Self-Assembly

The **spontaneous and reversible** association of molecular species to form larger, more complex supramolecular entities according to the **intrinsic information** contained in the components.

Metal-Ligand Interaction

Metal as **connector** :

- labile M-L interaction (kinetic)
- stable compound (thermodynamic)
- highly directional with many geometries available

Metal as **functional group** :

- redox active (electron transfer)
- UV-vis active (color)
- photo active (phosphorescence)
- magnetic properties

Directonal Bonding Approach

M = bb acido, L = bb basico, definiti secondo il numero e geometria relativa dei siti acidi e basici

Specie poligonali 2D

M = Pd;Pt

Figure 41. (a) Space-filling model of molecular square $[Pt(dppp)(4,4'-bipyridine)]_4(PF_6)_{8\nu}$ (b) high-resolution STM images of the adlayer of square on Au(111), and (c) structural model of the adlayer.

Triangoli Molecolari

Square = Triangle endothermic $\Delta H < 0$ $\Delta S < \Delta S < 0$

Solvent Concentration Temperature

6 CF3SO3

Directonal Bonding Approach

M = bb acido, L = bb basico, definiti secondo il numero e geometria relativa dei siti acidi e basici

Gabbie Molecolari

a: (C₈₄H₉₆N₃₆Pt₆)¹²⁺•12(PF₆⁻) FW. 4519.98

Figure 3. Comparison of (a) CSI and (b) ESI mass spectra of 1a. Reprinted from Ref. 2 with permission from Elsevier.

Molecular Paneling

Figure 1. ¹H NMR observations of the enclathration of guest molecules in 1b. (a) 1b·(4)₄. (b) 1b·(5)₄. (c) Empty 1b (*: impurities).

Scheme 2

4,4'-dimetossi-dibenzoile

tri-*tert*-butilbenzene

tetrabenzilsilano

Figure 8. Crystal structure of 1b-8.

 M_6L_4 /adamantancarbossilato₄

Effetto allosterico!

a) P, Jacoba C n

Figure 2. The ¹H NMR monitoring of reorganization process from 3.5 to 4.6 via guest exchange. (a) 3.5 complex in D₂O; (b-d) After the addition of excess amount of 6 at 25 °C ((b) 3 h, (c) 8 h, (d) 24 h). Note that free 5 is immiscible in water and, after guest exchange, becomes invisible in the spectrum.

Stabilizzazione di intermedi reattivi: alcossi-silani ciclici Ship in a Bottle

Stabilizzazione di intermedi reattivi: Oligomerizzazione di tri alcossi-silani

standard) of 1.4 at 27 °C. Circles and squares indicate host and guest signals, respectively.

Figure 2. The crystal structure of 1.4: (a) side view and (b) top view.

(HDO)

Figure 1. ¹H NMR spectra showing the guest-templated assembly of 7C4 complex (500 MHz, D₂O, 25 °C). a) A mixture of 1, 2, and 3. Template 7 was added to this solution and the mixture was heated at 100 °C for b) 0.5 h, c) 6 h, d) 24 h, and e) 48 h. Pyz = pyrazine.

Fotodimerizzazioni 2+2

controllo stereochimica, [] 2mM resa > 98%

benzene: [] 150mM, 3h, resa 40%, no stereoselettività

D₂O; b) after irradiation (400 W) for 0.5 h; c) after extraction with CDCl₃.

Controllo regiochimica, [] 2mM resa > 98%

controllo stereochimica, [] 2mM resa > 98%

benzene: [] > >, t > >, resa 25%, 21% anti

Figure 2. ¹H NMR spectroscopic analysis (500 MHz, D_2O , 27 °C) of the photodimerization of **4a** within bowl **2**: a) before reaction $(2 \cdot (4a)_2)$ in D_2O ; b) after irradiation (400 W) for 3 h; c) after extraction with CDCl₃.

Fig. 1. Self-assembled coordination cages (1 and 2), which are prepared by simple mixing of an exo-tridentate organic ligand and an end-capped Pd(II) ion in a 4:6 ratio in water.

Michito Yoshizawa et al. Science 2006;312:251-254

Fig. 2. (A) Pair-selective encapsulation of two types of reactants, 9-hydroxymethylanthrancene (3a) andN-cyclohexylphthalimide (4a), within cage 1 and the subsequent Diels-Alder reaction

leading to syn isomer of 1 4-adduct 5 within the cavity of 1

Fig. 3. (A) Crystal structure of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathbf{1}{\supset}\mathbf{5}\) \end{document} 5 and (B) optimized structure of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document}

Michito Yoshizawa et al. Science 2006;312:251-254

Published by AAAS

Fig. 4. Catalytic Diels-Alder reaction of 9-hydroxymethylanthracene (3a) and N-phenylphthalimide (4c) in the aqueous solution of bowl 2, leading to 9,10-adduct 6.

Michito Yoshizawa et al. Science 2006;312:251-254

Published by AAAS

Fig. 5. The 1H NMR spectra (500 MHz, room temperature) of the catalytic Diels-Alder reaction of 9-hydroxymethylanthrancene (3a) and N-phenylphthalimide (4c) in an aqueous solution of bowl

Michito Yoshizawa et al. Science 2006;312:251-254

Table S1. Catalytic Diels-Alder reaction of 3 and 4 in the presence of 2 (10 mol%) in H_2O (1 mL) and control experiments in H_2O or CDCl₃ (1 mL) without 2.

$\begin{array}{c} R_{1} \\ \hline \\ 3 \\ 3 \\ \end{array} + \begin{array}{c} 0 \\ \hline \\ N \\ H_{2}O (1 \text{ mL}), 25 \text{ °C} \end{array} \xrightarrow{\begin{array}{c} 0 \\ \hline \\ N \\ H_{2} \end{array}} + \begin{array}{c} 0 \\ \hline \\ R_{1} \\ \end{array} $						
Entry	Substrate		Time	Yield(%) of 6		
	3 (R ₁)	4 (R ₂)		with 2	without 2	in CHCl_3^\dagger
1	-CH ₂ OH	propyl	5 h	>99	8	0
2	-CH ₂ OH	cyclohexy	15 h	98	0	6
3	-CH ₂ OH	phenyl	5 h	>99*,†	3	9
4	-CH ₂ OH	phenyl	15 h	6	7	21
5	-CH ₂ OH	benzyl	5 h	>99	trace	0
6	-CH ₂ OH	xylyl	15 h	94	0	17
7	-CH ₃	cyclohexy	7 h	>99	0	5
8	-CH₃	phenyl	3 h	>99	5	17
9	-CH=CH ₂	phenyl	1 d	88	0	trace
10	-CH=CH ₂	benzyl	1 d	97	5	4
11	-CO ₂ H	benzyl	1 d	12	0	0
12	-CH ₂ OH	phenyl	1 d	>99‡	—	—
*(en)F	Pd(NO ₃) ₂ : 10	mol% [†] wi	ithout 2	[‡] 2 : 1 mol%, hexane (1 mL)		

 M_4L_6 , (Ga³⁺, Fe³⁺; biscatecol-amidi) 12⁻, $\Delta\Delta\Delta\Delta$, $\Lambda\Lambda\Lambda\Lambda$, 300-350 Å Stabilizzazione di cationi organici

Figure 15. Based on the X-ray structure coordinates, $Et_4N^+ \subset [Fe_4C_6]^{12-}$ in both (a) wire-frame and (b) space-filling representations.

(80)

Figure 2. X-ray structure of $\Delta\Delta\Delta\Delta$ -6.

Left: A schematic view of the $[G \subset M_4L_6]$ (G=guest) supramolecular tetrahedral assembly, looking down the C_3 -axis. For clarity only one ligand is drawn, the other ligands are represented as sticks. Middle: CAChe model of $[NPr_4 \subset Fe_4L_6]^{11-}$, the guest molecule is shown in a space-filling view, the hydrogen atoms are omitted for clarity. Right: The same CAChe model as in the middle, now with host and guest in space filling view. This representation shows that the guest molecule is not exposed to the assembly exterior, but rather is tightly surrounded by the host.

Supramolecular Catalysis of a Unimolecular Transformation: Aza-Cope Rearrangement within a Self-Assembled Host

Top: A general reaction scheme of the 3-aza-Cope rearrangement. Starting from the enammonium cation **A**, [3,3] sigmatropic rearrangement leads to iminium cation **B**, which then hydrolyzes to the aldehyde, **C**. Bottom: ¹H NMR spectrum of $[\mathbf{1} \subset Ga_4L_6]^{11-}$ ($\mathbf{1}: \mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3=H$). The observed upfield shift of guest resonance signals illustrates the close contact between host and guest.

Table 1. Rate constants for free (k_{free}) and encapsulated (k_{encaps}) rearrangements (measured at 50 °C) and their acceleration factors.

Supramolecular Catalysis of a Unimolecular Transformation: Aza-Cope Rearrangement within a Self-Assembled Host

The 2D NOESY spectrum of $[3 \subset Ga_4L_6]^{11-}$ in a D₂O/MeOD mixture (70:30) recorded at -10 °C, mixing time 100 ms. Indicated in red are selected NOEs. The correlation between Me and Me at the two distal ends of the molecule demonstrates the cavity's enforcement of a compressed and folded guest conformation. H_n=naphthyl protons, H_c=catechol protons.

Supramolecular Catalysis of a Unimolecular Transformation: Aza-Cope Rearrangement within a Self-Assembled Host

Proposed catalytic cycle for the cationic 3-aza-Cope rearrangement, see text for details.

Acid Catalysis in Basic Solution: A Supramolecular Host Promotes Orthoformate Hydrolysis Michael D. Pluth, *et al.*

Michael D. Pluth, *et al.* Science **316**, 85 (2007); DOI: 10.1126/science.1138748

Fig. 1. (Left) A schematic representation of the host M_4L_6 assembly. Only one ligand is shown for clarity. (**Right**) A model of $[2-H^+ \subset 1]^{11-}$; hydrogen atoms on the host assembly are omitted for clarity.

Figure S1 ¹H 2D NOESY of [2-H⁺ ⊂ 1]¹¹⁻ in D₂O, 22 °C, with 100 ms mixing time. The

strong cross peaks between the naphthalene protons of 1 and the guest protons of 2-H⁺

show strong through-space correlation indicative of encapsulation.

spin H-P coupling constant $({}^{1}J_{\text{DP}}) = 75$ Hz. In H₂O, the undecoupled 31 P NMR spectrum showed a doublet (${}^{1}J_{\text{HP}} = 490$ Hz) corresponding to a one-bond P-H coupling that definitively establishes binding of a proton to phosphorus.

Fig. 2. (**A**) Reaction and substrate scope for orthoformate hydrolysis in the presence of catalytic **1.** Bu, butyl; Me, methyl; Pr, propyl. (**B** to **D**) All spectra taken with 50 equivalents (equiv.) of triethyl orthoformate with respect to **1** at pD = 11.0, 100 mM K₂CO₃, 22°C, in D₂O. (B) Initial spectrum. (C) Spectrum after 60 min. (D) Spectrum of **1** with 2 equiv. NEt₄⁺ after 60 min. Molecule **1** represented by **■**; HC(OEt)₃, **▼**; NEt₄⁺, **●** for exterior and \bigcirc for interior, and product HCO₂H, **▲**.

reached. Although the pK_a of **3**-H⁻ is 10.8 in free solution, stabilization of the protonated form by **1**, which can be calculated as the product of the pK_a and the binding constant of the protonated amine, shifts the effective basicity to 14.3 (*32*). This dramatic shift highlights the substantial stabilization of the protonated species over the neutral species upon encapsulation in the highly charged cavity (*33*).

Fig. 3. Mechanism for catalytic orthoformate hydrolysis in the presence of catalytic 1.

ChemComm

Chemical Communications

www.rsc.org/chemcomm

Volume 49 | Number 25 | 28 March 2013 | Pages 2465-2580

White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule

Prasenjit Mal,¹ Boris Breiner,¹ Kari Rissanen,² Jonathan R. Nitschke^{1*} SCIENCE VOL 324 26 JUNE 2009

1697

Figure S1. ¹H NMR spectra in D₂O of cage **1** (top), of P₄ \subset **1** (middle), and ³¹P NMR spectrum of P₄ \subset **1** (bottom).

Fig. 2 Crystal structure of P4⊂1.

Fig. 3 Extraction of P4 from 1 by n-heptane is not possible, whereas replacing P4 with another suitable guest (benzene or cyclohexane) results in the facile removal of P4 into the organic solvent.

 $\begin{array}{l} \mathsf{Y}=\mathsf{CH}_2\\ \mathsf{Y}=\mathsf{C}(\mathsf{OH})_2 \end{array}$

