Proprietà termodinamiche delle miscele semplici

Dr. Daniele Toffoli

Dipartimento di Scienze Chimiche e Farmaceutiche, UniTS

Outline

- Miscele semplici
- Quantità parziali molari
- Potenziale chimico
- Termodinamica delle soluzioni
- Proprietà colligative

- Miscele semplici
- Quantità parziali molari
- Operation of the second of
- Termodinamica delle soluzioni
- 5 Proprietà colligative

Sistemi a composizione variabile

Considereremo soluzioni i cui componenti:

- sono non elettroliti
- non reagiscono tra loro

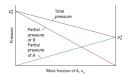
Soluzioni e soluzioni ideali

- Soluzione: fase omogenea che contiene due o più componenti
 - solvente in proporzioni maggiori
 - soluto(i) in proporzioni minori
- Pressioni di vapore parziali (p_i) dei componenti:
 - misura delle forze coesive in fase liquida
 - $p_i = p_i(T, p, x_1, x_2, ...) \Longrightarrow$ utili informazioni sul sistema
- Soluzioni binarie ideali: componenti A e B tali che:
 - stesse dimensioni molecolari
 - stesso tipo di interazioni A-A, B-B, e A-B
 - semplice dipendenza di p_i dalla composizione (legge di Raoult)

Sistemi a composizione variabile

soluzioni ideali e legge di Raoult

- Legge di Raoult: $p_i = x_i p_i^*$
 - x_i: frazione molare del componente i (in fase liquida)
 - p_i^* : pressione di vapore del componente puro alla stessa T
- seguita da tutti i componenti per ogni composizione
- miscele binarie: $p_t = p_2^* + x_1(p_1^* p_2^*)$
- esempi: benzene/toluene; ethylene bromide/ethylene chloride; acetic acid/isobornyl acetate . . .



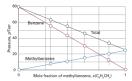


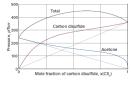
diagramma p vs composizione per una soluzione ideale

esempio

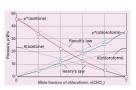
Sistemi a composizione variabile

Deviazioni dal comportamento ideale

- Deviazioni positive: massimo nella curva p_t vs x
 - interazioni A–B energeticamente sfavorite rispetto a A–A e B–B
 - formazione di azeotropo bassobollente
 - e.g. etanolo/cloroformio, acetone/carbon disulfide (liquidi dissimili)
- Deviazioni negative: minimo nella curva p_t vs x
 - interazioni A-B energeticamente favorite rispetto a A-A e B-B
 - formazione di azeotropo altobollente
 - e.g. acetone/cloroformio



deviazione positiva

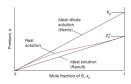


deviazione negativa

Sistemi a composizione variabile

soluzioni diluite ideali

- ullet Il solvente (A) segue la legge di Raoult per $x_{\mathcal{A}}
 ightarrow 1$
 - $p_A = x_A p_A^*$ (solvente)
 - l'intorno chimico è simile a quello nel liquido puro
- Il soluto (B) segue la legge di Henry per $x_B \to 0$
 - $p_B = x_B K_H$ (soluto)
 - K_H: costante della legge di Henry
 - l'intorno chimico è molto differente rispetto al soluto puro



soluzioni diluite ideali

intorno chimico delle molecole di soluto

Sistemi a composizione variabile

Legge di Henry

Descrive la solubilità di gas nei liquidi:

$$p_B = K_H m_B (p_B = K_H x_B)$$

- m_B/x_B : solubilità del gas
- p_B: p del gas sopra il liquido
- T non troppo alte, p moderate
- per mix di gas, si applica separatamente a ogni gas
- K_H dipende da: tipo di gas e solvente, T.

Sistemi a composizione variabile

esempio

- L'aria secca contiene 78.084 mol% N₂ e 20.946 mol% O₂. Calcolare le proporzioni relative di N_2 e O_2 disciolte in H_2O sotto la p totale di 1.000 bar. Le K_H per N₂ e O₂ sono 6.51×10^7 torr e 3.3×10^7 torr rispettivamente a T=25 °C.
- $p_{N_2} = x_{N_2} p_t = 0.78084 \times \left(\frac{1.0 \times 10^5 bar}{1.01325 \times 10^5 \frac{atm}{m}}\right) \times 760 \frac{torr}{atm} = 585.678 \text{ torr};$ $p_{O_2} = 157.1079$ torr
- Applicando la legge di Henry:

•
$$x_{N_2} = \frac{p_{N_2}}{K_H(N_2)} = \frac{585.678torr}{6.51 \times 10^7 torr} = 8.99659 \times 10^{-6}$$

•
$$x_{O_2} = \frac{P_{O_2}}{K_H(O_2)} = \frac{157.1079torr}{3.30 \times 10^7 torr} = 4.76085 \times 10^{-6}$$

- Proporzioni relative:
 - per N₂: $\frac{x_{N_2}}{x_{N_2} + x_{O_2}} = 0.654$ per O₂: $\frac{x_{O_2}}{x_{N_4} + x_{O_2}} = 0.346$

Sistemi a composizione variabile

esempio

- Calcolare la solubilità di O_2 in H_2O a T=25 °C e alla $p_{O_2}=160$ torr (la pressione parziale di O_2 nell'atmosfera a livello del mare)
- $x_{O_2} = \frac{n_{O_2}}{n_{O_2} + n_{H_2O}} \simeq \frac{n_{O_2}}{n_{H_2O}}$
- In 1.00L di H₂O $n_{H_2O} = \frac{1.0 \times 10^3 g}{18.0 \frac{g}{mol}} \simeq 55.5 \text{mol}$
- $n_{O_2} = x_{O_2} \times n_{H_2O} = \frac{160 torr}{3.3 \times 10^7 torr} \times 55.5 mol = 2.7 \times 10^{-4} \text{ mol}$

- Miscele semplici
- Quantità parziali molari
- Operation Potenziale Chimico
- Termodinamica delle soluzioni
- 5 Proprietà colligative

Sistemi a composizione variabile

variabili termodinamiche estensive

- Data $X = X(p, T, n_1, n_2, ...)$ variabile termodinamica estensiva, funzione delle variabili di composizione $n_1, n_2, ...$, definiamo quantità parziale molare, X_i :
 - $X_i = \left(\frac{\partial X}{\partial n_i}\right)_{p,T,n_{j\neq i}}$
 - *X*=*V*,*U*,*H*,*G*,*A*,*S*,...
 - A p e T costanti (stabilità termica e meccanica)

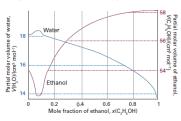
•
$$dX = \left(\frac{\partial X}{\partial T}\right)_{p,n_1,n_2,...} dT + \left(\frac{\partial X}{\partial p}\right)_{T,n_1,n_2,...} dp + \sum_{i=1}^{N} \underbrace{\left(\frac{\partial X}{\partial n_i}\right)_{p,T,n_{j\neq i}}}_{X} dn_i$$

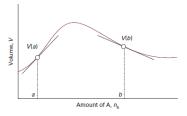
- dX differenziale esatto
- a T e p costanti: $dX = \sum_{i=1}^{N} X_i dn_i$

Sistemi a composizione variabile

volume parziale molare, V_i

- Miscela di N componenti: $dV = \sum_{i=1}^{N} V_i dn_i$ (T, p costanti)
 - V: volume della soluzione
 - $V_i = \left(\frac{\partial V}{\partial n_i}\right)_{p,T,n_{i\neq i}}$: volume parziale molare del componente i
 - V_i può essere > <= 0
 - per una sostanza pura, $V_i = V_i^*$ (V_m , volume molare)





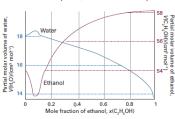
miscela H₂O/etanolo

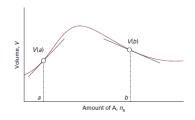
significato geometrico di Vi

Sistemi a composizione variabile

volume parziale molare, V_i

- Interpretazione geometrica: pendenza della curva V vs n_i per ammontare costante degli altri componenti (T e p fissate)
- Interpretazione fisica: variazione di V per aggiunta di 1 mole del componente i ad un sistema di massa tale che l'aggiunta non varia la sua composizione relativa
 - $V_i = V_i(T, p, n_1, n_2, ...)$





miscela H_2O /etanolo significato geometrico di V_i

Teorema di Eulero e funzioni omogenee

• Una funzione $f = f(x_1, x_2, ..., x_n)$ è detta omogenea di grado α se per la scalatura $x_i \to \lambda x_i$, $\lambda \in \mathbb{R}$, delle sue variabili indipendenti, $f \to \lambda^{\alpha} f$ ovvero:

$$f(\lambda x_1, \lambda x_2, \dots, \lambda x_N) = \lambda^{\alpha} f(x_1, x_2, \dots, x_N)$$

• Tutte le funzioni di stato termodinamiche sono funzioni omogenee di grado $\alpha = 1$ rispetto alle variabili estensive (o di composizione, n_1, n_2, \ldots, n_N)

teorema di Eulero

• Se $f = f(x_1, x_2, ..., x_n)$ è una funzione omogenea di grado $\alpha = 1$ allora:

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^{N} x_i \left(\frac{\partial f}{\partial x_i}\right)_{x_{j \neq i}}$$

Teorema di Eulero e funzioni omogenee

dimostrazione

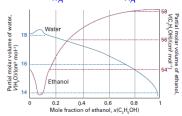
- Si calcoli la derivata totale $\frac{df}{d\lambda}$
- $\frac{df}{d\lambda} = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial (\lambda x_i)} \right) \frac{d(\lambda x_i)}{d\lambda} = \alpha \lambda^{\alpha 1} f(x_1, x_2, \dots, x_n)$
- Per $\alpha = 1$ e ponendo $\lambda = 1$ si ottiene:

$$f(x_1, x_2, ..., x_n) = \sum_{i=1}^{N} x_i \left(\frac{\partial f}{\partial x_i}\right)_{x_{j\neq i}}$$

- Per funzioni termodinamiche di stato, le variabili estensive sono n_1, n_2, \ldots, n_N
- $X = \sum_{i=1}^{N} X_i n_i \ (X=U, V, H, A, G, S ...)$

Equazione di Gibbs-Duhem

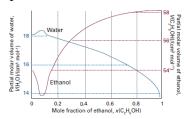
- A T e p costanti, $X = \sum_{i=1}^{N} X_i n_i$ Differenziando: $dX = \sum_{i=1}^{N} X_i dn_i + \sum_{i=1}^{N} n_i dX_i$
- A T e p costanti: $dX = \sum_{i=1}^{N} X_i dn_i$
- Equazione di Gibbs-Duhem: $\sum_{i=1}^{N} n_i dX_i = 0$ (o $\sum_{i=1}^{N} x_i dX_i = 0$)
- Per N componenti, solo N-1 X_i possono variare indipendentemente
- Miscela binaria: $dX_A = -\frac{n_B}{n_A} dX_B = -\frac{x_B}{x_A} dX_B$



miscela H2O/etanolo

Volumi parziali molari

- A costanti T e p: $V = n_1 V_1 + n_2 V_2 + \cdots + n_N V_N = \sum_{i=1}^{N} n_i V_i$
- Equazione di Gibbs-Duhem: $\sum_{i=1}^{N} n_i dV_i = 0$
- Miscela binaria:
 - $V = n_A V_A + n_B V_B$
 - $dV_A = -\frac{n_B}{n_A}dV_B = -\frac{x_B}{x_A}dV_B$



miscela H₂O/etanolo

Esempio

- Il volume totale di una soluzione di etanolo contenente 1kg di $\rm H_2O$ alla T di 25 °C può essere descritto tramite l'espressione polinomiale $V = 1002.93 + 54.666m 0.36394m^2 + 0.028256m^3$, dove m è la molalità di etanolo. Determinare il volume parziale molare di $\rm H_2O$ ed etanolo in una soluzione preparata mescolando 1.0kg di $\rm H_2O$ e 0.5 kg di etanolo
- $n_{H_2O} = 55.51$ mol; $n_{EtOH} = \frac{500g}{46.069 \frac{g}{mol}} = 10.85$ mol $= m_{EtOH}$
- $V_{EtOH} = \left(\frac{\partial V}{\partial n_{EtOH}}\right)_{p,T,n_{H_2O}} = \left(\frac{\partial V}{\partial m_{EtOH}}\right)_{p,T,n_{H_2O}} = 54.666 2 \times 0.36394 m_{EtOH} + 3 \times 0.028256 m_{FtOH}^2$
- A $m_{EtOH}=10.85\frac{mol}{kg}$, V=1589 mL, $V_{EtOH}=56.75\frac{mL}{mol}$
- Dalla

$$V = n_{H_2O}V_{H_2O} + n_{EtOH}V_{EtOH} \Longrightarrow V_{H_2O} = \frac{V - n_{EtOH}V_{EtOH}}{n_{H_2O}} = 17.53 \frac{mL}{mol}$$

Relazioni termodinamiche

• Le relazioni G = H - TS e H = U + pV si applicano anche alle quantità parziali molari:

•
$$G_i = \left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_{j\neq i}} = \left(\frac{\partial H}{\partial n_i}\right)_{p,T,n_{j\neq i}} - T\left(\frac{\partial S}{\partial n_i}\right)_{p,T,n_{j\neq i}} = H_i - TS_i$$
• $H_i = U_i + pV_i$

- Per un sistema a composizione costante: dG = Vdp SdT
 - $V = \left(\frac{\partial G}{\partial p}\right)_{T, n_1, n_2, \dots}$
 - $S = -\left(\frac{\partial G}{\partial T}\right)_{p,n_1,n_2,\dots}$

•
$$V_i = \left[\frac{\partial}{\partial n_i} \left(\frac{\partial G}{\partial p}\right)_{T, n_1, n_2, \dots}\right]_{p, T, n_{j \neq i}} = \left[\frac{\partial}{\partial p} \left(\frac{\partial G}{\partial n_i}\right)_{p, T, n_{j \neq i}}\right]_{T, n_1, n_2, \dots} = \left(\frac{\partial G_i}{\partial p}\right)_{T, n_1, n_2, \dots}$$

•
$$S_i = -\left(\frac{\partial G_i}{\partial T}\right)_{p,n_1,n_2,...}$$

Relazioni termodinamiche

A composizione costante:

$$dG_{i} = \left(\frac{\partial G_{i}}{\partial T}\right)_{p,n_{1},n_{2},...} dT + \left(\frac{\partial G_{i}}{\partial p}\right)_{T,n_{1},n_{2},...} dp = -S_{i}dT + V_{i}dp$$

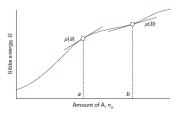
$$\bullet G_{i} = G_{i}(p,T,n_{1},n_{2},...)$$

- $\bullet \ dG_i = dU_i + pdV_i + V_i dp TdS_i S_i dT$
 - $\bullet \ G_i = U_i + pV_i TS_i$
- $\bullet \ dU_i = TdS_i pdV_i$
- tutte le relazioni ricavate per un sistema chiuso, sono valide anche per le quantità parziali molari

- Miscele semplici
- Quantità parziali molari
- Potenziale chimico
- Termodinamica delle soluzioni
- 5 Proprietà colligative

Energia libera di Gibbs parziale molare

- ullet Data $G=G(p,T,n_1,n_2,\ldots)$, $\mu_i=\left(rac{\partial G}{\partial n_i}
 ight)_{p,T,n_{j
 eq i}}$
 - μ_i : potenziale chimico
- $dG = Vdp SdT + \sum_{i} \mu_{i} dn_{i}$
- $G = \sum_{i} n_{i} \mu_{i}$ (p, T costanti)
- Equazione di Gibbs-Duhem: $\sum_{i} n_{i} d\mu_{i} = 0$ (p, T costanti)



significato geometrico di μ_i

Energia libera di Gibbs parziale molare

•
$$U = U(S, V, n_1, ...) \Longrightarrow dU = TdS - pdV + \sum_{i=1}^{N} \left(\frac{\partial U}{\partial n_i}\right)_{S, V, n_{j \neq i}} dn_i$$

•
$$G = U + pV - TS \Longrightarrow dG = dU + pdV + Vdp - TdS - SdT$$

•
$$dG = Vdp - SdT + \sum_{i=1}^{N} \left(\frac{\partial U}{\partial n_i}\right)_{S,V,n_{j\neq i}} dn_i$$

In generale:

$$\mu_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{p,T,n_{j\neq i}} = \left(\frac{\partial U}{\partial n_{i}}\right)_{S,V,n_{j\neq i}} = \left(\frac{\partial H}{\partial n_{i}}\right)_{S,p,n_{j\neq i}}$$

$$= \left(\frac{\partial A}{\partial n_{i}}\right)_{T,V,n_{i\neq i}} = -T\left(\frac{\partial S}{\partial n_{i}}\right)_{U,V,n_{i\neq i}}$$

• solo per $G \mu_i$ è una grandezza parziale molare

Principio del potenziale chimico uniforme

- *N* componenti distributiti tra più fasi α , β , γ , ... in contatto (sistema chiuso a T e p costanti):
 - trascurando il contributo delle interfasi: $G = G^{\alpha} + G^{\beta} + G^{\gamma} \dots$
 - $dG = dG^{\alpha} + dG^{\beta} + dG^{\gamma} + \dots$
 - $dG = \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha} + \sum_{i} \mu_{i}^{\beta} dn_{i}^{\beta} + \sum_{i} \mu_{i}^{\gamma} dn_{i}^{\gamma} \dots$
- Per il trasferimento di *dn* moli del componente *i* da α a β :

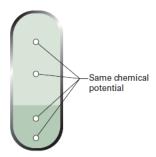
$$\begin{cases} dn_{j\neq i}^{\delta} = 0 & \forall \delta = \alpha, \beta, \gamma, \dots \\ dn_{i}^{\delta} = 0 & \delta \neq \alpha, \beta & \Longrightarrow dG = (\mu_{i}^{\beta} - \mu_{i}^{\alpha})dn \\ dn_{i}^{\beta} = -dn_{i}^{\alpha} = dn \end{cases}$$

- Processo spontaneo: $dG < 0 \Longrightarrow \mu_i^{\beta} < \mu_i^{\alpha}$
- All'equilibrio: $dG = 0 \Longrightarrow \mu_i^{\alpha} = \mu_i^{\beta}$
- Trasferimento di materia continua fino a che $\mu_i^{\alpha} = \mu_i^{\beta}$

Principio del potenziale chimico uniforme

condizione di equilibrio per il trasferimento di materia tra fasi

• Il potenziale chimico μ_i di ogni componente è lo stesso in ogni fase a T e p costanti



principio del potenziale chimico uniforme

- Miscele semplici
- Quantità parziali molari
- Operation of the second of
- Termodinamica delle soluzioni
- 5 Proprietà colligative

Legge di Raoult rivisitata

liquido puro in equilibrio con il suo vapore:

•
$$\mu_i^*(p_i^*, T)(I) = \mu_i^*(p_i^*, T)(v)$$

•
$$\mu_i^*(p_i^*, T)(I) = \mu_i^0(T) + RT \ln\left(\frac{p_i^*}{p^0}\right)$$

- comportamento ideale del vapore
- p^* : pressione di vapore alla data T
- $\mu_i^0(T)$: stato standard del gas (puro a $p^0 = 1.000$ bar)

Potenziale chimico di un componente della soluzione

•
$$\mu_i(p, T)(I) = \mu_i(p_i, T)(v)$$

•
$$\mu_i(p,T)(l) = \mu_i^0(T) + RT \ln \left(\frac{p_i}{p^0}\right)$$

•
$$\mu_i(p, T)(I) = \mu_i^*(p_i^*, T)(I) + RT \ln \left(\frac{p_i}{p_i^*}\right)$$

Potenziale chimico di un componente della soluzione

- comportamento non ideale: $\mu_i(p, T)(I) = \mu_i^*(p_i^*, T)(I) + RT \ln \left(\frac{f_i}{f_i^*}\right)$
 - f_i: fugacitàdel vapore
 - si assume sempre comportamento ideale.
- $\mu_i(p, T)(I) = \mu_i^*(p_i^*, T)(I)$: differenza di μ per il componente i tra la soluzione e il componente puro.

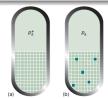
attività di un componente la soluzione

- Soluzioni ideali: $\mu_i(p, T)(l) = \mu_i^*(p_i^*, T)(l) + RT \ln x_i$
 - Legge di Raoult: $\frac{p_i}{p_i^*} = x_i$
- Soluzioni reali: $\mu_i(p, T)(I) = \mu_i^*(p_i^*, T)(I) + RT \ln a_i$
 - ai: attività del componente i
 - $a_i = \frac{p_i}{p_i^*}$
 - Soluzioni ideali quando $a_i = x_i$ per tutte le composizioni

Abbassamento della pressione di vapore del solvente

soluto non volatile

- In una soluzione di A e B (B soluto non volatile):
 - $1 \frac{p_A}{p_A^*} = 1 x_A \Longrightarrow \frac{p_A^* p + A}{p_A^*} = x_2$
 - esempio di proprietà colligativa
- Si può determinare la massa molare del soluto, M_B :
 - $\bullet \ \frac{\Delta P}{p_A^*} = \frac{p_A^* p_A}{p_A^*} \sim \frac{W_B}{M_B} \frac{M_A}{W_A}$
 - assumendo $n_B << n_A$ (soluzione diluita)



(a) componente puro; (b) componente in soluzione

Funzioni termodinamiche di mescolamento

formazione di una soluzione dai componenti puri a T e p costanti

- Soluzione formata da N componenti (i = 1, 2, ..., N)
- $\bullet X = \sum_{i=1}^{N} n_i X_i$
 - X: funzione termodinamica estensiva della soluzione
 - X = V, S, A, H, G, ...
 - X_i : quantità parziale molare del componente i
- $\Delta_{mix}X = X \sum_{i=1}^{N} n_i X_i^* = \sum_{i=1}^{N} n_i (X_i X_i^*)$
 - ullet X_i^* : funzione termodinamica estensiva dei componenti puri(separati)

Funzioni termodinamiche di mescolamento

Volume di mescolamento

$$V_i - V_i^* = \left[\frac{\partial (\mu_i - \mu_i^*)}{\partial p} \right]_{T, n_i}$$

$$V_i^* = \left(\frac{\partial G_i^*}{\partial p} \right)_T$$

$$V_i = \left(\frac{\partial \mu_i}{\partial \mu_i} \right)_T$$

•
$$V_i = \left(\frac{\partial \mu_i}{\partial p}\right)_{T,n_j}^T$$

•
$$\Delta_{mix}V = RT \sum_{i=1}^{N} n_i \left(\frac{\partial \ln(a_i)}{\partial p}\right)_{T,n_j}$$

•
$$\mu_i(p, T) = \mu_i^*(p_i^*, T) + RT \ln(a_i)$$

- Soluzioni ideali: $\Delta_{mix}V^{id}=0$ (anche gas perfetti)
 - $a_i = x_i$
 - $V_i = V_i^*$

Funzioni termodinamiche di mescolamento

Entalpia di mescolamento

$$\bullet \ H_i - H_i^* = \left[\frac{\partial (\frac{\mu_i - \mu_i^*}{T})}{\partial (\frac{1}{T})} \right]_{p, n_i}$$

$$\bullet \ H_i^* = \left[\frac{\partial (\frac{\mu_i^*}{T})}{\partial (\frac{1}{T})} \right]_p$$

$$\bullet \ H_i = \left[\frac{\partial (\frac{\mu_i^*}{T})}{\partial (\frac{1}{T})} \right]_{p, n_j}$$

•
$$\Delta_{mix}H = R\sum_{i=1}^{N} n_i \left[\frac{\partial \ln(a_i)}{\partial (\frac{1}{T})}\right]_{p,n_i}$$

•
$$\mu_i(p, T) = \mu_i^*(p_i^*, T) + RT \ln(a_i)$$

- Soluzioni ideali: $\Delta_{mix}H^{id}=0$ (anche gas perfetti)
 - $\bullet \ a_i = x_i$
 - $H_i = H_i^*$

Funzioni termodinamiche di mescolamento

Entropia di mescolamento

•
$$S_i - S_i^* = -\left[\frac{\partial(\mu_i - \mu_i^*)}{\partial T}\right]_{p,n_i}$$

•
$$S_i^* = -\left(\frac{\partial \mu_i^*}{\partial T}\right)_p$$

•
$$S_i = -\left(\frac{\partial \mu_i}{\partial T}\right)_{p,n_i}$$

•
$$\Delta_{mix}S = -R\sum_{i=1}^{N} n_i \left[\ln(a_i) + T\left(\frac{\partial \ln a_i}{\partial T}\right)_{p,n_j} \right]$$

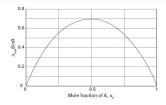
•
$$\mu_i(p, T) = \mu_i^*(p_i^*, T) + RT \ln(a_i)$$

- Soluzioni ideali: $\Delta_{mix}S^{id} = -R\sum_{i=1}^{N} n_i \ln(x_i)$ (anche gas perfetti)
 - $a_i = x_i$

Funzioni termodinamiche di mescolamento

Energia libera di mescolamento

- $G_i G_i^* = \mu_i \mu_i^* = RT \ln(a_i)$
- $\Delta_{mix}G = RT \sum_{i=1}^{N} n_i \ln(a_i) (\Delta_{mix}G = \Delta_{mix}H T\Delta_{mix}S)$
- Soluzioni ideali: $\Delta_{mix}G^{id} = -T\Delta_{mix}S^{id} = RT\sum_{i=1}^{N}n_i\ln(x_i) < 0$
 - la tendenza la mescolamento è di natura esclusivamente entropica
 - valida anche per gas perfetti



 $\Delta_{mix}S^{id}$ per un sistema binario



 $\Delta_{mix}G^{id}$ per un sistema binario

Attività e stati standard

Convenzione I (del solvente o razionale)

- $a_A = \frac{p_A}{p_A^*}$, $a_A = x_A$ per soluzioni ideali
- $a_A = \gamma_A x_A (\lim_{x_A \to 1} \gamma_A = 1)$
 - γ_A : coefficiente di attività
 - $\gamma_A > 1$ deviazioni positive
 - $\gamma_A < 1$ deviazioni negative
- $\mu_A(p,T) = \underbrace{\mu_A^*(p^*,T) + RT \ln(x_A)}_{+RT \ln \gamma_A} + RT \ln \gamma_A$

contributo ideale

- Stato standard del solvente: solvente puro in equilibrio con il suo vapore alla T di interesse
 - per liquidi $\mu_A^*(p^*,T) \sim \mu_A^*(p^0,T) = \Delta_f G_m^0(A)$ tabulati

Attività e stati standard

Convenzione I (del solvente o razionale)

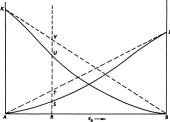


Fig. 38. Activity coefficients on Convention I.

•
$$p_A = \overline{RU}$$
, $p_B = \overline{RS}$

•
$$a_A = \gamma_A x_A = \frac{p_A}{p_A^*} \rightarrow \gamma_A = \frac{a_A}{x_A} = \frac{p_A}{x_A p_A^*} = \frac{\overline{RU}}{\overline{RV}}$$

•
$$a_B = \gamma_B x_B = \frac{p_B}{p_B^*} \rightarrow \gamma_B = \frac{a_B}{x_B} = \frac{p_B}{x_B p_B^*} = \frac{\overline{RS}}{\overline{RT}}$$

Attività e stati standard

Convenzione II (del soluto o pratica)

Soluzioni diluite ideali:

$$\mu_B(p, T) = \mu_B^*(p_B^*, T) + RT \ln \left(\frac{x_B K_B}{p_B^*} \right) = \mu_B^\# + RT \ln(x_B)$$

- $p_B = K_B x_B$ (legge di Henry)
- $\mu_B^\# = \mu_B^*(p_B^*, T) + RT \ln \left(\frac{K_B}{p_B^*}\right)$
- Stato standard del soluto: ipotetico stato del soluto puro in equilibrio con il suo vapore alla pressione K_B e alla T di interesse
- Soluzioni diluite reali:

$$\mu_B(p, T) = \mu_B^\# + RT \ln(a_B) = \underbrace{\mu_B^\# + RT \ln(x_B)}_{+RT \ln \gamma_B} + RT \ln \gamma_B$$

contributo ideale

• $a_B = \gamma_B x_B = \frac{p_B}{K_B}$: attività del soluto ($\lim_{x_B \to 0} \gamma_B = 1$)

Attività e stati standard

Convenzione II (del soluto o pratica)

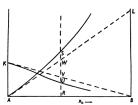


Fig. 39. Activity coefficients on Convention II.

•
$$p_A = \overline{RU}$$
, $p_B = \overline{RS}$

•
$$a_A = \gamma_A x_A = \frac{p_A}{p_A^*} \rightarrow \gamma_A = \frac{a_A}{x_A} = \frac{p_A}{x_A p_A^*} = \frac{\overline{RU}}{\overline{RV}}$$

•
$$a_B = \gamma_B x_B = \frac{p_B}{K_B} \rightarrow \gamma_B = \frac{a_B}{x_B} = \frac{p_B}{x_B K_B} = \frac{\overline{RS}}{\overline{RW}}$$

Attività e stati standard

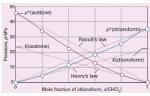
Convenzione II (del soluto o pratica)

- Soluzioni diluite: $x_B = \frac{n_B}{n_A + n_B} \sim \frac{n_B}{n_A} = M_A m_B$
 - M_A : massa molare del solvente (in kg/mol)
 - m_B: molalità del soluto
- $\mu_B(p, T) = \mu_B^{\circ} + RT \ln \left(\frac{m_B}{m^{\circ}} \right) + RT \ln (\gamma_B)$
 - $\bullet \ \mu_B^\circ = \mu_B^\# + RT \ln \left(\frac{M_A}{M^0} \right)$
 - m^0 : concentrazione 1m
 - $M^0 = 1 kg/mol$
- Stato standard del soluto: ipotetico stato del soluto con $m_B = 1$ in equilibrio con il suo vapore alla pressione data dalla legge di Henry
 - $a_B = \gamma_B \left(\frac{m_B}{m^0}\right)$: attività del soluto
 - $\lim_{m_B \to 0} \gamma_B = 1$

Attività e stati standard

esempio

 Calcolare l'attività ed il coefficiente di attività del cloroformio (C) in acetone (A), considerandolo sia come solvente che come soluto (K_H = 165 torr)



XC	0	0.20	0.40	0.670	0.80	1.00
$p_C(torr)$	0	35	82	142	219	293
$p_A(torr)$	347	270	185	102	37	0

Attività e stati standard

convenzione I (C come solvente)

XC	0	0.20	0.40	0.670	0.80	1.00
ас	0	0.12	0.28	0.49	0.75	1.00
γ_{c}	_	0.60	0.70	0.82	0.94	1.00

• $x_{C}=0.80$:

•
$$a_C = \frac{p_C}{p_C^*} = \frac{219torr}{293torr} = 0.75$$

•
$$\gamma_C = \frac{a_C}{\chi_C} = \frac{0.75}{0.80} = 0.94$$

• $x_C = 0.20$:

•
$$a_C = \frac{p_C}{p_C^*} = \frac{35torr}{293torr} = 0.12$$

•
$$\gamma_C = \frac{a_C}{x_C} = \frac{0.12}{0.20} = 0.60$$

Attività e stati standard

convenzione II (C come soluto)

XC	0	0.20	0.40	0.670	0.80	1.00
ас	0	0.21	0.50	0.86	1.33	1.78
γc	1	1.05	1.25	1.43	1.66	1.78

• $x_C = 0.80$:

•
$$a_C = \frac{p_C}{K_H} = \frac{219torr}{165torr} = 1.33$$

$$\gamma_C = \frac{a_C}{x_C} = \frac{1.33}{0.80} = 1.66$$

• $x_C = 0.20$:

•
$$a_C = \frac{p_C}{K_H} = \frac{35torr}{165torr} = 0.21$$

•
$$\gamma_C = \frac{a_C}{x_C} = \frac{0.21}{0.20} = 1.05$$

Soluzioni reali

funzioni termodinamiche di eccesso, X^E

•
$$X^E = \Delta_{mix} X - \Delta_{mix} X^{id}$$

•
$$V^E = \Delta_{mix}V = n_t RT \sum_{i=1}^N x_i \left(\frac{\partial \ln \gamma_i}{\partial \rho}\right)_{T,n_j}$$

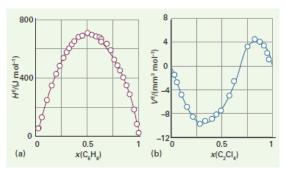
•
$$H^E = \Delta_{mix}H = n_t R \sum_{i=1}^N x_i \left[\frac{\partial \ln \gamma_i}{\partial (\frac{1}{T})} \right]_{p,n_j}$$

•
$$S^{E} = -n_{t}R\sum_{i=1}^{N} x_{i} \left[\ln(\gamma_{i}) + T \left(\frac{\partial \ln \gamma_{i}}{\partial T} \right)_{p,n_{j}} \right]$$

•
$$G^E = \Delta_{mix}G - \Delta_{mix}G^{id} = n_tRT \sum_{i=1}^{N} x_i \ln(\gamma_i)$$

Soluzioni reali

funzioni termodinamiche di eccesso, X^E



sistema benzene/cyclohexane (sx) e tetrachloroethene/cyclopentane (dx)

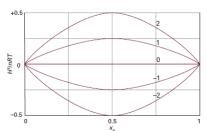
Soluzioni reali

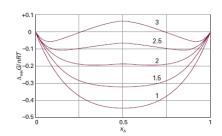
soluzioni binarie regolari

- Per queste soluzioni, $H^E = \xi x_A x_B nRT$, $S^E = 0$
- Equazioni di Margules:
 - $\ln \gamma_A = \xi x_B^2 \Longrightarrow \gamma_A = e^{\xi(1-x_A)^2}$
 - $p_A = \gamma_A x_A p_A^* = x_A p_A^* e^{\xi(1-x_A)^2}$
 - $\lim_{x_A \to 0} p_A = x_A p_A^* e^{\xi}$ (legge di Henry, $K_A = p_A^* e^{\xi}$)
 - $\ln \gamma_B = \xi x_A^2 \Longrightarrow \gamma_B = e^{\xi(1-x_B)^2}$
 - $p_B = \gamma_B x_B p_B^* = x_B p_R^* e^{\xi(1-x_B)^2}$
- ξ esprime le deviazioni dalla idealità:
 - $\xi = 0$: soluzione ideale
 - $\xi > 0$: deviazione positiva dalla legge di Raoult
 - $\xi < 0$: deviazione negativa dalla legge di Raoult

Soluzioni reali

soluzioni binarie regolari



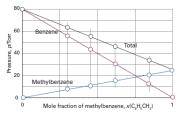


 $\Delta_{mix}G = nRT \left[x_A \ln(x_A) + x_B \ln(x_B) + \xi x_A x_B \right]$

Applicazioni della equazione di Gibbs-Duhem: $x_A d\mu_A + x_B d\mu_B = 0$

comportamento ideale del componente A

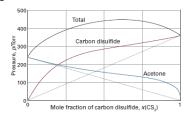
- $\mu_A(p, T, x_A) = \mu_A^*(p, T) + RT \ln(x_A)$
- $\bullet d\mu_B = -\frac{x_A}{x_B} d\mu_A = RTd \ln(x_B)$
- $\int d\mu_B = RT \int d \ln(x_B) + C (T \text{ costante})$
- $\mu_B = RT \ln(x_B) + C$, $C = \mu_B(x_B = 1) = \mu_B^*$
- Anche il componente B si comporta idealmente



Applicazioni della equazione di Gibbs-Duhem: $x_A d\mu_A + x_B d\mu_B = 0$

deviazione positiva/negativa del componente A

- $\mu_A(p, T, x_A) = \mu_A^*(p, T) + RT \ln(x_A) + RT \ln(\gamma_A)$
- $d \ln(\gamma_B) = -\frac{1-x_B}{X_B} d \ln(\gamma_A)$
- Anche il componente B presenta lo stesso tipo di deviazione
 - positiva o negativa



Dipendenza di $a \in \gamma$ da $T \in p$

dipendenza da p

$$\bullet \left(\frac{\partial \mu_i}{\partial \rho}\right)_{T,n_1,n_2,\dots} = \left(\frac{\partial \mu_i^*}{\partial \rho}\right)_T + RT \left(\frac{\partial \ln \gamma_i}{\partial \rho}\right)_{T,n_1,n_2,\dots}$$

$$\bullet \left(\frac{\partial \ln \gamma_i}{\partial p}\right)_{T, p_1, p_2, \dots} = \frac{V_i - V_i^*}{RT}$$

scarsa dipendenza da p

dipendenza da T

$$\bullet \left[\frac{\partial \left(\frac{\mu_i}{T}\right)}{\partial T}\right]_{p,n_1,n_2,\dots} = \left[\frac{\partial \left(\frac{\mu_i^*}{T}\right)}{\partial T}\right]_{p} + R\left(\frac{\partial \ln \gamma_i}{\partial T}\right)_{p,n_1,n_2,\dots}$$

$$\bullet \left(\frac{\partial \ln \gamma_i}{\partial T}\right)_{n,n_1,n_2} = \frac{H_i^* - H_i}{RT^2}$$

- dipendenza da T non trascurabile (per $\Delta T \sim 100^{\circ}$ C)
- dati entalpici di difficile accesso Dr. Daniele Toffoli (DSCF, UniTS)

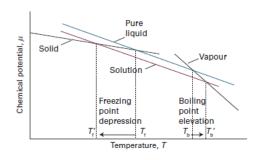
- Miscele semplici
- Quantità parziali molar
- 3 Potenziale chimico
- Termodinamica delle soluzioni
- Proprietà colligative

Soluzioni diluite di non elettroliti

Definizione ed approssimazioni usate

- Proprietà colligative: proprietà delle soluzioni diluite che non dipendono dalla natura del soluto ma solo dal loro numero:
 - abbassamento del punto di congelamento della soluzione
 - innalzamento del punto di ebollizione della soluzione
 - pressione osmotica
- Dovute all'abbassamento della pressione di vapore della soluzione a causa della presenza del soluto
- Approssimazioni:
 - soluto (B) non volatile (e non elettrolita)
 - solvente (A) e soluto (B) non formano una soluzione solida
 - si assume $a_A = x_A$ (soluzioni molto diluite in B)

Abbassamento della pressione di vapore del solvente



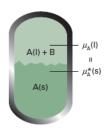
soluto B non volatile

•
$$\frac{\Delta P}{p_{\Delta}^*} = \frac{p_A^* - p_A}{p_{\Delta}^*} = x_B > 0$$

•
$$\mu_A = \mu_A^* + RT \ln(1 - x_B) < \mu_A^*$$

• Dato
$$x_B$$
, $\Delta T_f = T_f^* - T_f > \Delta T_b = T_b - T_b^*$

Soluzioni diluite di non elettroliti



abbassamento crioscopico, $\Delta T_f = K_f m_B$

•
$$\mu_A(T, p, x_A)(I) = \mu_A^*(T, p_A^*) + RT \ln(x_A) = \mu_A^*(T)(s)$$

•
$$ln(x_A) = -\frac{\Delta_{fus}G_m(A)}{RT}$$

$$\bullet \ \frac{d \ln x_A}{dT} = -\frac{1}{R} \left[\frac{\partial \left(\frac{\Delta_{flus} G_{lm}}{T} \right)}{\partial T} \right]_{D} = \frac{\Delta_{flus} H_{lm}}{RT^2}$$

Soluzioni diluite di non elettroliti

abbassamento crioscopico, $\Delta T_f = K_f m_B$

•
$$\int_{x_A=1}^{x_A} d \ln x_A = \frac{\Delta_{fus} H_m}{R} \int_{T_f^*}^{T_f} \frac{dT}{T^2}$$
 (assunto $\Delta_{fus} H_m$ T indipendente)

•
$$\ln(x_A) = \frac{\Delta_{fus}H_m}{R} \left(\frac{1}{T_f^*} - \frac{1}{T_f}\right)$$

•
$$ln(1-x_B) = -\frac{\Delta_{fus}H_m}{R} \left(\frac{T_f^* - T_f}{T_f T_f^*}\right)$$

•
$$x_B = \frac{\Delta_{fus}H_m}{RT_s^{*2}}\Delta T_f$$

• Se
$$x_B << 1 \Longrightarrow \ln(1-x_B) = -x_B - \frac{1}{2}x_B^2 - \frac{1}{3}x_B^3 + \ldots \sim -x_B$$

•
$$T_f T_f^* \sim T_f^{*2}$$

- $x_B \sim m_B M_A$ (M_A in kg/mol)
- K_f dipende dalla natura del solvente

Soluzioni diluite di non elettroliti

abbassamento crioscopico, $\Delta T_f = K_f m_B$

- Dalla misura di ΔT_f si può risalire alla massa molare del soluto:
 - $M_B = \frac{K_f}{\Delta T_f} \left(\frac{W_B}{W_A} \right)$

- Una soluzione contiene 1.50g di un soluto in 30.0 g di benzene e il T_f della soluzione è pari a 3.74 °C. Il punto di fusione del benzene puro è T_f^* =5.48 °C. Calcolare la massa molare del soluto.
 - $M_B = \frac{4.90 \text{Kkgmol}^{-1}}{(5.48 3.74)\text{K}} \left(\frac{1.50\text{g}}{30.0\text{g}}\right) = 140.81 \text{ g/mol}.$

Soluzioni diluite di non elettroliti

esempio

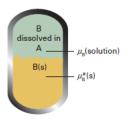
- L'addizione di 100 g di un composto a 750 g di CCl₄ abbassa il punto di congenlamento del solvente di 10.5 K. Calcolare la massa molare del soluto ($K_f = 30 \frac{Kkg}{mol}$ per CCl₄).
 - $M_B = \frac{30 K k g mol^{-1}}{10.5 K} \left(\frac{100 g}{750 g}\right) = 381 \text{ g/mol}.$

- Calcolare la T alla quale si ha formazione di ghiaccio in una miscela anticongelante contenente il 10% in peso di glicole etilenico (M_B =62g/mol), sapendo che per l'acqua, K_f =1.86 $\frac{K}{molkg}$.
 - $m_B = \frac{\frac{100g}{62g/mol}}{0.90kg} = 1.79 \ m$
 - $\Delta T_f = K_f m_B = 1.86 \frac{\kappa}{molkg} \times 1.79 m = 3.3 \,^{\circ}\text{C}$
 - $T_f = -3.3$ °C

Soluzioni diluite di non elettroliti

- Calcolare il valore di K_f per il solvente 1,4-diclorobenzene dai seguenti dati: $M_A=147.04$ g/mol, $T_f^*=326.28$ K, $\Delta_{fus}H_m=17.88$ kJ/mol.
 - $K_f = \frac{147.01 \times 10^3 kg/mol \times 8.3145 \frac{J}{Kmol} \times (326.28K)^2}{17.88 \times 10^3 J/mol} = 7.2778 \text{ K kg mol}^{-1}$

Soluzioni diluite di non elettroliti



equazione della solubilità ideale

- Soluto B che si scioglie in A (soluzione ideale, $\Delta_{mix}H=0$)
- $\mu_B(T, p, x_B)(I) = \mu_B^*(T, p_B^*) + RT \ln(x_B) = \mu_B^*(T, p)(s)$
- $\ln(x_B) = \frac{\Delta_{fus}H_m}{R} \left(\frac{1}{T_f^*} \frac{1}{T}\right)$
 - la solubilità di B in A dipende solo dalle proprietà di B
 - x_B aumenta all'aumentare di T e di T_f^* di B
 - si osservano (spesso) deviazioni (e.g. formazione di legami idrogeno)

Equazione della solubilità ideale

- Calcolare la solubilità ideale del phenanthrene a T=298.1 K in un solvente con cui forma una soluzione ideale. Per il phenanthrene $\Delta_{fus}H_m$ =18.64 kJ/mol alla T_f^* =369.4 K.
 - $ln(x_B) = \frac{18.64 \times 10^3 J/mol}{8.3145 \frac{J}{Kmol}} \times \left(\frac{1}{369.4K} \frac{1}{298.1K}\right) = -1.45168$
 - $x_B = 0.2342$

Equazione della solubilità ideale

esempio

• Calcolare la solubilità ideale del nafthalene a T=20° C in un solvente con cui forma una soluzione ideale. Per il nafthalene $\Delta_{fus}H_m$ =4614 cal/mol alla T_f^* =80°C.

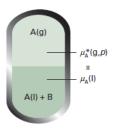
•
$$ln(x_B) = \frac{4614 \times 4.184 J/mol}{8.3145 \frac{J}{Kmol}} \times (\frac{1}{353.1K} - \frac{1}{293.1K}) = -1.347$$

• $x_B = 0.259$

Frazione molare del naftalene in vari solventi a 20°C

Clorobenzene	0,256
Benzene	0,241
Toluene	0,224
Tetracloruro di carbonio	0,205
Esano	0,090

Soluzioni diluite di non elettroliti



innalzamento ebullioscopico, $\Delta T_b = K_b m_B$

•
$$\mu_A(T, p, x_A)(I) = \mu_A^*(T, p_A^*) + RT \ln(x_A) = \mu_A^*(T, p)(v)$$

•
$$ln(x_A) = \frac{\Delta_{vap}G_m(A)}{RT}$$

$$\bullet \frac{d \ln x_A}{dT} = \frac{1}{R} \left[\frac{\partial \left(\frac{\Delta_{Vap}G_m}{T} \right)}{\partial T} \right]_p = -\frac{\Delta_{Vap}H_m}{RT^2}$$

soluzioni diluite di non elettroliti

innalzamento ebullioscopico, $\Delta T_b = K_b m_B$

•
$$\int_{x_A=1}^{x_A} d \ln x_A = -\frac{\Delta_{vap} H_m}{R} \int_{T_h^*}^{T_b} \frac{dT}{T^2}$$
 (assunto $\Delta_{vap} H_m$ T indipendente)

•
$$ln(x_A) = \frac{\Delta_{vap}H_m}{R} \left(\frac{1}{T_b} - \frac{1}{T_b^*}\right)$$

•
$$ln(1-x_B) = -\frac{\Delta_{vap}H_m}{R} \left(\frac{T_b - T_b^*}{T_b T_b^*}\right)$$

•
$$x_B = \frac{\Delta_{vap} H_m}{R T_b^{*2}} \Delta T_b$$

• Se
$$x_B << 1 \Longrightarrow \ln(1-x_B) = -x_B - \frac{1}{2}x_B^2 - \frac{1}{3}x_B^3 + \ldots \sim -x_B$$

•
$$T_b T_b^* \sim T_b^{*2}$$

- $x_B \sim m_B M_A \ (M_A \ \text{in kg/mol})$
- K_b dipende dalla natura del solvente

Soluzioni diluite di non elettroliti

innalzamento ebullioscopico, $\Delta T_b = K_b m_B$

- ullet K_b aumenta all'aumentare di M_A
- Dalla misura di ΔT_b si può risalire alla massa molare del soluto:

$$\bullet \ M_B = \tfrac{K_b}{\Delta T_b} \left(\tfrac{W_B}{W_A} \right)$$

- K_b dipende dalla p, pressione totale
 - si usa l' equazione di Clausius-Clapeyron

Table 5B.1* Freezing-point (K_f) and boiling-point (K_b) constants

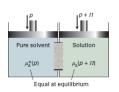
	$K_f/(K \text{ kg mol}^{-1})$	K _b /(K kg mol ⁻¹)		
Benzene	5.12	2.53		
Camphor	40			
Phenol	7.27	3.04		
Water	1.86	0.51		

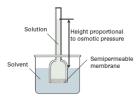
^{*} More values are given in the Resource section.

Soluzioni diluite di non elettroliti

pressione osmotica di una soluzione, $\Pi = cRT$

- Membrana semipermeabile: permeabile al solvente, non al soluto
- $\mu_A(p_t, T, x_A) < \mu_A^*(p_t, T)$: flusso netto di A verso la soluzione
- il flusso si arresta quando $\mu_A(p_t + \Pi, T, x_A) = \mu_A^*(p_t, T)$
- Π: pressione osmotica della soluzione
 - pressione idrostatica: $\Pi = \rho g h$





Soluzioni diluite di non elettroliti

pressione osmotica di una soluzione, $\Pi = cRT$

- $\mu_A(p_t + \Pi, T, x_A) = \mu_A^*(p_t, T)$
 - soluzione ideale: $\mu_A(p_t + \Pi, T, x_A) = \mu_A^*(p_t + \Pi, T) + RT \ln x_A$
 - $\bullet \left(\frac{\partial \mu_A}{\partial p}\right)_T = V_A^*$

•
$$\mu_A(p_t + \Pi, T) = \mu_A(p_t, T) + \int_{p_t}^{p_t + \Pi} V_A^* dp = V_A^* \Pi$$

- $V_A^*\Pi \frac{n_BRT}{n_A} = 0$
- $\Pi = \frac{n_B}{n_A V_*^*} RT \sim c_B RT$ (Eq. di van't Hoff)
 - $\ln x_A = \ln(1 x_B) \sim -x_B = \frac{n_B}{n_A + n_B} \sim \frac{n_B}{n_A}$
 - $V_t \sim n_A V_A^*$ (soluzione diluita)
 - c_B: conc. molare di B
- Dalla misura di Π si può risalire alla massa molare del soluto

Soluzioni diluite di non elettroliti

pressione osmotica di una soluzione, $\Pi = cRT$

- In uno studio della pressione osmotica dell'emoglobina a T=276.15K, la pressione osmotica fu trovata essere uguale a quella di una colonna di acqua di altezza pari a h=3.51cm. La concentrazione è pari a $1 \mathrm{g}/\mathrm{dm}^3$. Calcolare la massa molare dell'emoglobina, sapendo che la densità del mercurio relativa a quella dell'acqua è $\frac{d_{Hg}}{d_{H_2O}}=13.59$ e che $1 \mathrm{mmHg}$ =133.32Pa.
 - $\Pi = 133.32 \frac{P_a}{torr} \times \left(\frac{d_{Hg}}{d_{H_2O}}\right) \times h_{H_2O} = 133.32 \frac{P_a}{torr} \times 13.59 \times 3.51 \times 10^1 \text{mmHg} = 344.336 Pa$
 - $c_B = \frac{\Pi}{RT} = \frac{W_B}{M_B V}$
 - $M_B = \frac{W_BRT}{V\Pi} = \frac{1.0 \times 10^{-3} kg \times 8.3145 \frac{J}{Kmol} \times 276.15K}{344.336 Pa \times 0.100 \times 10^{-3} m^3} = 66.675 \times 10^3 \frac{g}{mol}$

Soluzioni diluite di non elettroliti

applicazione: determinazione della massa molare dei polimeri

- $\Pi = [J]RT (1 + B[J] + C[J]^2 + ...)$
 - per soluzioni lontane dalla idealità
 - B: coefficiente del viriale osmotico
- Misurando Π a una serie di conc. ponderali, $C_W = \frac{W_J}{V}$ si risale alla massa molare del soluto, M_J .

$$\bullet \ \frac{h}{C_W} = \frac{RT}{\rho g M_J} \left(1 + B \frac{C_W}{M_J} \right)$$

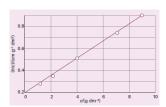
- $[J] = \frac{C_W}{M_J}$
- $\Pi = \rho g \tilde{h}$
- da un grafico $\frac{h}{C_W}$ vs C_W

Soluzioni diluite di non elettroliti

applicazione: determinazione della massa molare dei polimeri

• La Π di una serie di soluzioni ($\rho = 0.980 \frac{g}{cm^3}$) di PVC è data in tabella. Calcolare il peso molecolare medio (M_B) del polimero.

c _W (g/L)	1.00	2.00	4.00	7.00	9.00
h (cm)	0.28	0.71	2.01	5.10	8.00
$\frac{h}{c_W}$ (cm/gL ⁻¹)	0.28	0.36	0.503	0.729	0.889



• intercetta dal grafico: $\frac{RT}{\rho g M_B} = 0.21 \Longrightarrow M_B = 1.2 \times 10^2 \frac{kg}{mol} = 120 \text{ kDa}$

Soluzioni diluite di non elettroliti

misure dei coefficienti di attività

•
$$\Pi = -\frac{RT}{V_m} \ln a_A = -\frac{RT}{V_m} \ln \gamma_A x_A$$

•
$$x_A d\mu_A + x_B d\mu_B = 0 \Longrightarrow d \ln a_B = -\frac{x_A}{1-x_A} d \ln a_A$$

•
$$\ln a_B(x_A'') - \ln a_B(x_A') = -\int_{x_A'}^{x_A''} \frac{x_A}{1-x_A} d \ln a_A$$

•
$$d\mu_A = RTd \ln a_A \dots (p,T \text{ costanti})$$