Esercizi Algebra 1

Esercizio 1 Siano G e H gruppi ciclici di ordine finito. Dimostrare che $G \times H$ é un gruppo ciclico finito se e solo se m e n sono coprimi.

Esercizio 2 Su \mathbb{R}^2 definiamo l'operazione ::

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

- 1. Verificare che (\mathbb{R}^2, \cdot) é un monoide
- 2. Verificare che la relazione

$$(a,b) \sim (c,d) \iff a^2 + b^2 = c^2 + d^2$$

é una relazione d'equivalenza

3. Verificare che \sim sia una relazione d'equivalenza compatibile con l'operazione \cdot

Esercizio 3 Sia G gruppo, $g \in G$ e supponiamo che l'ordine di g sia n. Verificare che g^k sia un elemento di ordine $\frac{n}{d}$ dove d = MCD(n, k).

Esercizio 4 Siano $a,b\in\mathbb{Z},$ sia d=MCD(a,b) e m=mcm(a,b). Dimostrare che

- 1. $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$
- $2. \ a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$

Esercizio 5 Sia C_{10} un gruppo ciclico di ordine 10. Individuare i suoi sottogruppi e per ogni sottogruppo i generatori.

Esercizio 6 Individuare quali delle seguenti coppie sono gruppi isomorfi:

- 1. $\mathbb{Z}_7 \in \mathbb{Z}_5 \times \mathbb{Z}_3$
- 2. $\mathbb{Z}_{28} \in \mathbb{Z}_2 \times \mathbb{Z}_{14}$
- 3. $\mathbb{Z}_{36} \in \mathbb{Z}_4 \times \mathbb{Z}_9$