal to " << num2 << endl;

22

23 if (num1 != num2)

24 cout << num1 << " is not equal to " << num2 << endl;

25

if structure compares values of num1
and num2 to test for inequality

firstIf.cpp

 65

Decision Making: Equality and Relational Operators

1 // Fig. 1.14: fig01_14.cpp

2 // Using if statements, relational

3 // operators, and equality operators.

4 #include <iostream>

5

6 using std::cout; // program uses cout

7 using std::cin; // program uses cin

8 using std::endl; // program uses endl

9

10 // function main begins program execution

11 int main()

12 {

13 int num1; // first number to be read from user

14 int num2; // second number to be read from user

15

16 cout << "Enter two integers, and I will tell you\n"

17 << "the relationships they satisfy: ";

18 cin >> num1 >> num2; // read two integers

19

20 if (num1 == num2)

21 cout << num1 << " is equal to " << num2 << endl;

22

23 if (num1 != num2)

24 cout << num1 << " is not equal to " << num2 << endl;

25

If condition is true (i.e., values are
equal), execute this statement

firstIf.cpp

 66

Decision Making: Equality and Relational Operators

1 // Fig. 1.14: fig01_14.cpp

2 // Using if statements, relational

3 // operators, and equality operators.

4 #include <iostream>

5

6 using std::cout; // program uses cout

7 using std::cin; // program uses cin

8 using std::endl; // program uses endl

9

10 // function main begins program execution

11 int main()

12 {

13 int num1; // first number to be read from user

14 int num2; // second number to be read from user

15

16 cout << "Enter two integers, and I will tell you\n"

17 << "the relationships they satisfy: ";

18 cin >> num1 >> num2; // read two integers

19

20 if (num1 == num2)

21 cout << num1 << " is equal to " << num2 << endl;

22

23 if (num1 != num2)

24 cout << num1 << " is not equal to " << num2 << endl;

25

If condition is true (i.e., values are not
equal), execute this statement

firstIf.cpp

 67

26 if (num1 < num2)

27 cout << num1 << " is less than " << num2 << endl;

28

29 if (num1 > num2)

30 cout << num1 << " is greater than " << num2 << endl;

31

32 if (num1 <= num2)

33 cout << num1 << " is less than or equal to "

34 << num2 << endl;

35

36 if (num1 >= num2)

37 cout << num1 << " is greater than or equal to "

38 << num2 << endl;

39

40 return 0; // indicate that program ended successfully

41

42 } // end function main

Decision Making: Equality and Relational Operators

Statements may be split
over several lines

firstIf.cpp

 68

26 if (num1 < num2)

27 cout << num1 << " is less than " << num2 << endl;

28

29 if (num1 > num2)

30 cout << num1 << " is greater than " << num2 << endl;

31

32 if (num1 <= num2)

33 cout << num1 << " is less than or equal to "

34 << num2 << endl;

35

36 if (num1 >= num2)

37 cout << num1 << " is greater than or equal to "

38 << num2 << endl;

39

40 return 0; // indicate that program ended successfully

41

42 } // end function main

Decision Making: Equality and Relational Operators

Enter two integers, and I will tell you

the relationships they satisfy: 22 12

22 is not equal to 12

22 is greater than 12

22 is greater than or equal to 12

 69

if/else Selection Structure

if :Performs action if condition true

if/else: Different actions if conditions true or false

Example:

if (grade >= 60)
 cout << "Passed";
else
 cout << "Failed";
● Compound statement : Set of statements within a pair of braces

if (grade >= 60)
 cout << "Passed.\n";
else {
 cout << "Failed.\n";
 cout << "You must take this course again.\n";
}

Without braces, cout << "Failed.\nYou must take this course again.\n";

always executed Block Set of statements within braces

 70

while Repetition Structure

● Repetition structure: Action repeated while some condition
remains true

● while loop repeated until condition becomes false

Example

int product = 2;

while (product <= 1000)

 product = 2 * product;

 71

1 // Fig. 2.7: fig02_07.cpp

2 // Class average program with counter-controlled repetition.

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 // function main begins program execution

10 int main()

11 {

12 int total; // sum of grades input by user

13 int gradeCounter; // number of grade to be entered next

14 int grade; // grade value

15 int average; // average of grades

16

17 // initialization phase

18 total = 0; // initialize total

19 gradeCounter = 1; // initialize loop counter

20

while Repetition Structure

firstWhile.cpp

 72

21 // processing phase

22 while (gradeCounter <= 10) { // loop 10 times

23 cout << "Enter grade: "; // prompt for input

24 cin >> grade; // read grade from user

25 total = total + grade; // add grade to total

26 gradeCounter = gradeCounter + 1; // increment counter

27 }

28

29 // termination phase

30 average = total / 10; // integer division

31

32 // display result

33 cout << "Class average is " << average << endl;

34

35 return 0; // indicate program ended successfully

36

37 } // end function main

while Repetition Structure

The counter gets incremented each time the
loop executes. Eventually, the counter causes
the loop to end.

firstWhile.cpp

 73

while Repetition Structure

Enter grade: 98

Enter grade: 76

Enter grade: 71

Enter grade: 87

Enter grade: 83

Enter grade: 90

Enter grade: 57

Enter grade: 79

Enter grade: 82

Enter grade: 94

Class average is 81

 74

Formulating Algorithms (Sentinel-Controlled Repetition)

● Suppose problem becomes:

● Develop a class-averaging program that will process an arbitrary
number of grades each time the program is run

→ Unknown number of students

● How will program know when to end? Sentinel value, indicates
“end of data entry”

● Loop ends when sentinel input

● Sentinel chosen so it cannot be confused with regular input (e.g. -1
in this example)

 75

1 // Fig. 2.9: fig02_09.cpp

2 // Class average program with sentinel-controlled repetition.

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8 using std::fixed;

9

10 #include <iomanip> // parameterized stream manipulators

11

12 using std::setprecision; // sets numeric output precision

13

14 // function main begins program execution

15 int main()

16 {

17 int total; // sum of grades

18 int gradeCounter; // number of grades entered

19 int grade; // grade value

20

21 double average; // number with decimal point for average

22

23 // initialization phase

24 total = 0; // initialize total

25 gradeCounter = 0; // initialize loop counter

Sentinel-Controlled Repetition

sentinel1.cpp

 76

1 // Fig. 2.9: fig02_09.cpp

2 // Class average program with sentinel-controlled repetition.

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8 using std::fixed;

9

10 #include <iomanip> // parameterized stream manipulators

11

12 using std::setprecision; // sets numeric output precision

13

14 // function main begins program execution

15 int main()

16 {

17 int total; // sum of grades

18 int gradeCounter; // number of grades entered

19 int grade; // grade value

20

21 double average; // number with decimal point for average

22

23 // initialization phase

24 total = 0; // initialize total

25 gradeCounter = 0; // initialize loop counter

Sentinel-Controlled Repetition

Data type double used to represent
decimal numbers.

sentinel1.cpp

 77

26

27 // processing phase

28 // get first grade from user

29 cout << "Enter grade, -1 to end: "; // prompt for input

30 cin >> grade; // read grade from user

31

32 // loop until sentinel value read from user

33 while (grade != -1) {

34 total = total + grade; // add grade to total

35 gradeCounter = gradeCounter + 1; // increment counter

36

37 cout << "Enter grade, -1 to end: "; // prompt for input

38 cin >> grade; // read next grade

39

40 } // end while

41

42 // termination phase

43 // if user entered at least one grade ...

44 if (gradeCounter != 0) {

45

46 // calculate average of all grades entered

47 average = static_cast< double >(total) / gradeCounter;

48

Sentinel-Controlled Repetition

sentinel1.cpp

 78

26

27 // processing phase

28 // get first grade from user

29 cout << "Enter grade, -1 to end: "; // prompt for input

30 cin >> grade; // read grade from user

31

32 // loop until sentinel value read from user

33 while (grade != -1) {

34 total = total + grade; // add grade to total

35 gradeCounter = gradeCounter + 1; // increment counter

36

37 cout << "Enter grade, -1 to end: "; // prompt for input

38 cin >> grade; // read next grade

39

40 } // end while

41

42 // termination phase

43 // if user entered at least one grade ...

44 if (gradeCounter != 0) {

45

46 // calculate average of all grades entered

47 average = static_cast< double >(total) / gradeCounter;

48

Sentinel-Controlled Repetition

static_cast<double>() treats total as a
double temporarily (casting).

Required because dividing two integers truncates the
remainder.

gradeCounter is an int, but it gets promoted to
double.

sentinel1.cpp

 79

49 // display average with two digits of precision

50 cout << "Class average is " << setprecision(2)

51 << fixed << average << endl;

52

53 } // end if part of if/else

54

55 else // if no grades were entered, output appropriate message

56 cout << "No grades were entered" << endl;

57

58 return 0; // indicate program ended successfully

59

60 } // end function main

Sentinel-Controlled Repetition

sentinel1.cpp

 80

49 // display average with two digits of precision

50 cout << "Class average is " << setprecision(2)

51 << fixed << average << endl;

52

53 } // end if part of if/else

54

55 else // if no grades were entered, output appropriate message

56 cout << "No grades were entered" << endl;

57

58 return 0; // indicate program ended successfully

59

60 } // end function main

Sentinel-Controlled Repetition

setprecision(2)prints two digits past
decimal point (rounded to fit precision).

Programs that use this must include <iomanip>

sentinel1.cpp

 81

49 // display average with two digits of precision

50 cout << "Class average is " << setprecision(2)

51 << fixed << average << endl;

52

53 } // end if part of if/else

54

55 else // if no grades were entered, output appropriate message

56 cout << "No grades were entered" << endl;

57

58 return 0; // indicate program ended successfully

59

60 } // end function main

Sentinel-Controlled Repetition

fixed forces output to print
in fixed point format (not
scientific notation). Also,
forces trailing zeros and
decimal point to print.

Include <iostream>

sentinel1.cpp

 82

49 // display average with two digits of precision

50 cout << "Class average is " << setprecision(2)

51 << fixed << average << endl;

52

53 } // end if part of if/else

54

55 else // if no grades were entered, output appropriate message

56 cout << "No grades were entered" << endl;

57

58 return 0; // indicate program ended successfully

59

60 } // end function main

Sentinel-Controlled Repetition

Enter grade, -1 to end: 75

Enter grade, -1 to end: 94

Enter grade, -1 to end: 97

Enter grade, -1 to end: 88

Enter grade, -1 to end: 70

Enter grade, -1 to end: 64

Enter grade, -1 to end: 83

Enter grade, -1 to end: 89

Enter grade, -1 to end: -1

Class average is 82.50 sentinel1.cpp

 83

 Nested Control Structures

● Problem statement
● A college has a list of test results (1 = pass, 2 = fail) for 10 students. Write a

program that analyzes the results. If more than 8 students pass, print "Raise
Tuition".

● Notice that
● the program processes 10 results (Fixed number, use counter-controlled loop)

● Two counters can be used: one counts number that passed another counts
number that fail

● Each test result is 1 or 2

● If not 1, assume 2

 84

1 // Fig. 2.11: fig02_11.cpp

2 // Analysis of examination results.

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 // function main begins program execution

10 int main()

11 {

12 // initialize variables in declarations

13 int passes = 0; // number of passes

14 int failures = 0; // number of failures

15 int studentCounter = 1; // student counter

16 int result; // one exam result

17

18 // process 10 students using counter-controlled loop

19 while (studentCounter <= 10) {

20

21 // prompt user for input and obtain value from user

22 cout << "Enter result (1 = pass, 2 = fail): ";

23 cin >> result;

24

 Nested Control Structures

nested.cpp

 85

25 // if result 1, increment passes; if/else nested in while

26 if (result == 1) // if/else nested in while

27 passes = passes + 1;

28

29 else // if result not 1, increment failures

30 failures = failures + 1;

31

32 // increment studentCounter so loop eventually terminates

33 studentCounter = studentCounter + 1;

34

35 } // end while

36

37 // termination phase; display number of passes and failures

38 cout << "Passed " << passes << endl;

39 cout << "Failed " << failures << endl;

40

41 // if more than eight students passed, print "raise tuition"

42 if (passes > 8)

43 cout << "Raise tuition " << endl;

44

45 return 0; // successful termination

46

47 } // end function main

 Nested Control Structures

nested.cpp

 86

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Passed 6

Failed 4

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Passed 9

Failed 1

Raise tuition

 Nested Control Structures

nested.cpp

 87

Assignment expression abbreviations

● Addition assignment operator

c = c + 3; abbreviated to

c += 3;

● Statements of the form

variable = variable operator expression;

can be rewritten as

variable operator= expression;
● Other assignment operators:

d -= 4 (d = d – 4)

e *= 5 (e = e * 5)

f /= 3 (f = f / 3)

g %= 9 (g = g % 9)

 88

(Pre)(Post) Increment and decrement operator

● Increment operator (++): can be used instead of c += 1
● Decrement operator (–-): can be used instead of c -= 1
● Pre-increment (decrement): the operator is used before the

variable (++c or ––c). Variable is changed, then the expression it
is in is evaluated.

● Post-increment (decrement): operator is used after the variable (c+
+ or c--). Expression the variable is in executes, then the variable
is changed.

 89

Pre(Post)-increment

● Operator after variable (c++, c--):

If c = 5, then

cout << ++c;

 ⇒ c is changed to 6, then printed out

cout << c++;

 ⇒ Prints out 5 (cout is executed before the increment), c then
becomes 6

 90

Pre(Post)-increment

increment.cpp

24

25 return 0; // indicate successful termination

26

27 } // end function main

1 // Fig. 2.14: fig02_14.cpp

2 // Preincrementing and postincrementing.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 int c; // declare variable

12

13 // demonstrate postincrement

14 c = 5; // assign 5 to c

15 cout << c << endl; // print 5

16 cout << c++ << endl; // print 5 then postincrement

17 cout << c << endl << endl; // print 6

18

19 // demonstrate preincrement

20 c = 5; // assign 5 to c

21 cout << c << endl; // print 5

22 cout << ++c << endl; // preincrement then print 6

23 cout << c << endl; // print 6

 91

Pre(Post)-increment

increment.cpp

24

25 return 0; // indicate successful termination

26

27 } // end function main

1 // Fig. 2.14: fig02_14.cpp

2 // Preincrementing and postincrementing.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 int c; // declare variable

12

13 // demonstrate postincrement

14 c = 5; // assign 5 to c

15 cout << c << endl; // print 5

16 cout << c++ << endl; // print 5 then postincrement

17 cout << c << endl << endl; // print 6

18

19 // demonstrate preincrement

20 c = 5; // assign 5 to c

21 cout << c << endl; // print 5

22 cout << ++c << endl; // preincrement then print 6

23 cout << c << endl; // print 6

5

5

6

5

6

6

 92

for Repetition Structure

● General format when using for loops

for (initialization; LoopContinuationTest;increment)

 statement

● Example:

for(int counter = 1; counter <= 10; counter++)

cout << counter << endl;

Prints integers from one to ten

No semicolon after last
statement

 93

1 // Fig. 2.17: fig02_17.cpp

2 // Counter-controlled repetition with the for structure.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 // Initialization, repetition condition and incrementing

12 // are all included in the for structure header.

13

14 for (int counter = 1; counter <= 10; counter++)

15 cout << counter << endl;

16

17 return 0; // indicate successful termination

18

19 } // end function main

for Repetition Structure

firstFor.cpp

 94

1 // Fig. 2.17: fig02_17.cpp

2 // Counter-controlled repetition with the for structure.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 // Initialization, repetition condition and incrementing

12 // are all included in the for structure header.

13

14 for (int counter = 1; counter <= 10; counter++)

15 cout << counter << endl;

16

17 return 0; // indicate successful termination

18

19 } // end function main

for Repetition Structure

1

2

3

4

5

6

7

8

9

10
firstFor.cpp

 95

for Repetition Structure

● for loops can usually be rewritten as while loops
initialization;

while (loopContinuationTest){

 statement

 increment;

 }

● Initialization and increment

● For multiple variables, use comma-separated lists

for (int i = 0, j = 0; j + i <= 10; j++, i++)

 cout << j + i << endl;

 96

1 // Fig. 2.20: fig02_20.cpp

2 // Summation with for.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 int sum = 0; // initialize sum

12

13 // sum even integers from 2 through 100

14 for (int number = 2; number <= 100; number += 2)

15 sum += number; // add number to sum

16

17 cout << "Sum is " << sum << endl; // output sum

18 return 0; // successful termination

19

20 } // end function main

Sum is 2550

for Repetition Structure

secondFor.cpp

 97

1 // Fig. 2.20: fig02_20.cpp

2 // Summation with for.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 // Example with multiple variables

12 for (int i = 0, j = 0; j+1 <= 10; j++, i++)

13 cout << "i: "<<i<<" j: "<<j<<" i+j: " << i+j << endl;

14 return 0; // successful termination

15

16 } // end function main

for Repetition Structure

secondFor.cpp

i: 0 j: 0 i+j: 0

i: 1 j: 1 i+j: 2

i: 2 j: 2 i+j: 4

i: 3 j: 3 i+j: 6

i: 4 j: 4 i+j: 8

i: 5 j: 5 i+j: 10

i: 6 j: 6 i+j: 12

i: 7 j: 7 i+j: 14

i: 8 j: 8 i+j: 16

i: 9 j: 9 i+j: 18

 98

Esercitazione 2

1) Compute the sum of the first n integer numbers. n is arbitrary and is given by the user.

Use a while loop to calculate the sum. (SumNumbers.cpp)

2) Write a program which, given an arbitrary set of positive integer numbers, finds how many
are odd numbers and how many are even numbers. Use a while loop. (EvenOdd.cpp)

3) Write a program which reads an integer numbers and prints as many as "*" as the input
number (histo.cpp)

bash$./histo

Enter a positive integer number, -1 to exit 3

Enter a positive integer number, -1 to exit 7

Enter a positive integer number, -1 to exit 4

Enter a positive integer number, -1 to exit -1

 99

Esercitazione 2

4) Write a program which draws a right-angled triangle with sides equal to the input number (Triangular.cpp)

bash$./triangular

Side length: 6

*

* *

* * *

* * * *

* * * * *

* * * * * *

5) Modify the program of point 4) in order to obtain a triangle as shown below (ReflectedTriangular.cpp)

bash$./reflected

Side length: 5

 *

 * *

 * * *

 * * * *

* * * * *

 100

switch Multiple-Selection Structure

● switch Test variable for multiple values
● Series of case labels and optional default case

switch (variable) {

 case value1: // taken if variable == value1

 statements

 break; // necessary to exit switch

 case value2:

 case value3: // taken if variable == value2 or == value3

 statements

 break;

 default: // taken if variable matches no other cases

 statements

 break;

 }

 101

switch Multiple-Selection Structure

● Example upcoming:
● Program to read grades (A-F) and display number of each grade entered

● Single characters typically stored in a char data type;

● char a 1-byte integer, so chars can be stored as ints

● Can treat character as int or char

● 97 is the numerical representation of lowercase ‘a’ (ASCII)

● Use single quotes to get numerical representation of character

cout << "The character (" << 'a' << ") has the value "
 << static_cast< int > ('a') << endl;

● Prints

The character (a) has the value 97

 102

1 // Fig. 2.22: fig02_22.cpp

2 // Counting letter grades.

3 #include <iostream>

4 #include <stdio.h>

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 // function main begins program execution

10 int main()

11 {

12 int grade; // one grade

13 int aCount = 0; // number of As

14 int bCount = 0; // number of Bs

15 int cCount = 0; // number of Cs

16 int dCount = 0; // number of Ds

17 int fCount = 0; // number of Fs

18

19 cout << "Enter the letter grades." << endl

20 << "Enter the EOF character to end input." << endl;

21

switch Multiple-Selection Structure

firstSwitch.cpp

 103

switch Multiple-Selection Structure

22 // loop until user types end-of-file key sequence

23 while ((grade = cin.get()) != EOF) {

24

25 // determine which grade was input

26 switch (grade) { // switch structure nested in while

27

28 case 'A': // grade was uppercase A

29 case 'a': // or lowercase a

30 ++aCount; // increment aCount

31 break; // necessary to exit switch

32

33 case 'B': // grade was uppercase B

34 case 'b': // or lowercase b

35 ++bCount; // increment bCount

36 break; // exit switch

37

38 case 'C': // grade was uppercase C

39 case 'c': // or lowercase c

40 ++cCount; // increment cCount

41 break; // exit switch

42

firstSwitch.cpp

 104

switch Multiple-Selection Structure

22 // loop until user types end-of-file key sequence

23 while ((grade = cin.get()) != EOF) {

24

25 // determine which grade was input

26 switch (grade) { // switch structure nested in while

27

28 case 'A': // grade was uppercase A

29 case 'a': // or lowercase a

30 ++aCount; // increment aCount

31 break; // necessary to exit switch

32

33 case 'B': // grade was uppercase B

34 case 'b': // or lowercase b

35 ++bCount; // increment bCount

36 break; // exit switch

37

38 case 'C': // grade was uppercase C

39 case 'c': // or lowercase c

40 ++cCount; // increment cCount

41 break; // exit switch

42

cin.get() uses dot notation
(explained later in the course). This
function gets 1 character from the
keyboard (after Enter pressed), and
it is assigned to grade.

● cin.get() returns EOF (end-of-
file) after the EOF character is
input, to indicate the end of data.
EOF may be ctrl-d or ctrl-z,
depending on your OS.

firstSwitch.cpp

 105

switch Multiple-Selection Structure

22 // loop until user types end-of-file key sequence

23 while ((grade = cin.get()) != EOF) {

24

25 // determine which grade was input

26 switch (grade) { // switch structure nested in while

27

28 case 'A': // grade was uppercase A

29 case 'a': // or lowercase a

30 ++aCount; // increment aCount

31 break; // necessary to exit switch

32

33 case 'B': // grade was uppercase B

34 case 'b': // or lowercase b

35 ++bCount; // increment bCount

36 break; // exit switch

37

38 case 'C': // grade was uppercase C

39 case 'c': // or lowercase c

40 ++cCount; // increment cCount

41 break; // exit switch

42

Assignment statements have a value, which is
the same as the variable on the left of the =.
The value of this statement is the same as the
value returned by cin.get().
This can also be used to initialize multiple
variables: a = b = c = 0;

firstSwitch.cpp

 106

switch Multiple-Selection Structure

22 // loop until user types end-of-file key sequence

23 while ((grade = cin.get()) != EOF) {

24

25 // determine which grade was input

26 switch (grade) { // switch structure nested in while

27

28 case 'A': // grade was uppercase A

29 case 'a': // or lowercase a

30 ++aCount; // increment aCount

31 break; // necessary to exit switch

32

33 case 'B': // grade was uppercase B

34 case 'b': // or lowercase b

35 ++bCount; // increment bCount

36 break; // exit switch

37

38 case 'C': // grade was uppercase C

39 case 'c': // or lowercase c

40 ++cCount; // increment cCount

41 break; // exit switch

42

Compares grade (an int) to
the numerical representations
of A and a.

firstSwitch.cpp

 107

switch Multiple-Selection Structure

22 // loop until user types end-of-file key sequence

23 while ((grade = cin.get()) != EOF) {

24

25 // determine which grade was input

26 switch (grade) { // switch structure nested in while

27

28 case 'A': // grade was uppercase A

29 case 'a': // or lowercase a

30 ++aCount; // increment aCount

31 break; // necessary to exit switch

32

33 case 'B': // grade was uppercase B

34 case 'b': // or lowercase b

35 ++bCount; // increment bCount

36 break; // exit switch

37

38 case 'C': // grade was uppercase C

39 case 'c': // or lowercase c

40 ++cCount; // increment cCount

41 break; // exit switch

42

break causes switch to end
and the program continues with
the first statement after the
switch structure.

firstSwitch.cpp

 108

43 case 'D': // grade was uppercase D

44 case 'd': // or lowercase d

45 ++dCount; // increment dCount

46 break; // exit switch

47

48 case 'F': // grade was uppercase F

49 case 'f': // or lowercase f

50 ++fCount; // increment fCount

51 break; // exit switch

52

53 case '\n': // ignore newlines,

54 case '\t': // tabs,

55 case ' ': // and spaces in input

56 break; // exit switch

57

58 default: // catch all other characters

59 cout << "Incorrect letter grade entered."

60 << " Enter a new grade." << endl;

61 break; // optional; will exit switch anyway

62

63 } // end switch

64

65 } // end while

66

switch Multiple-Selection Structure

This test is necessary because
Enter is pressed after each
letter grade is input. This
adds a newline character that
must be removed. Likewise,
we want to ignore any
whitespace.

firstSwitch.cpp

 109

43 case 'D': // grade was uppercase D

44 case 'd': // or lowercase d

45 ++dCount; // increment dCount

46 break; // exit switch

47

48 case 'F': // grade was uppercase F

49 case 'f': // or lowercase f

50 ++fCount; // increment fCount

51 break; // exit switch

52

53 case '\n': // ignore newlines,

54 case '\t': // tabs,

55 case ' ': // and spaces in input

56 break; // exit switch

57

58 default: // catch all other characters

59 cout << "Incorrect letter grade entered."

60 << " Enter a new grade." << endl;

61 break; // optional; will exit switch anyway

62

63 } // end switch

64

65 } // end while

66

switch Multiple-Selection Structure

Notice the default statement,
which catches all other cases.

firstSwitch.cpp

 110

67 // output summary of results

68 cout << "\n\nTotals for each letter grade are:"

69 << "\nA: " << aCount // display number of A grades

70 << "\nB: " << bCount // display number of B grades

71 << "\nC: " << cCount // display number of C grades

72 << "\nD: " << dCount // display number of D grades

73 << "\nF: " << fCount // display number of F grades

74 << endl;

75

76 return 0; // indicate successful termination

77

78 } // end function main

switch Multiple-Selection Structure

firstSwitch.cpp

 111

Enter the letter grades.

Enter the EOF character to end input.

a

B

c

C

A

d

f

C

E

Incorrect letter grade entered. Enter a new grade.

D

A

b

^Z

Totals for each letter grade are:

A: 3

B: 2

C: 3

D: 2

F: 1

switch Multiple-Selection Structure

 112

do/while Repetition Structure

1 // Fig. 2.24: fig02_24.cpp

2 // Using the do/while repetition structure.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 int counter = 1; // initialize counter

12

13 do {

14 cout << counter << " "; // display counter

15 } while (++counter <= 10); // end do/while

16

17 cout << endl;

18

19 return 0; // indicate successful termination

20

21 } // end function main

firstDoWhile.cpp

 113

do/while Repetition Structure

1 // Fig. 2.24: fig02_24.cpp

2 // Using the do/while repetition structure.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 int counter = 1; // initialize counter

12

13 do {

14 cout << counter << " "; // display counter

15 } while (++counter <= 10); // end do/while

16

17 cout << endl;

18

19 return 0; // indicate successful termination

20

21 } // end function main

1 2 3 4 5 6 7 8 9 10

Notice the preincrement in
loop-continuation test.

firstDoWhile.cpp

 114

break Statements

● break statement:

Immediate exit from while, for, do/while, switch

Program continues with first statement after structure

● Common uses: Escape early from a loop

● Skip the remainder of switch

 115

1 // Fig. 2.26: fig02_26.cpp

2 // Using the break statement in a for structure.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11

12 int x; // x declared here so it can be used after the loop

13

14 // loop 10 times

15 for (x = 1; x <= 10; x++) {

16

17 // if x is 5, terminate loop

18 if (x == 5)

19 break; // break loop only if x is 5

20

21 cout << x << " "; // display value of x

22

23 } // end for

24

25 cout << "\nBroke out of loop when x became " << x << endl;

break Statements

Exits for structure when
break executed

breakExample.cpp

 116

26

27 return 0; // indicate successful termination

28

29 } // end function main

1 2 3 4

Broke out of loop when x became 5

break Statements

breakExample.cpp

 117

continue Statements

● continue statement:

Used in while, for, do/while

Skips remainder of loop body

Proceeds with next iteration of loop

● while and do/while structure: Loop-continuation test
evaluated immediately after the continue statement

● for structure: Increment expression executed; Next, loop-
continuation test evaluated

 118

26

27 } // end function main

 continue
Statements

1 2 3 4 6 7 8 9 10

Used continue to skip printing the value 5

1 // Fig. 2.27: fig02_27.cpp

2 // Using the continue statement in a for structure.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 // loop 10 times

12 for (int x = 1; x <= 10; x++) {

13

14 // if x is 5, continue with next iteration of loop

15 if (x == 5)

16 continue; // skip remaining code in loop body

17

18 cout << x << " "; // display value of x

19

20 } // end for structure

21

22 cout << "\nUsed continue to skip printing the value 5"

23 << endl;

24

25 return 0; // indicate successful termination

continueExample.cpp

 119

Logical Operators

● Used as conditions in loops and in if statements:

● && (logical AND): true if both conditions are true
if (gender == 1 && age >= 65)
 ++seniorFemales;

● || (logical OR): true if either of condition is true
if (semesterAverage >= 90 || finalExam >= 90)
 cout << "Student grade is A" << endl;

● ! (logical NOT, logical negation): Returns true when
its condition is false, & vice versa

if (!(grade == sentinelValue))
 cout << "The next grade is " << grade << endl;

Alternative:

if (grade != sentinelValue)
 cout << "The next grade is " << grade << endl;

 120

Confusing Equality (==) and Assignment (=) Operators

● Common error. Does not typically cause syntax errors

● Aspects of problem: Expressions that have a value can be used for
decision Zero = false, nonzero = true

● Assignment statements produce a value (the value to be assigned)

● Example

if (payCode == 4)

 cout << "You get a bonus!" << endl;
➢If paycode is 4, bonus given

● If == was replaced with =

if (payCode = 4)
 cout << "You get a bonus!" << endl;
➢Paycode set to 4 (no matter what it was before), Statement is true (since 4 is

non-zero) Bonus given in every case

 121

Esercitazione 3

1) Write a program which evaluate the factorial of a given number n. Use a for
loop. (factorial.cpp)

bash$./factorial

Give me an integer: 12

12! = 479001600

2) Write a program which determines the number of digits of a given number
using a while loop. (numersOfDigits.cpp)

(Tip: using the rules of divisions between integers, divide the number by 10,
until the results is 0. The number of divisions is the number of digits of the
integer.)

bash$./numerofDigits

Give me an integer: 12345

12345 has 5 digits

 122

Esercitazione 3

3) Write a program that prints the position of a body moving with a uniformly accelerated
motion every deltaT seconds for n times. (motion.cpp)

bash$./motion

Print the position of a body moving with a uniformly
accelerated

motion every deltaT seconds for n times

Give me acceleration, velocity and x0 4 6 8

How many times do you want to print the position ? 10

Delta T ? 2

 x(t): 8 t= 0 seconds

 x(t): 28 t= 2 seconds

 x(t): 928 t= 20 seconds

 123

Esercitazione 3

4) A ball, dropped from a given height, rebounds reaching at every
rebound half of the height of the previous rebound. Write a program
that prints the ball rebounds until the height of the rebound is less
than a pre-set tolerance (rebound.cpp)

bash$./rebound

Initial height: 10

Rebound # 1: height 5 meters

Rebound # 2: height 2.5 meters

Rebound # 14: height 0.000610352 meters

 124

Esercitazione 3

5) Write a program that determines whether a given number is
prime or not (PrimeNumber.cpp)

bash$./primenum

Give me an integer 8

Number 8 is not prime

bash$./primenum

Give me an integer 7

Number 7 is prime

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124

