

Pointers and References

 2

The reference operator

● Computer memory can be imagined as a very large array
of bytes. For example, a computer with 2 GB of RAM
contains an array of 2.147.483.648 (231) bytes.

● As an array, these bytes are indexed from 0 to
2.147.483.647.

● The index of each byte is its memory address from 0x00000000 to
9x7FFFFFFF in hexadecimal

0x7fffffff

0x7ffffff8
0x7ffffff9

0x7ffffffe

0x7ffffffd
0x7ffffffc
0x7ffffffb
0x7ffffffa

 3

The reference operator

● A variable declaration associates three fundamental attributes to the variable: its
name, its type, and its memory address. For example, the declaration

int n;

associates the name n , the type int , and the address of some location in memory
where the value of n is stored. Suppose that address is 0x0064fdf0 .

● Then we can visualize n like this:
0x0064fdf0

n

int

44
0x0064fdf0

n

int

● Variables of type int occupy 4 bytes in memory → the variable n shown would occupy 4-byte block of
memory
● Note that the address of the object is the address of the first byte in the block of memory where the

object is stored.
● If the variable is initialized, like this:
int n=44;

● then the two representations look like this:

● The variable’s value 44 is stored in the four bytes allocated to it.

 4

The reference operator

● In C++, you can obtain the address of a variable by using the
reference operator & , also called the address operator. The
expression &n evaluates to the address of the variable n.
#include <iostream>
using namespace std;

int main(){
int n=44;
cout << "n = " << n << endl;
// prints the value of n
cout << "&n = " << &n << endl; // prints the address of n

}

● The output shows that the address of n is 0x0064fdf0 . You can tell that the output
0x7fffeac4f0a4 must be an address because it is given in hexadecimal form, identified by
its 0x prefix.

● Displaying the address of a variable this way is not very useful. The reference operator & has
other more important uses.
● We already saw one use in the previous lesson : designating reference parameters in a

function declaration That use is closely tied to another: declaring reference variables.

n = 44
&n = 0x7fffeac4f0a4

FirstPointer.cpp

 5

References

● A reference is an alias or synonym for another variable. It is declared by the syntax

type& ref-name = var-name;

where type is the variable’s type, ref-name is the name of the reference, and var-name is the
name of the variable.

● For example, in the declaration

int& rn=n;

rn is declared to be a reference to the variable n , which must already have been declared.

int main(){
 int n=44;
 int& rn=n; // r is a synonym for n
 cout << "n = " << n << ", rn = " << rn << endl;
 --n;
 cout << "n = " << n << ", rn = " << rn << endl;
 rn *= 2;
 cout << "n = " << n << ", rn = " << rn << endl;
}

n = 44, rn = 44
n = 43, rn = 43
n = 86, rn = 86

The two identifiers n and rn are different names for the same variable; they always have the
same value. Decrementing n changes both n and nr to 32. Doubling rn increases both n and rn
to 64.

SecondPointer.cpp

 6

References

● Like constants, references must be initialized when they are
declared. But unlike a constant, a reference must be initialized to a
variable, not a literal:

int& rn=44; // ERROR: 44 is not a variable!
● Some compilers may allow this, issuing a warning that a temporary variable

had to be created to allocate memory to which the reference rn can refer.

● Although a reference must be initialized to a variable, references
are not variables:
● A variable is an object; i.e., a block of contiguous bytes in memory used to

store accessible information.

 7

References Are Not Separate Variables

#include <iostream>
using namespace std;
int main()
{
 int n=44;
 int& rn=n; // r is a synonym for n
 cout << " &n = " << &n << ", &rn = " << &rn << endl;
 int& rn2=n;
 // r is another synonym for n
 int& rn3=rn; // r is another synonym for n
 cout << "&rn2 = " << &rn2 << ", &rn3 = " << &rn3 << endl;
}

 &n = 0x7fff375564ec, &rn = 0x7fff375564ec
&rn2 = 0x7fff375564ec, &rn3 = 0x7fff375564ec

The first line of output shows that n and rn have the same address:
0x7fff375564ec . Thus they are merely different names for the same
object.

RefAndVariable.cpp

 8

References Are Not Separate Variables

#include <iostream>
using namespace std;
int main()
{
 int n=44;
 int& rn=n; // r is a synonym for n
 cout << " &n = " << &n << ", &rn = " << &rn << endl;
 int& rn2=n;
 // r is another synonym for n
 int& rn3=rn; // r is another synonym for n
 cout << "&rn2 = " << &rn2 << ", &rn3 = " << &rn3 << endl;
}

 &n = 0x7fff375564ec, &rn = 0x7fff375564ec
&rn2 = 0x7fff375564ec, &rn3 = 0x7fff375564ec

The first line of output shows that n and rn have the same address:
0x7fff375564ec . Thus they are merely different names for the same
object.
The second line of output shows that an object can have several
references, and that a reference to a reference is the same as a reference
to the object to which it refers.
In this program, rn, rn2 and rn3 there is only one object: an int named n
with address 0x7fff375564ec .
The names rn , rn2 , and rn3 are all references to that same object.

44
0x7fff375564ec

n

int

rn rn2 rn3

RefAndVariable.cpp

 9

Pointers

● The reference operator & returns the memory address of the
variable to which it is applied.

● It is also store the address in another variable.

● The type of the variable that stores an address is called a pointer.

● Pointer variables have the derived type “pointer to T ”, where T is
the type of the object to which the pointer points. For example, the
address of an int variable can be stored in a pointer variable of type
int* .

 10

Pointers

int main()
{
 int n=44;
 cout << "n = " << n << ", &n = " << &n << endl;
 int* pn=&n; // pn holds the address of n
 cout << "pn = " << pn << endl;
 cout << "&pn = " << &pn << endl;

 return 0;
}

n = 44, &n = 0x7ffdd685155c
pn = 0x7ffdd685155c
&pn = 0x7ffdd6851560

Pointer1.cpp

The variable n is initialized to 44. Its address is 0x7ffdd685155c . The variable pn is initialized to &n
which is the address of n , so the value of pn is 0x7ffdd685155c, as the second line of output shows.
But pn is a separate object, as the third line of output shows: it has the distinct address
0x7ffdd6851560.

 11

Pointers

int main()
{
 int n=44;
 cout << "n = " << n << ", &n = " << &n << endl;
 int* pn=&n; // pn holds the address of n
 cout << "pn = " << pn << endl;
 cout << "&pn = " << &pn << endl;

 return 0;
}

n = 44, &n = 0x7ffdd685155c
pn = 0x7ffdd685155c
&pn = 0x7ffdd6851560

Pointer1.cpp

The variable n is initialized to 44. Its address is 0x7ffdd685155c . The variable pn is initialized to &n
which is the address of n , so the value of pn is 0x7ffdd685155c, as the second line of output shows.
But pn is a separate object, as the third line of output shows: it has the distinct address
0x7ffdd6851560.

 12

Pointers

int main()
{
 int n=44;
 cout << "n = " << n << ", &n = " << &n << endl;
 int* pn=&n; // pn holds the address of n
 cout << "pn = " << pn << endl;
 cout << "&pn = " << &pn << endl;

 return 0;
}

n = 44, &n = 0x7ffdd685155c
pn = 0x7ffdd685155c
&pn = 0x7ffdd6851560

Pointer1.cpp

The variable n is initialized to 44. Its address is 0x7ffdd685155c . The variable pn is initialized to &n
which is the address of n , so the value of pn is 0x7ffdd685155c, as the second line of output shows.
But pn is a separate object, as the third line of output shows: it has the distinct address
0x7ffdd6851560.

 13

The deference operator

If pn points to n, we can obtain the value of n directly from p; the expression *pn evaluates to the
value of n. This evaluation is called “dereferencing the pointer” pn, and the symbol * is called the
dereference operator.

int main()
{
 int n=44;
 cout << "n = " << n << ", &n = " << &n << endl;
 int* pn=&n; // pn holds the address of n
 cout << "pn = " << pn << endl;
 cout << "&pn = " << &pn << endl;
 cout << "*pn = " << *pn << endl;
 return 0;
}

n = 44, &n = 0x7ffdd685155c
pn = 0x7ffdd685155c
&pn = 0x7ffdd6851560
*pn = 44

This shows that *pn is an alias for n : they both have the value 44.

 14

Pointers to Pointers

int main()
{
 int n=44;

 cout << "n = " << n << endl;
 cout << "&n = " << &n << endl;
 int* pn=&n; // pn holds the address of n
 cout << "pn = " << pn << endl;
 cout << " &pn = " << &pn << endl;
 cout << " *pn = " << *pn << endl;
 int** ppn=&pn; // ppn holds the address of pn
 cout << " ppn = " << ppn << endl;
 cout << " &ppn = " << &ppn << endl;
 cout << " *ppn = " << *ppn << endl;
 cout << "**ppn = " << **ppn << endl;

 return 0;
}

n = 44
&n = 0x7ffc5b8ea2a4
pn = 0x7ffc5b8ea2a4
 &pn = 0x7ffc5b8ea2a8
 *pn = 44
 ppn = 0x7ffc5b8ea2a8
 &ppn = 0x7ffc5b8ea2b0
 *ppn = 0x7ffc5b8ea2a4
**ppn = 44

 15

Derived types

● Like the reference operator & , the dereference operator * is used for two distinct purposes:
● When applied as a prefix to a pointer to an object, it forms an expression that evaluates to that object’s

value.

● When applied as a suffix to a type T , it names the derived type “pointer to T ”. For example, int* is the
type “pointer to int ”

● In C++ there are five kinds of derived types:
const int C = 33; //const int
int& rn = n; //reference to int
int* pn = &n; //pointer to int
int a[] = { 33, 66 }; //array of int
int f() = { return 33; }; //function returning int

● A derived type can derive from any other type. So many combinations are possible:
int* const Pn=44; // constant pointer to an int
const int* pN=&N; // pointer to a constant int
const int* const PN=&N; // constant pointer to a constant int
float& ar[] = { x, y }; // array of 2 references to floats
float* ap[] = { &x, &y }; // array of 2 pointers to floats
long& r() { return n; } // function returning reference to long
long* p() { return &n; } // function returning pointer to long
long (*pf)() { return 44; } // pointer to function returning long

● Some derived types require the assistance of typedef s:
typedef char Word[255]; // type array of 255 chars
Word& pa=a; // reference to an array of 255 chars
Word* pa=&a; // pointer to an array of 255 chars

 16

Objects and lvalues

● From The Annotated C++ Reference Manual: “An object is a region of storage. An
lvalue is an expression referring to an object or function.”

● Originally, the terms “lvalue” and “rvalue” referred to things that appeared on the
left and right sides of assignments, but now “lvalue” is more general.

● The simplest examples of lvalues are names of objects, i.e., variables:

int n;

n = 44; // n is a lvalue
● The simplest examples of things that are not lvalues are literals:

44 = n; // ERROR: 44 is not an lvalue
● But symbolic constants are lvalues:

const int MAX = 65535; // MAX is an lvalue
● even though they cannot appear on the left side of an assignment:

MAX = 21024; // ERROR: MAX is constant
● lvalues that can appear on the left side of an assignment are called mutable lvalues;

those that cannot are called immutable lvalues: a variable is a mutable lvalue; a
constant is an immutable lvalue.

 17

Objects and lvalues

● Other examples of mutable lvalues include subscripted variables and dereferenced pointers:

int a[8];

a[5] = 22; // a[5] is a mutable lvalue

int* p = &n;

*p = 77; // *p is a mutable lvalue
● Other examples of immutable lvalues include arrays, functions, and references.

● In general, an lvalue is anything whose address is accessible. Since an address is what a
reference variable needs when it is declared, the C++ syntax requirement for such a
declaration specifies an lvalue:

type& refname = lvalue;
● For example, this is a legal declaration of a reference:

int& r = n; // OK: n is a lvalue
● but these are illegal:

int& r = 44; //ERROR: 44 is not a lvalue

int& r = n++; //ERROR: n++ is not a lvalue

int& r = cube(n); //ERROR: cube(n) is not a lvalue

 18

Returning a reference

● A function’s return type may be a reference provided that the value returned is
an lvalue which is not local to the function.

● This restriction means that the returned value is actually a reference to an lvalue
that exists after the function terminates. Consequently that returned lvalue may
be used like any other lvalue; for example, on the left side of an assignment.
int& max(int& m, int& n) // return type is reference to int
{
 return (m > n ? m : n); // return type is reference to int
}

int main()
{
 int m = 44, n = 22;
 cout << m << ", " << n << ", " << max(m,n) << endl;
 max(m,n) = 55; // changes the value of m from 44 to 55
 cout << m << ", " << n << ", " << max(m,n) << endl;
 return 0;
}

Pointer3.cpp

44, 22, 44
55, 22, 55

The max()function returns a reference to the larger of the two variables passed to it. Since the
return value is a reference, the expression max(m,n) acts like a reference to m (since m is larger
than n). So assigning 55 to the expression max(m,n) is equivalent to assigning it to m itself.

 19

Arrays and pointers

● Although pointer types are not integer types, some integer arithmetic operators can be
applied to pointers.

● The affect of this arithmetic is to cause the pointer to point to another memory location.
● The actual change in address depends upon the size of the fundamental type to which

the pointer points.
● Pointers can be incremented and decremented like integers. However, the increase or

decrease in the pointer’s value is equal to the size of the object to which it points.

int main()
{ const int SIZE = 3;
 short a[SIZE] = {22, 33, 44};
 cout << "a = " << a << endl;
 cout << "sizeof(short) = " << sizeof(short) << endl;
 short* end = a + SIZE; // converts SIZE to offset 6
 short sum = 0;
 for (short* p = a; p < end; p++)
 { sum += *p;
 cout << "\t p = " << p;
 cout << "\t *p = " << *p;
 cout << "\t sum = " << sum << endl;
 }
 cout << "end = " << end << endl;
 return 0;
}

a = 0x7fff3e149052
sizeof(short) = 2

 p = 0x7fff3e149052 *p = 22 sum = 22
 p = 0x7fff3e149054 *p = 33 sum = 55
 p = 0x7fff3e149056 *p = 44 sum = 99

end = 0x7fff3e149058

Pointer4.cpp

 20

Arrays and pointers

● Although pointer types are not integer types, some integer arithmetic operators can be
applied to pointers.

● The affect of this arithmetic is to cause the pointer to point to another memory location.
● The actual change in address depends upon the size of the fundamental type to which

the pointer points.
● Pointers can be incremented and decremented like integers. However, the increase or

decrease in the pointer’s value is equal to the size of the object to which it points.

int main()
{ const int SIZE = 3;
 short a[SIZE] = {22, 33, 44};
 cout << "a = " << a << endl;
 cout << "sizeof(short) = " << sizeof(short) << endl;
 short* end = a + SIZE; // converts SIZE to offset 6
 short sum = 0;
 for (short* p = a; p < end; p++)
 { sum += *p;
 cout << "\t p = " << p;
 cout << "\t *p = " << *p;
 cout << "\t sum = " << sum << endl;
 }
 cout << "end = " << end << endl;
 return 0;
}

a = 0x7fff3e149052
sizeof(short) = 2

 p = 0x7fff3e149052 *p = 22 sum = 22
 p = 0x7fff3e149054 *p = 33 sum = 55
 p = 0x7fff3e149056 *p = 44 sum = 99

end = 0x7fff3e149058

On this machine short integers occupy 2 bytes; since p is a pointer to short, each time it is incremented it
advances 2 bytes to the next short integer in the array. That way, sum += *p accumulates their sum of the
integers. If p were a pointer to double and sizeof(double) were 8 bytes, then each time p is incremented it
would advance 8 bytes.

Pointer4.cpp

 21

Arrays and pointers

● Although pointer types are not integer types, some integer arithmetic operators can be
applied to pointers.

● The affect of this arithmetic is to cause the pointer to point to another memory location.
● The actual change in address depends upon the size of the fundamental type to which

the pointer points.
● Pointers can be incremented and decremented like integers. However, the increase or

decrease in the pointer’s value is equal to the size of the object to which it points.

int main()
{ const int SIZE = 3;
 short a[SIZE] = {22, 33, 44};
 cout << "a = " << a << endl;
 cout << "sizeof(short) = " << sizeof(short) << endl;
 short* end = a + SIZE; // converts SIZE to offset 6
 short sum = 0;
 for (short* p = a; p < end; p++)
 { sum += *p;
 cout << "\t p = " << p;
 cout << "\t *p = " << *p;
 cout << "\t sum = " << sum << endl;
 }
 cout << "end = " << end << endl;
 return 0;
}

a = 0x7fff3e149052
sizeof(short) = 2

 p = 0x7fff3e149052 *p = 22 sum = 22
 p = 0x7fff3e149054 *p = 33 sum = 55
 p = 0x7fff3e149056 *p = 44 sum = 99

end = 0x7fff3e149058

On this machine short integers occupy 2 bytes; since p is a pointer to short, each time it is incremented it
advances 2 bytes to the next short integer in the array. That way, sum += *p accumulates their sum of the
integers. If p were a pointer to double and sizeof(double) were 8 bytes, then each time p is incremented it
would advance 8 bytes.

Pointer4.cpp

 22

The new operator

● When a pointer is declared like this:

float* p; //p is a pointer to a float
● it only allocates memory for the pointer itself. The value of the pointer will be some memory address,

but the memory at that address is not yet allocated.

● This means that storage could already be in use by some other variable. In this case, p is uninitialized: it
is not pointing to any allocated memory. Any attempt to access the memory to which it points will be
an error:

*p = 3.14159; // ERROR: no storage has been allocated for *p
● A good way to avoid this problem is to initialize pointers when they are declared:

float x = 3.14159; // x contains the value 3.14159

float* p = &x; // p contains the address of x

cout << *p; // OK: *p has been allocated

● In this case, accessing *p is not a problem because the memory needed to store the float 3.14159 was
automatically allocated when x was declared; p points to the same allocated memory.

● Another way to avoid the problem of a dangling pointer is to allocate memory explicitly for the pointer
itself. This is done with the new operator:

float* q;

q = new float; // allocates storage for 1 float

*q = 3.14159; // OK: *q has been allocated

 23

The new operator

● The new operator returns the address of a block of s unallocated bytes in memory, where s is the size of a float.
(Typically, sizeof(float) is 4 bytes.) Assigning that address to q guarantees that *q is not currently in use by any
other variables.

● The first two of these lines can be combined, thereby initializing q as it is declared:

float* q = new float;
● Note that using the new operator to initialize q only initializes the pointer itself, not the memory to which it

points.

● It is possible to do both in the same statement that declares the pointer:

float* q = new float(3.14159);

cout << *q; // ok: both q and *q have been initialized
● In the unlikely event that there is not enough free memory to allocate a block of the required size, the new

operator will return 0 (the NULL pointer):

double* p = new double;

if (p == 0) abort(); // allocator failed: insufficient memory

else *p = 3.141592658979324;
● This prudent code calls an abort() function to prevent dereferencing the NULL pointer.

● Consider again the two alternatives to allocating memory:

float x = 3.14159; // allocates named memory

float* p = new float(3.14159); // allocates unnamed memory
● In the first case, memory is allocated at compile time to the named variable x . In the second case, memory is

allocated at run time to an unnamed object that is accessible through *p .

 24

The delete operator

● The delete operator reverses the action of the new operator, returning allocated memory to the free store.
It should only be applied to pointers that have been allocated explicitly by the new operator:

float* q = new float(3.14159);

delete q; // deallocates q

*q = 2.71828; // ERROR: q has been deallocated

● Deallocating q returns the block of sizeof(float) bytes to the free store, making it available for
allocation to other objects.

● Once q has been deallocated, it should not be used again until after it has been reallocated. A deallocated
pointer, also called a dangling pointer, is like an uninitialized pointer: it doesn’t point to anything.

● A pointer to a constant cannot be deleted:

const int * p = new int;

delete p; // ERROR: cannot delete pointer to const
● This restriction is consistent with the general principle that constants cannot be changed.

● Using the delete operator for fundamental types (char,int,float,double , etc.) is generally not
recommended because little is gained at the risk of a potentially disastrous error:

float x = 3.14159; // x contains the value 3.14159

float* p = &x; // p contains the address of x

delete p; // RISKY: p was not allocated by new

● This would deallocate the variable x , a mistake that can be very difficult to debug.

 25

Dynamic arrays

● An array name is really just a constant pointer that is allocated at compile time:

float a[20]; // a is a const pointer to a block of 20 floats

float* const p = new float[20]; // so is p

● Both a and p are constant pointers to blocks of 20 floats. The declaration of a is called static binding
because it is allocated at compile time; the symbol a is bound to the allocated memory even if the
array is never used while the program is running.

● In contrast, a non-constant pointer can be used to postpone the allocation of memory until the
program is running. This is generally called run-time binding or dynamic binding:

float* p = new float[20];
● An array that is declared this way is called a dynamic array.

● Compare the two ways of defining an array:

float a[20]; // static array

float* p = new float[20]; // dynamic array

● The static array a is created at compile time; its memory remains allocated throughout the run of the
program. The dynamic array p is created at run time; its memory allocated only when its declaration
executes. Furthermore, the memory allocated to the array p is deallocated as soon as the delete
operator is invoked on it:

delete [] p; // deallocates the array p
● Note that the subscript operator [] must be included this way, because p is an array.

 26

Using dynamic arrays

#include <iostream>
using namespace std;

void get(double*& a, int& n)
{ cout << "Enter number of items: "; cin >> n;
 a = new double[n];
 cout << "Enter " << n << " items, one per line:\n";
 for (int i = 0; i < n; i++)
 { cout << "\t" << i+1 << ": ";
 cin >> a[i];
 }
}
//--------------------------------------
void print(double* a, int n)
{
 for (int i = 0; i < n; i++)
 cout << a[i] << " ";
 cout << endl;
}
//---------------------------------------
int main()
{
 double* a; // a is simply an unallocated pointer
 int n;
 get(a,n); // now a is an array of n doubles
 print(a,n);
 delete [] a; // now a is simply an unallocated pointer again
 get(a,n); // now a is an array of n doubles
 print(a,n);
 return 0;
}

Enter number of items: 4
Enter 4 items, one per line:

1: 6.78
2: 5.77
3: 8.12
4: 9.03

6.78 5.77 8.12 9.03
Enter number of items: 2
Enter 2 items, one per line:

1: 5.7
2: 8.1

5.7 8.1

 27

Using dynamic arrays

#include <iostream>
using namespace std;

void get(double*& a, int& n)
{ cout << "Enter number of items: "; cin >> n;
 a = new double[n];
 cout << "Enter " << n << " items, one per line:\n";
 for (int i = 0; i < n; i++)
 { cout << "\t" << i+1 << ": ";
 cin >> a[i];
 }
}
//--------------------------------------
void print(double* a, int n)
{
 for (int i = 0; i < n; i++)
 cout << a[i] << " ";
 cout << endl;
}
//---------------------------------------
int main()
{
 double* a; // a is simply an unallocated pointer
 int n;
 get(a,n); // now a is an array of n doubles
 print(a,n);
 delete [] a; // now a is simply an unallocated pointer again
 get(a,n); // now a is an array of n doubles
 print(a,n);
 return 0;
}

Enter number of items: 4
Enter 4 items, one per line:

1: 6.78
2: 5.77
3: 8.12
4: 9.03

6.78 5.77 8.12 9.03
Enter number of items: 2
Enter 2 items, one per line:

1: 5.7
2: 8.1

5.7 8.1

Pointer5.cpp

The new operator allocates storage for n double s after the
value of n is obtained interactively. The array is created “on
the fly” while the program is running.

 28

Using dynamic arrays

#include <iostream>
using namespace std;

void get(double*& a, int& n)
{ cout << "Enter number of items: "; cin >> n;
 a = new double[n];
 cout << "Enter " << n << " items, one per line:\n";
 for (int i = 0; i < n; i++)
 { cout << "\t" << i+1 << ": ";
 cin >> a[i];
 }
}
//--------------------------------------
void print(double* a, int n)
{
 for (int i = 0; i < n; i++)
 cout << a[i] << " ";
 cout << endl;
}
//---------------------------------------
int main()
{
 double* a; // a is simply an unallocated pointer
 int n;
 get(a,n); // now a is an array of n doubles
 print(a,n);
 delete [] a; // now a is simply an unallocated pointer again
 get(a,n); // now a is an array of n doubles
 print(a,n);
 return 0;
}

Enter number of items: 4
Enter 4 items, one per line:

1: 6.78
2: 5.77
3: 8.12
4: 9.03

6.78 5.77 8.12 9.03
Enter number of items: 2
Enter 2 items, one per line:

1: 5.7
2: 8.1

5.7 8.1

Pointer5.cpp

Before get() is used to create another array the
current array has to be deallocated with the
delete operator. Note that the subscript operator
[] must be specified when deleting an array.

The new operator allocates storage for n double s after the
value of n is obtained interactively. The array is created “on
the fly” while the program is running.

 29

Using dynamic arrays

#include <iostream>
using namespace std;

void get(double*& a, int& n)
{ cout << "Enter number of items: "; cin >> n;
 a = new double[n];
 cout << "Enter " << n << " items, one per line:\n";
 for (int i = 0; i < n; i++)
 { cout << "\t" << i+1 << ": ";
 cin >> a[i];
 }
}
//--------------------------------------
void print(double* a, int n)
{
 for (int i = 0; i < n; i++)
 cout << a[i] << " ";
 cout << endl;
}
//---------------------------------------
int main()
{
 double* a; // a is simply an unallocated pointer
 int n;
 get(a,n); // now a is an array of n doubles
 print(a,n);
 delete [] a; // now a is simply an unallocated pointer again
 get(a,n); // now a is an array of n doubles
 print(a,n);
 return 0;
}

Enter number of items: 4
Enter 4 items, one per line:

1: 6.78
2: 5.77
3: 8.12
4: 9.03

6.78 5.77 8.12 9.03
Enter number of items: 2
Enter 2 items, one per line:

1: 5.7
2: 8.1

5.7 8.1

Pointer5.cpp

Before get() is used to create another array the
current array has to be deallocated with the
delete operator. Note that the subscript operator
[] must be specified when deleting an array.

The new operator allocates storage for n double s after the
value of n is obtained interactively. The array is created “on
the fly” while the program is running.

The array parameter a is a pointer that is passed by reference:
void get(double*& a, int& n)
This is necessary because the new operator will change the
value of a which is the address of the first
element of the newly allocated array.

 30

Pointers to pointers

● A pointer may point to another pointer. For example,

char c = 't';

char* pc = &c;

char** ppc = &pc;

char*** pppc = &ppc;

***pppc = 'w'; // changes value of c to 'w'
● We can visualize these variables like this:

● The assignment ***pppc = 'w' refers to the contents of the address pc that
is pointed to by the address ppc that is pointed to by the address pppc .

 31

Pointers to functions

● Like an array name, a function name is actually a constant pointer.

● We can think of its value as the address of the code that implements the
function. A pointer to a function is simply a pointer whose value is the
address of the function name.

● Since that name is itself a pointer, a pointer to a function is just a pointer
to a constant pointer.

● For example:

int f(int); // declares function f

int (*pf)(int); // declares function pointer pf

pf = &f; // assigns address of f to pf
● We can visualize the function pointer like this: The value of function

pointers is that they allow us to define functions of functions. This is
done by passing a function pointer as a parameter to another function.

 32

Example : The Sum of a Function

#include <iostream>
using namespace std;

int sum(int (*)(int), int);
int square(int);
int cube(int);

int main()
{
 cout << sum(square,4) << endl;
 // 1 + 4 + 9 + 16
 cout << sum(cube,4) << endl;
 // 1 + 8 + 27 + 64
}

int sum(int (*pf)(int k), int n)
{ // returns the sum f(0) + f(1) + f(2) + . . . + f(n-1):
 int s = 0;
 for (int i = 1; i <= n; i++)
 s += (*pf)(i);
 return s;
}
int square(int k)
{
 return k*k;
}
int cube(int k)
{
 return k*k*k;
}

30
100

Pointer6.cpp

Note that the declaration of the function pointer
parameter pf in the sum() function’s parameter list
requires the dummy variable k .

The sum() function evaluates the function to which pf
points, at each of the integers 1 through n , and
returns the sum of these n values.

 33

NUL, NULL, and void
● The constant 0 (zero) has type int. Nevertheless, this symbol can be assigned to all the fundamental types:

char c = 0; //initializes c to the char '\0'

short d = 0; //initializes d to the short int 0

int n = 0; //initializes n to the int 0

unsigned u = 0; //initializes u to the unsigned int 0

float x = 0; //initializes x to the float 0.0

double z = 0; //initializes z to the double 0.0
● In each case, the object is initialized to the number 0. In the case of type char , the character c becomes

the null character; denoted by '\0' or NUL , it is the character whose ASCII code is 0.

● The values of pointers are memory addresses. These addresses must remain within that part of memory
allocated to the executing process, with the exception of the address 0x0. This is called the NULL pointer.
The same constant applies to pointers derived from any type:

char* pc = 0; // initializes pc to NULL

short* pd = 0; // initializes pd to NULL

int* pn = 0; // initializes pn to NULL

unsigned* pu = 0; // initializes pu to NULL

float* px = 0; // initializes px to NULL

double* pz = 0; // initializes pz to NULL

 34

NUL, NULL, and void

● The NULL pointer cannot be dereferenced. This is a common but fatal error:

int* p = 0;

*p = 22; // ERROR: cannot dereference the NULL pointer
● A reasonable precaution is to test a pointer before attempting to dereference it:

if (p) *p = 22; // ok
● This tests the condition (p != NULL) because that condition is true precisely when p is

nonzero.

● The name void denotes a special fundamental type. Unlike all the other fundamental
types,void can only be used in a derived type:

void x; // ERROR: no object can have type void

void* p; // OK
● The most common use of the type void is to specify that a function does not return a value:

void swap(double&, double&);
● Another, different use of void is to declare a pointer to an object of unknown type:

void* p = q;
● This use is most common in low-level C programs designed to manipulate hardware

resources.

 35

Esercitazione 6

● Exercise 1 (pointerEs1.cpp)

Write a program that:

- declares a variable double a and a double * aPtr

- assign to aPtr the address of a

- assign to a value of 5 using aPtr (i.e. it is forbidden to write a = 5)

- print a and aPtr

- Multiply by 2 using aPtr (i.e. it is forbidden to write a = a * 2.)

- print a and aPtr

● Exercise 2 (pointerEs2.cpp)

Write a program that:

- create an array of integers of size n

- assigns to the elements of this array the values 0, 1, 2, 3, ..., n

 using the pointer arithmetic

- print the array

./pointerEs2
 a [0] = 0; aPtr = 0xbfffe110; * aPtr = 0
 a [1] = 1; aPtr = 0xbfffe118; * aPtr = 1
 a [2] = 2; aPtr = 0xbfffe120; * aPtr = 2
 a [3] = 3; aPtr = 0xbfffe128; * aPtr = 3
 a [4] = 4; aPtr = 0xbfffe130; * aPtr = 4
 a [5] = 5; aPtr = 0xbfffe138; * aPtr = 5
 a [6] = 6; aPtr = 0xbfffe140; * aPtr = 6
 a [7] = 7; aPtr = 0xbfffe148; * aPtr = 7
 a [8] = 8; aPtr = 0xbfffe150; * aPtr = 8
 a [9] = 9; aPtr = 0xbfffe158; * aPtr = 9

Stack and Heap memory

 37

Stack and Heap memory

Disclaimer: VERY SIMPLIFIED AND NOT REAL DESCRIPTION!

When a program is executed a certain RAM is assigned to it by the
OS. This RAM is splitted into STACK memory and HEAP memory.

STACK MEMORY:

● data are added or removed in a last-in-first-out manner

● a variable in the stack lives inside the blocks and is automatically deleted when exiting
the block

a= 1 | 0x0A

f= 2,3 | 0xF1

g= -0,3 | 0x.. g= -0,3 | 0x..
push-in

pop-out

 38

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

 39

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

 40

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

 41

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

 42

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,74 | 0x12

 43

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,74 | 0x12

j= 0 | 0x5A

 44

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,86 | 0x12

j= 0 | 0x5A

 45

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,86 | 0x12

j= 0 | 0x5A

 46

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,86 | 0x12

j= 1 | 0x5A

 47

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,98 | 0x12

j= 1 | 0x5A

 48

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,98 | 0x12

j= 1 | 0x5A

 49

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,98 | 0x12

j= 2 | 0x5A

 50

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,98 | 0x12

j= 2 | 0x5A

 51

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,98 | 0x12

 52

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4 | 0xE8

c= 1,98 | 0x12

 53

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

a= 1 | 0x0A

 54

Stack memory

int main(){
 int a = 1;
 if (a > 0){
 float f = 2.3;
 int m = 4;
 float c = static_cast<float>(m) / f;
 for (int j = 0 ; j < 2 ; j++){
 c += 0.12;
 }
 cout << “here c is” << c << “\n”;
 }
 return 0;
}

 55

Heap memory

Big memory requests can be satisfied by allocating portions from a

large pool of memory, the heap. At any given time, some parts of the

heap are in use, while some are "free" (unused) and thus available

for future allocations.

HEAP MEMORY

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4
| 0

xE
8

 56

Heap memory – memory allocation

● To allocate heap memory we use the operator “new”

● To free heap memory we use the operator “delete”

HEAP MEMORY

a= 1 | 0x0A

f= 2,3 | 0xF1

m= 4
| 0

xE
8

g= -0,3 | 0x.. g= -0,3 | 0x..new delete

 57

Heap memory – need pointers

To access data in the heap we need a POINTER in the stack

HEAP MEMORY

z= 1 | 0x3A

*z= 0x3A | 0x0A

STACK MEMORY

int *z = new int(1);

WARNING: heap memory is not freed automatically!

 58

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

HEAP MEMORYSTACK MEMORY

 59

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

HEAP MEMORYSTACK MEMORY

 60

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

HEAP MEMORYSTACK MEMORY

 61

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

*z= 0xE1 | 0xC5

HEAP MEMORYSTACK MEMORY

 62

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

*z= 0xE1 | 0xC5

z=1 | 0xE5

HEAP MEMORYSTACK MEMORY

 63

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

*z= 0xE1 | 0xC5

z=1 | 0xE5

HEAP MEMORYSTACK MEMORY

 64

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

*z= 0xE1 | 0xC5

z=1 | 0xE5

HEAP MEMORYSTACK MEMORY

 65

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

*z= 0xE1 | 0xC5

HEAP MEMORYSTACK MEMORY

 66

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

*z= 0x0 | 0xC5

HEAP MEMORYSTACK MEMORY

 67

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

*z= 0x0 | 0xC5

HEAP MEMORYSTACK MEMORY

 68

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

HEAP MEMORYSTACK MEMORY

 69

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

a= 1 | 0x0A

HEAP MEMORYSTACK MEMORY

 70

Heap and stack memory

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

HEAP MEMORYSTACK MEMORY

 71

Memory leak

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 delete z;
 z = 0;
 }
 return 0;
}

HEAP MEMORYSTACK MEMORY

 72

Memory leak

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 }
 return 0;
}

a= 1 | 0x0A

*z= 0xE1 | 0xC5

HEAP MEMORYSTACK MEMORY

 73

Memory leak

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 }
 return 0;
}

a= 1 | 0x0A

*z= 0xE1 | 0xC5

z=1 | 0xE5

HEAP MEMORYSTACK MEMORY

 74

Memory leak

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 }
 return 0;
}

a= 1 | 0x0A

*z= 0xE1 | 0xC5

z=1 | 0xE5

HEAP MEMORYSTACK MEMORY

 75

Memory leak

int main(){
 int a = 1;
 if (a > 0){
 int *z = new int(1);
 // do something
 }
 return 0;
}

a= 1 | 0x0A

z=1 | 0xE5

HEAP MEMORYSTACK MEMORY

 76

Memory leak

int main(){
 int a = 1;
 while (a > 0){
 int *z = new int(1);
 // do something
 }
 return 0;
}

a= 1 | 0x0A

z=1 | 0xE5

*z= 0xC1 | 0xC5

z=1 | 0xC1

HEAP MEMORYSTACK MEMORY

 77

Memory leak

int main(){
 int a = 1;
 while (a > 0){
 int *z = new int(1);
 // do something
 }
 return 0;
}

a= 1 | 0x0A

z=1 | 0xE5

*z= 0xC1 | 0xC5

z=1 | 0xC1

*z= 0xE1 | 0xC5

HEAP MEMORYSTACK MEMORY

 78

Memory leak

int main(){
 int a = 1;
 while (a > 0){
 int *z = new int(1);
 // do something
 }
 return 0;
}

a= 1 | 0x0A

z=1 | 0xE5

z=1 | 0xC1

HEAP MEMORYSTACK MEMORY

 79

Memory leak

int main(){
 int a = 1;
 while (a > 0){
 int *z = new int(1);
 // do something
 }
 return 0;
}

a= 1 | 0x0A

z=1 | 0xE5

z=1 | 0xC1

*z= 0x34 | 0x77

z=1 | 0xC1

z=1 | 0x34

HEAP MEMORYSTACK MEMORY

 80

Memory leak

int main(){
 int a = 1;
 while (a > 0){
 int *z = new int(1);
 // do something
 }
 return 0;
}

a= 1 | 0x0A

z=1 | 0xE5

z=1 | 0xC1

*z= 0x34 | 0x77

z=1 | 0xC1

z=1 | 0x34

HEAP MEMORYSTACK MEMORY

 81

Memory leak

int main(){
 int a = 1;
 while (a > 0){
 int *z = new int(1);
 // do something
 }
 return 0;
}

a= 1 | 0x0A

z=1 | 0xE5

z=1 | 0xC1

*z= 0x34 | 0x77

z=1 | 0xC1

z=1 | 0x34
Memory leak!

HEAP MEMORYSTACK MEMORY

Read and write in a File

 83

Files

● File processing in C++ is very similar to ordinary interactive input
and output because the same kind of stream objects are used.

● Input from a file is managed by an ifstream object the same
way that input from the keyboard is managed by the istream
object cin

● Similarly, output to a file is managed by an ofstream object the
same way that output to the monitor or printer is managed by the
ostream object cout .

● The only difference is that ifstream and ofstream objects
have to be declared explicitly and initialized with the external name
of the file which they manage.

● You also have to #include the <fstream> header file (or
<fstream.h> in pre-Standard C++) that defines these classes.

 84

EXAMPLE: Capitalizing All the Words in a Text File

#include <fstream>
#include <iostream>
using namespace std;
int main()
{
 ifstream infile("input.txt");
 ofstream outfile("output.txt");
 string word;
 char c;
 while (infile >> word)
 { if (word[0] >= 'a' && word[0] <= 'z') word[0] += 'A' - 'a';
 outfile << word;
 infile.get(c);
 outfile.put(c);
 }
 return 0;
}

String1.cpp

Interval : Numerical integration

 86

Trapezoidal rule

● The integral of a function is
approximated with the area
of a trapezium with
vertexes: (a,f(a)), (b,f(b)),
(b,0) e (a,0).

● This approximation is valid
only if in the function in the
considered interval is ~ flat.

● If this is not valid, the full
range can be divided into N
subintervals.

∫
a

b

f (x)dx≈ (b−a)
f (a)−f (b)

2

 87

Trapezoidal rule

 ∫

1

12

)()(
)(

n

k

b

a n

ab
kaf

bfaf

n

ab
dxxf

 88

Esercitazione 6

● Exercise 3

Calculate the integral of a function y = f (x) with the trapezoidal method:

area = DeltaX * ((y (0) + y (n)) / 2 + (y (1) + y (2) + ... + y (n-1)))

where n is the number of sub-intervals in which the integration domain and DeltaX is the amplitude of
each sub-interval.

The function which has been implemented in the example is log10(x). You can implement as external
function (i.e. in .h and .cpp external macro) the one that you like the most.

y (i-1) and y (i) are the values assumed by the function at the lower end and at the top of the i-th
interval.

The user can specify the integration range and the number of sub-intervals during program execution.

The program must consist of:

*a main program,

*a function that calculates the values assumed by the integrand function at the ends of the sub-
intervals and the integral with the trapezoidal rule.

– Suggestion: use an array to store the values of the function at the ends of each sub-intervals: double
func[n];

(main: useTrapezioidalntegration.cpp

Function: TrapezioidalIntegration.{cpp,h})

Execution example:
./useTrapeziodalIntegration
Calculation of an integral with the Trapezium
method
Low value of the integration interval: 1
High value of the integration interval: 2
Number of sub-intervals: 20
The integral of the function in the interval 1
2is :0.16772

 89

Esercitazione 6

Exercise 4

Using the function that calculates the integral with the trapezoidal method developed for the previous
exercise, write a program so that the user can specify the desired accuracy.

Tips:

- the user gives the epsilon parameter from the keyboard. The integral must be calculated in an iterative
way, doubling the subintervals at each iteration, until (abs (area - oldArea) < epsilon * abs (area)).

 area is the value of the integral in the current iteration, oldArea is the value in the previous iteration. abs
is the absolute value (i.e. you have to include cmath).

- make sure that there are at least 3-4 iterations to avoid accidental convergences

- end the iterative process even in the absence of convergence after a maximum number of pre-set
iterations

Execution example:

./useTrapezoidalIntegration2

Calculation of an integral with the Trapeziums method

Low value of the integration interval: 1

High value of the integration interval: 2

Precision: 0.01

The integral is: 0.167748

 90

Esercitazione 6

Exercise 5 (Derivative.{cpp,h}, UseDerivative.cpp)

Write a function that returns the numerical derivative of a given function at a given point x, using a
given tolerance h. Use the formula

f'(x) = (f(x+h)-f(x-h))/(2h)

This derivative() function has three arguments: a pointer to the function f, the x value, and the
tolerance h.

double derivative(double (*) (double), double, double);

In this exercise you have to implement and use the cube() function.

Finally, store the output of the function in a text file.

./derivative

Derivative example

x: 1

Tolerance: 0.001

The derivative of cube function in x=1 is 3

File derivative.txt has been created

Not included in the course

Characters and Strings

 93

C-string

● A C-string (also called a character string) is a sequence of contiguous
characters in memory terminated by the NUL character '\0' .

● C-strings are accessed by variables of type char* (pointer to char).

● For example, if s has type char* , then

cout << s << endl;

will print all the characters stored in memory beginning at the address s
and ending with the first occurrence of the NUL character.

● The C header file <cstring> provides a wealth of special functions
for manipulating C-strings.

● For example, the call strlen(s) will return the number of characters
in the C-string s, not counting its terminating NUL character. These
functions all declare their C-string parameters as pointers to char.

 94

Fundamentals of Characters and Strings

● String assignment

● Character array

● char color[] = "blue";

● Creates 5 element char array color

● last element is '\0'
● Variable of type char *

● char *colorPtr = "blue";
● Creates pointer colorPtr to letter b in string “blue”

● “blue” somewhere in memory
● Alternative for character array

● char color[] = { ‘b’, ‘l’, ‘u’, ‘e’, ‘\
0’ };

 95

Fundamentals of Characters and Strings

● Reading strings

● Assign input to character array word[20]

cin >> word
● Reads characters until whitespace or EOF
● String could exceed array size

cin >> setw(20) >> word;
● Reads 19 characters (space reserved for '\0')

 96

Some cin member functions

● The input stream object cin includes the input functions: cin.getline() ,
cin.get(),cin.ignore(), cin.putback(), and cin.peek() .

● Each of these function names includes the prefix “cin.” because they are “member
functions” of the cin object.

● cin.getline(str,n)reads up to n characters into str and ignores the rest.

● cin.get() is used for reading input character-by-character. The call cin.get(ch) copies
the next character from the input stream cin into the variable ch and returns 1, unless the end
of file is detected in which case it returns 0.

● cout.put() is the opposite of get is put . The function is used for writing to the output
stream cout character-by-character.

● cin.putback() function restores the last character read by a cin.get() back to the
input stream cin .

● cin.ignore() function reads past one or more characters in the input stream cin without
processing them.

● cin.peek() function can be used in place of the combination cin.get() and cin.putback()
functions. The call ch = cin.peek() copies the next character of the input stream cin into the
char variable ch without removing that character from the input stream.

● The header file <ctype.h> declares the function toupper(ch) which returns the
uppercase equivalent of ch if ch is a lowercase letter.

 97

String Manipulation Functions of the String-handling Library

char *strcpy(char *s1, const char *s2); Copies the string s2 into the character

array s1. The value of s1 is returned.

char *strncpy(char *s1, const char *s2,
size_t n);

Copies at most n characters of the string
s2 into the character array s1. The
value of s1 is returned.

char *strcat(char *s1, const char *s2); Appends the string s2 to the string s1.
The first character of s2 overwrites the
terminating null character of s1. The
value of s1 is returned.

char *strncat(char *s1, const char *s2,
size_t n);

Appends at most n characters of string
s2 to string s1. The first character of s2
overwrites the terminating null character
of s1. The value of s1 is returned.

int strcmp(const char *s1, const char
*s2);

Compares the string s1 with the string
s2. The function returns a value of zero,
less than zero or greater than zero if s1
is equal to, less than or greater than s2,
respectively.

 98

String Manipulation Functions of the String-handling Library

int strncmp(const char *s1, const char
*s2, size_t n);

 Compares up to n characters of the string s1
with the string s2. The function returns zero,
less than zero or greater than zero if s1 is
equal to, less than or greater than s2,
respectively.

char *strtok(char *s1, const char *s2); A sequence of calls to strtok breaks string
s1 into “tokens”—logical pieces such as words
in a line of text—delimited by characters
contained in string s2. The first call contains
s1 as the first argument, and subsequent calls
to continue tokenizing the same string contain
NULL as the first argument. A pointer to the
current to ken is returned by each call. If there
are no more tokens when the function is called,
NULL is returned.

size_t strlen(const char *s); Determines the length of string s. The number
of characters preceding the terminating null
character is returned.

 99

String Manipulation Functions of the String-handling Library

● Copying strings

● char *strcpy(char *s1, const char *s2)
● Copies second argument into first argument

● First argument must be large enough to store string and terminating
null character

● char *strncpy(char *s1, const char *s2,
 size_t n)

● Specifies number of characters to be copied from string into array
● Does not necessarily copy terminating null character

 100

The standard C++ string type

● Standard C++ defines its string type in the <string> header file. Objects of type string
can be declared and initialized in several ways:

string s1; // s1 contains 0 characters

string s2 = "New York"; // s2 contains 8 characters

string s3(60, '*'); // s3 contains 60 asterisks

string s4 = s3; // s4 contains 60 asterisks

string s5(s2, 4, 2); // s5 is the 2-character string
"Yo"

● If the string is not initialized, like s1 here, then it represents the empty string containing 0
characters.

● A string can be initialized the same way a C-string is, like s2

● A string can be initialized to hold a given number of the same character, like s3 here
which holds 60 stars.

● Unlike a C-string, C++ string objects can be initialized with a copy of another existing
string object, like s4, or with a substring of an existing string, like s5 .

● Note that the standard substring designator has three parts: the parent string (s2 , here),
the starting character (s2[4] , here), and the length of the substring (2 , here).

 101

Esercitazione 6 - Esericizio Facoltativo

Implement and test the following function:

bool is_palindrome(string s);

// Returns true iff s is a palindrome

// EXAMPLES: is_palindrome("RADAR") returns true,

// is_palindrome("ABCD") returns false

IsPalindrome.cpp

Example on how to manipulate
strings

 103

1 // Fig. 5.28: fig05_28.cpp
2 // Using strcpy and strncpy.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 #include <cstring> // prototypes for strcpy and strncpy
9
10 int main()
11 {
12 char x[] = "Happy Birthday to You";
13 char y[25];
14 char z[15];
15
16 strcpy(y, x); // copy contents of x into y
17
18 cout << "The string in array x is: " << x
19 << "\nThe string in array y is: " << y << '\n';
20
21 // copy first 14 characters of x into z
22 strncpy(z, x, 14); // does not copy null character
23 z[14] = '\0'; // append '\0' to z's contents
24
25 cout << "The string in array z is: " << z << endl;
26
27 return 0; // indicates successful termination
28
29 } // end main

<cstring> contains prototypes for
strcpy and strncpy

Copy entire string in array x into array y

Copy first 14 characters of array x into array z. Note
that this does not write terminating null character

Append terminating null character

The string in array x is: Happy Birthday to You

The string in array y is: Happy Birthday to You

The string in array z is: Happy Birthday

String to copy.

Copied string using strcpy.

Copied first 14 characters using strncpy

String Manipulation Functions of the String-handling Library

 104

String Manipulation Functions of the String-handling Library

● Concatenating strings

● char *strcat(char *s1, const char *s2)

● Appends second argument to first argument
● First character of second argument replaces null character terminating first

argument
● Ensure first argument large enough to store concatenated result and null

character

● char *strncat(char *s1, const char *s2,
 size_t n)

● Appends specified number of characters from second argument to first
argument

● Appends terminating null character to result

 105

1 // Fig. 5.29: fig05_29.cpp

2 // Using strcat and strncat.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 #include <cstring> // prototypes for strcat and strncat

9

10 int main()

11 {

12 char s1[20] = "Happy ";

13 char s2[] = "New Year ";

14 char s3[40] = "";

15

16 cout << "s1 = " << s1 << "\ns2 = " << s2;

17

18 strcat(s1, s2); // concatenate s2 to s1

19

20 cout << "\n\nAfter strcat(s1, s2):\ns1 = " << s1

21 << "\ns2 = " << s2;

22

23 // concatenate first 6 characters of s1 to s3

24 strncat(s3, s1, 6); // places '\0' after last character

25

<cstring> contains prototypes
for strcat and strncat

Append s2 to s1

Append first 6 characters of s1 to s3

String Manipulation Functions of the String-handling Library

 106

26 cout << "\n\nAfter strncat(s3, s1, 6):\ns1 = " << s1

27 << "\ns3 = " << s3;

28

29 strcat(s3, s1); // concatenate s1 to s3

30 cout << "\n\nAfter strcat(s3, s1):\ns1 = " << s1

31 << "\ns3 = " << s3 << endl;

32

33 return 0; // indicates successful termination

34

35 } // end main

s1 = Happy

s2 = New Year

After strcat(s1, s2):

s1 = Happy New Year

s2 = New Year

After strncat(s3, s1, 6):

s1 = Happy New Year

s3 = Happy

After strcat(s3, s1):

s1 = Happy New Year

s3 = Happy Happy New Year

Append s1 to s3

String Manipulation Functions of the String-handling Library

 107

● Comparing strings

● Characters represented as numeric codes

● Strings compared using numeric codes
● Character codes / character sets

● ASCII
● “American Standard Code for Information Interchage”

● EBCDIC
● “Extended Binary Coded Decimal Interchange Code”

String Manipulation Functions of the String-handling Library

 108

● Comparing strings

● int strcmp(const char *s1, const char *s2)

● Compares character by character
● Returns

● Zero if strings equal
● Negative value if first string less than second string
● Positive value if first string greater than second string

● int strncmp(const char *s1,

 const char *s2, size_t n)
● Compares up to specified number of characters
● Stops comparing if reaches null character in one of arguments

String Manipulation Functions of the String-handling Library

 109

1 // Fig. 5.30: fig05_30.cpp

2 // Using strcmp and strncmp.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 #include <iomanip>

9

10 using std::setw;

11

12 #include <cstring> // prototypes for strcmp and strncmp

13

14 int main()

15 {

16 char *s1 = "Happy New Year";

17 char *s2 = "Happy New Year";

18 char *s3 = "Happy Holidays";

19

20 cout << "s1 = " << s1 << "\ns2 = " << s2

21 << "\ns3 = " << s3 << "\n\nstrcmp(s1, s2) = "

22 << setw(2) << strcmp(s1, s2)

23 << "\nstrcmp(s1, s3) = " << setw(2)

24 << strcmp(s1, s3) << "\nstrcmp(s3, s1) = "

25 << setw(2) << strcmp(s3, s1);

<cstring> contains
prototypes for strcmp and
strncmp.

Compare s1 and s2.

Compare s1 and s3.

Compare s3 and s1.

String Manipulation Functions of the String-handling Library

 110

26

27 cout << "\n\nstrncmp(s1, s3, 6) = " << setw(2)

28 << strncmp(s1, s3, 6) << "\nstrncmp(s1, s3, 7) = "

29 << setw(2) << strncmp(s1, s3, 7)

30 << "\nstrncmp(s3, s1, 7) = "

31 << setw(2) << strncmp(s3, s1, 7) << endl;

32

33 return 0; // indicates successful termination

34

35 } // end main

s1 = Happy New Year

s2 = Happy New Year

s3 = Happy Holidays

strcmp(s1, s2) = 0

strcmp(s1, s3) = 1

strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0

strncmp(s1, s3, 7) = 1

strncmp(s3, s1, 7) = -1

Compare up to 6 characters of s1 and s3

Compare up to 7 characters of s1 and s3

Compare up to 7 characters of s3 and s1

String Manipulation Functions of the String-handling Library

 111

● Tokenizing
● Breaking strings into tokens, separated by delimiting characters
● Tokens usually logical units, such as words (separated by

spaces)
● "This is my string" has 4 word tokens (separated by

spaces)
● char *strtok(char *s1, const char *s2)

● Multiple calls required
● First call contains two arguments, string to be tokenized and

string containing delimiting characters
● Finds next delimiting character and replaces with null

character
● Subsequent calls continue tokenizing

● Call with first argument NULL

String Manipulation Functions of the String-handling Library

 112

1 // Fig. 5.31: fig05_31.cpp
2 // Using strtok.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 #include <cstring> // prototype for strtok
9
10 int main()
11 {
12 char sentence[] = "This is a sentence with 7 tokens";
13 char *tokenPtr;
14
15 cout << "The string to be tokenized is:\n" << sentence
16 << "\n\nThe tokens are:\n\n";
17
18 // begin tokenization of sentence
19 tokenPtr = strtok(sentence, " ");
20
21 // continue tokenizing sentence until tokenPtr becomes NULL
22 while (tokenPtr != NULL) {
23 cout << tokenPtr << '\n';
24 tokenPtr = strtok(NULL, " "); // get next token
25
26 } // end while
27
28 cout << "\nAfter strtok, sentence = " << sentence << endl;
29
30 return 0; // indicates successful termination
31
32 } // end main

<cstring> contains prototype for strtok

First call to strtok begins tokenization

String Manipulation Functions of the String-handling Library

Subsequent calls to strtok with NULL
as first argument to indicate continuation

 113

The string to be tokenized is:

This is a sentence with 7 tokens

The tokens are:

This

is

a

sentence

with

7

tokens

After strtok, sentence = This

String Manipulation Functions of the String-handling Library

 114

● Determining string lengths

●size_t strlen(const char *s)
● Returns number of characters in string

● Terminating null character not included in length

String Manipulation Functions of the String-handling Library

 115

1 // Fig. 5.32: fig05_32.cpp
2 // Using strlen.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 #include <cstring> // prototype for strlen
9
10 int main()
11 {
12 char *string1 = "abcdefghijklmnopqrstuvwxyz";
13 char *string2 = "four";
14 char *string3 = "Boston";
15
16 cout << "The length of \"" << string1
17 << "\" is " << strlen(string1)
18 << "\nThe length of \"" << string2
19 << "\" is " << strlen(string2)
20 << "\nThe length of \"" << string3
21 << "\" is " << strlen(string3) << endl;
22
23 return 0; // indicates successful termination
24
25 } // end main

<cstring> contains prototype for strlen.

Using strlen to determine
length of strings

String Manipulation Functions of the String-handling Library

The length of "abcdefghijklmnopqrstuvwxyz" is 26

The length of "four" is 4

The length of "Boston" is 6

 116

Fundamentals of Characters and Strings

● Character constant
● Integer value represented as character in single quotes
● 'z' is integer value of z

122 in ASCII
● String

● Series of characters treated as single unit

● Can include letters, digits, special characters +, -, * ...
● String literal (string constants)

Enclosed in double quotes, for example:

"I like C++"
● Array of characters, ends with null character '\0'
● String is constant pointer

● Pointer to string’s first character
● Like arrays

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116

