
Operator Overloading

Exercise from last lesson

Implement a "Complex" class, which represents complex numbers.
The data members are the real and imaginary part of the number.

There must be a constructor composed by 2 double.

Overload the operators +, -, *, =, ==,! =, <<, >>

N. B .: the functions that overload the operators << and >> must be
declares as "friend" function

 3

friend Functions and friend Classes

• A friend function of one class is defined outside class’s scope but has
the right to access non-public members (private and protected)

• Friend functions are important for the performance of the code
• To declaring a friend function of one class, the keyword friend must

precede function prototype

• To declare class ClassTwo as friends of class ClassOne, in the
declaration one has to write:

friend class ClassTwo;

In the definition of ClassOne
• Properties of friendship:

• Friendship granted, not taken : In order to be that class B is friend of
Class A, class A must explicitly declare that class B is friend

• Friendship is Not symmetric: if class B friend of class A, class A
not necessarily friend of class B

• Friendship is Not transitive: if class A friend of class B, class B is
friend of class C, class A not necessarily friend of class C

 4

1 // Fig. 7.11: fig07_11.cpp

2 // Friends can access private members of a class.

3 #include <iostream>

4
5 using std::cout;

6 using std::endl;

7

8 // Count class definition

9 class Count {
10 friend void setX(Count &, int); // friend declaration

11

12 public:

13

14 // constructor
15 Count()

16 : x(0) // initialize x to 0

17 {

18 // empty body

19
20 } // end Count constructor

21

Precede function prototype with keyword friend.

friend Functions and friend Classes

Friendfunction.cpp

 5

22 // output x

23 void print() const

24 {

25 cout << x << endl;
26

27 } // end function print

28

29 private:

30 int x; // data member
31

32 }; // end class Count

33

34 // function setX can modify private data of Count

35 // because setX is declared as a friend of Count
36 void setX(Count &c, int val)

37 {

38 c.x = val; // legal: setX is a friend of Count

39

40 } // end function setX
41

Pass Count object since C-style, standalone function

Since setX friend of Count, can access
and modify private data member x.

friend Functions and friend Classes

Friendfunction.cpp

 6

42 int main()

43 {

44 Count counter; // create Count object

45

46 cout << "counter.x after instantiation: ";

47 counter.print();

48

49 setX(counter, 8); // set x with a friend

50

51 cout << "counter.x after call to setX friend function: ";

52 counter.print();

53

54 return 0;

55

56 } // end main

counter.x after instantiation: 0

counter.x after call to setX friend function: 8

Use friend function to access and
modify private data member x.

friend Functions and friend Classes

Friendfunction.cpp

 7

1 // Fig. 7.12: fig07_12.cpp

2 // Non-friend/non-member functions cannot access

3 // private data of a class.

4 #include <iostream>

5

6 using std::cout;

7 using std::endl;

8

9 // Count class definition

10 // (note that there is no friendship declaration)

11 class Count {

12

13 public:

14

15 // constructor

16 Count()

17 : x(0) // initialize x to 0

18 {

19 // empty body

20

21 } // end Count constructor

22

friend Functions and friend Classes

 8

23 // output x
24 void print() const
25 {
26 cout << x << endl;
27
28 } // end function print
29
30 private:
31 int x; // data member
32
33 }; // end class Count
34
35 // function tries to modify private data of Count,
36 // but cannot because function is not a friend of Count
37 void cannotSetX(Count &c, int val)
38 {
39 c.x = val; // ERROR: cannot access private member in Count
40
41 } // end function cannotSetX
42
43 int main()
44 {
45 Count counter; // create Count object
46
47 cannotSetX(counter, 3); // cannotSetX is not a friend
48
49 return 0;
50
51 } // end main

Attempting to modify private data member
from non-friend function results in error.

friend Functions and friend Classes

 9

23 // output x
24 void print() const
25 {
26 cout << x << endl;
27
28 } // end function print
29
30 private:
31 int x; // data member
32
33 }; // end class Count
34
35 // function tries to modify private data of Count,
36 // but cannot because function is not a friend of Count
37 void cannotSetX(Count &c, int val)
38 {
39 c.x = val; // ERROR: cannot access private member in Count
40
41 } // end function cannotSetX
42
43 int main()
44 {
45 Count counter; // create Count object
46
47 cannotSetX(counter, 3); // cannotSetX is not a friend
48
49 return 0;
50
51 } // end main

friend Functions and friend Classes

Notfriendfunctions.cpp: In function ‘void cannotSetX(Count&, int)’:

Notfriendfunctions.cpp:39:5: error: ‘int Count::x’ is private within this context

 c.x = val; // ERROR: cannot access private member in Count

 ^

Notfriendfunctions.cpp:31:7: note: declared private here

 int x; // data member

Attempting to modify private data member
from non-friend function results in error.

 10

Operator Functions As Class Members Vs. As Friend Functions

● Operator functions
● Member functions

‒ Use this keyword to implicitly get argument

‒ Gets left operand for binary operators (like +)

‒ Leftmost object must be of same class as operator
● Non member functions

‒ Need parameters for both operands

‒ Can have object of different class than operator

‒ Must be a friend to access private or protected data

● Called when

‒ Left operand of binary operator of same class

‒ Single operand of unitary operator of same class

 11

Operator Functions As Class Members Vs. As Friend Functions

● Operator functions
● Member functions

‒ Use this keyword to implicitly get argument

‒ Gets left operand for binary operators (like +)

‒ Leftmost object must be of same class as operator
● Non member functions:

‒ If the leftmost object have be of a different type wrt to the left type,
the function must be defined a d non-member function

‒ Can have object of different class than operator

‒ Need parameters for both operands

‒ Must be a friend to access private or protected data

● Called when

‒ Left operand of binary operator of same class

‒ Single operand of unitary operator of same class

 12

Operator Functions As Class Members Vs. As Friend Functions

● Overloaded << operator
● Left operand of type ostream &

● Such as cout object in cout << classObject → it has to be defined as a non-
member function

● Similarly, overloaded >> needs istream &
● cin >> classObject

● Thus, both must be non-member functions

● To access to private data member, the >> and << operator
overloading have to be declared as friend function

Solution - 1

// Definizione Classe Complessi

#ifndef COMPLESSI_H
#define COMPLESSI_H
#include <iostream>

using std::ostream;
using std::istream;

class Complessi {
 friend ostream &operator<<(ostream &, const Complessi &);
 friend istream &operator>>(istream &, Complessi &);

public:
 Complessi(double = 0.0, double = 0.0); // constructor

 Complessi operator+(const Complessi&) const; // addition
 Complessi operator-(const Complessi&) const; // subtraction
 Complessi operator*(const Complessi&) const; // multiplication
 Complessi& operator=(const Complessi&); // assignment
 bool operator==(const Complessi&) const;
 bool operator!=(const Complessi&) const;

private:
 double reale; // parte reale
 double immaginaria; // parte immaginaria

}; // end classe Complessi

#endif // COMPLESSI_H

Overloaded operators

Solution - 2

#include "Complessi.h"
#include <iostream>

using std::ostream;
using std::istream;

// Constructor
Complessi::Complessi(double r, double i)
{
 reale = r;
 immaginaria = i;

} // end constructor

Solution - 3
// Overloaded addition operator
Complessi Complessi::operator+(const Complessi &operand2) const
{
 Complessi sum;

 sum.reale = reale + operand2.reale;
 sum.immaginaria = immaginaria + operand2.immaginaria;
 return sum;

} // end function operator+

// Overloaded subtraction operator
Complessi Complessi::operator-(const Complessi &operand2) const
{
 Complessi diff;

 diff.reale = reale - operand2.reale;
 diff.immaginaria = immaginaria - operand2.immaginaria;
 return diff;

} // end function operator-
// Overloaded multiplication operator
Complessi Complessi::operator*(const Complessi &operand2) const
{
 Complessi times;

 times.reale = reale * operand2.reale + immaginaria *
 operand2.immaginaria;
 times.immaginaria = reale * operand2.immaginaria +
 immaginaria * operand2.reale;
 return times;

} // end function operator*

Solution - 4

// Overloaded = operator
Complessi& Complessi::operator=(const Complessi &right)
{
 reale = right.reale;
 immaginaria = right.immaginaria;
 return *this; // enables concatenation

} // end function operator=

// Overloaded == operator
bool Complessi::operator==(const Complessi &right) const
{
 return right.reale == reale && right.immaginaria ==
 immaginaria ? true : false;

} // end function operator==

// Overloaded != operator
bool Complessi::operator!=(const Complessi &right) const
{
 return !(*this == right);

} // end function operator!=

Solution - 5

// Overloaded << operator
ostream& operator<<(ostream &output, const Complessi &complessi)
{
 output << complessi.reale << " + " << complessi.immaginaria << 'i';
 return output;

} // end function operator<<

// Overloaded >> operator
istream& operator>>(istream &input, Complessi &complessi)
{
 input >> complessi.reale;
 input.ignore(3); // skip spaces and +
 input >> complessi.immaginaria;
 input.ignore(2);

 return input;

} // end function operator>>

Composition and Inheritance

19

Objectives

● Often the usage of exiting classes is used to define new
classes.

● This can be done using two methods:
● Composition

● Inheritance

20

Composition

● Composition (also called containment or aggregation) of classes
refers to the use of one or more classes within the definition of
another class.

● When a data member of the new class is an object of another class,
we say that the new class is a composite of the other objects.

 21

1 // Fig. 7.6: date1.h

2 // Date class definition.

3 // Member functions defined in date1.cpp

4 #ifndef DATE1_H

5 #define DATE1_H

6

7 class Date {

8

9 public:

10 Date(int = 1, int = 1, int = 1900); // default constructor

11 void print() const; // print date in month/day/year format

12 ~Date(); // provided to confirm destruction order

13

14 private:

15 int month; // 1-12 (January-December)

16 int day; // 1-31 based on month

17 int year; // any year

18

19 // utility function to test proper day for month and year

20 int checkDay(int) const;

21

22 }; // end class Date

23

24 #endif

Note no constructor with parameter of type Date.
Recall compiler provides default copy constructor.

Composition: Objects as Members of Classes

date1.h

 22

1 // Fig. 7.7: date1.cpp

2 // Member-function definitions for class Date.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 // include Date class definition from date1.h

9 #include "date1.h"

10

11 // constructor confirms proper value for month; calls

12 // utility function checkDay to confirm proper value for day

13 Date::Date(int mn, int dy, int yr)

14 {

15 if (mn > 0 && mn <= 12) // validate the month

16 month = mn;

17

18 else { // invalid month set to 1

19 month = 1;

20 cout << "Month " << mn << " invalid. Set to month 1.\n";

21 }

22

23 year = yr; // should validate yr

24 day = checkDay(dy); // validate the day

25

Composition: Objects as Members of Classes

date1.cpp

 23

26 // output Date object to show when its constructor is called

27 cout << "Date object constructor for date ";

28 print();

29 cout << endl;

30

31 } // end Date constructor

32

33 // print Date object in form month/day/year

34 void Date::print() const

35 {

36 cout << month << '/' << day << '/' << year;

37

38 } // end function print

39

40 // output Date object to show when its destructor is called

41 Date::~Date()

42 {

43 cout << "Date object destructor for date ";

44 print();

45 cout << endl;

46

47 } // end destructor ~Date

48

Output to show timing of constructors

No arguments; each member function
contains implicit handle to object on which it
operates.

Output to show timing of destructors.

Composition: Objects as Members of Classes

date1.cpp

 24

49 // utility function to confirm proper day value based on

50 // month and year; handles leap years, too

51 int Date::checkDay(int testDay) const

52 {

53 static const int daysPerMonth[13] =

54 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

55

56 // determine whether testDay is valid for specified month

57 if (testDay > 0 && testDay <= daysPerMonth[month])

58 return testDay;

59

60 // February 29 check for leap year

61 if (month == 2 && testDay == 29 &&

62 (year % 400 == 0 ||

63 (year % 4 == 0 && year % 100 != 0)))

64 return testDay;

65

66 cout << "Day " << testDay << " invalid. Set to day 1.\n";

67

68 return 1; // leave object in consistent state if bad value

69

70 } // end function checkDay

Composition: Objects as Members of Classes

date1.cpp

 25

1 // Fig. 7.8: employee1.h
2 // Employee class definition.
3 // Member functions defined in employee1.cpp.
4 #ifndef EMPLOYEE1_H
5 #define EMPLOYEE1_H
6
7 // include Date class definition from date1.h
8 #include "date1.h"
9
10 class Employee {
11
12 public:
13 Employee(
14 const char *, const char *, const Date &, const Date &);
15
16 void print() const;
17 ~Employee(); // provided to confirm destruction order
18
19 private:
20 char firstName[25];
21 char lastName[25];
22 const Date birthDate; // composition: member object
23 const Date hireDate; // composition: member object
24
25 }; // end class Employee
26
27 #endif

Using composition; Employee object
contains Date objects as data members

Composition: Objects as Members of Classes

employee1.h

 26

1 // Fig. 7.9: employee1.cpp
2 // Member-function definitions for class Employee.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 #include <cstring> // strcpy and strlen prototypes
9
10 #include "employee1.h" // Employee class definition
11 #include "date1.h" // Date class definition
12
13 // constructor uses member initializer list to pass initializer
14 // values to constructors of member objects birthDate and
15 // hireDate [Note: This invokes the so-called "default copy
16 // constructor" which the C++ compiler provides implicitly.]
17 Employee::Employee(const char *first, const char *last,
18 const Date &dateOfBirth, const Date &dateOfHire)
19 : birthDate(dateOfBirth), // initialize birthDate
20 hireDate(dateOfHire) // initialize hireDate
21 {
22 // copy first into firstName and be sure that it fits
23 int length = strlen(first);
24 length = (length < 25 ? length : 24);
25 strncpy(firstName, first, length);
26 firstName[length] = '\0';
27
28 // copy last into lastName and be sure that it fits
29 length = strlen(last);
30 length = (length < 25 ? length : 24);
31 strncpy(lastName, last, length);
32 lastName[length] = '\0';
33
34 // output Employee object to show when constructor is called
35 cout << "Employee object constructor: "
36 << firstName << ' ' << lastName << endl;

Member initializer syntax to initialize Date data
members birthDate and hireDate; compiler
uses default copy constructor.

Output to show timing of constructors.

employee1.cpp

 27

38 } // end Employee constructor

39

40 // print Employee object

41 void Employee::print() const

42 {

43 cout << lastName << ", " << firstName << "\nHired: ";

44 hireDate.print();

45 cout << " Birth date: ";

46 birthDate.print();

47 cout << endl;

48

49 } // end function print

50

51 // output Employee object to show when its destructor is called

52 Employee::~Employee()

53 {

54 cout << "Employee object destructor: "

55 << lastName << ", " << firstName << endl;

56

57 } // end destructor ~Employee

Output to show timing of destructors.

Composition: Objects as Members of Classes

employee1.cpp

 28

1 // Fig. 7.10: fig07_10.cpp

2 // Demonstrating composition--an object with member objects.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 #include "employee1.h" // Employee class definition

9

10 int main()

11 {

12 Date birth(7, 24, 1949);

13 Date hire(3, 12, 1988);

14 Employee manager("Bob", "Jones", birth, hire);

15

16 cout << '\n';

17 manager.print();

18

19 cout << "\nTest Date constructor with invalid values:\n";

20 Date lastDayOff(14, 35, 1994); // invalid month and day

21 cout << endl;

22

23 return 0;

24

25 } // end main

Create Date objects to pass to Employee
constructor.

Composition: Objects as Members of Classes

useemployee1.cpp

 29

Date object constructor for date 7/24/1949

Date object constructor for date 3/12/1988

Employee object constructor: Bob Jones

Jones, Bob

Hired: 3/12/1988 Birth date: 7/24/1949

Test Date constructor with invalid values:

Month 14 invalid. Set to month 1.

Day 35 invalid. Set to day 1.

Date object constructor for date 1/1/1994

Date object destructor for date 1/1/1994

Employee object destructor: Jones, Bob

Date object destructor for date 3/12/1988

Date object destructor for date 7/24/1949

Date object destructor for date 3/12/1988

Date object destructor for date 7/24/1949

Note two additional Date objects
constructed; no output since default copy
constructor used.

Destructor for host object manager runs
before destructors for member objects
hireDate and birthDate.

Destructor for Employee’s member
object hireDate.

Destructor for Employee‘s member
object birthDate.

Destructor for Date object hire.

Destructor for Date object birth.

Composition: Objects as Members of Classes

useemployee1.cpp

30

Example: A Person Class

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class Person
{public:
 Person(string n="", string nat="U.S.A.", int s=1)
 : name(n), nationality(nat), sex(s) {}
 void printName () { cout << name; }
 void printNationality () { cout << nationality; }
private:
 string name, nationality;
 int sex;
};

int main()
{
 Person creator("Bjarne Stroustrup", "Denmark");
 cout << "The creator of C++ was ";
 creator.printName();
 cout << " who was born in ";
 creator.printNationality();
 cout << ".\n";
 return 0;
}

The creator of C++ was Bjarne Stroustrup who was born in Denmark

Person.{cpp,h}
UsePerson.cpp

31

Example: A Person Class

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class Person
{public:
 Person(string n="", string nat="U.S.A.", int s=1)
 : name(n), nationality(nat), sex(s) {}
 void printName () { cout << name; }
 void printNationality () { cout << nationality; }
private:
 string name, nationality;
 int sex;
};

int main()
{
 Person creator("Bjarne Stroustrup", "Denmark");
 cout << "The creator of C++ was ";
 creator.printName();
 cout << " who was born in ";
 creator.printNationality();
 cout << ".\n";
 return 0;
}

The creator of C++ was Bjarne Stroustrup who was born in Denmark

Person.cxx

Composition of the string class
with the Person class

32

Example a Date Class

#include <iostream>
#include <string>
using std::cout;
using std::cin;
using std::endl;
using std::istream;
using std::ostream;
using std::string;

class Date {
 friend istream& operator>>(istream&, Date&);
 friend ostream& operator<<(ostream&, const Date&);
public:
 Date(int m=0, int d=0, int y=0) : month(m), day(d), year(y) { }
 void setDate(int m, int d, int y) { month = m; day = d; year = y;}
private:
 int month, day, year;
};

istream& operator>>(istream& in, Date& x)
{in >> x.month >> x.day >> x.year;
 return in;
}
ostream& operator<<(ostream& out, const Date& x)
{static string monthName[13] = {"", "January", "February", "March",

 "April", "May","June", "July", "August",
 "September","October","November","December"};

 out << monthName[x.month] << " " << x.day << ", " << x.year;
 return out;
}

Overload of the << and >> operators

Date.{h,cpp}

33

Example a Date Class

int main()
{Date peace(11,11,1918);
 cout << "World War I ended on " << peace << ".\n";
 peace.setDate(8,14,1945);
 cout << "World War II ended on " << peace << ".\n";
 cout << "Enter month, day, and year: ";
 Date date;
 cin >> date;
 cout << "The date is "<< date << ".\n";
}

World War I ended on November 11, 1918.
World War II ended on August 14, 1945.
Enter month, day, and year: 10 10 2010
The date is October 10, 2010.

useDate.cpp

34

Composition of Date class with Person Class

#include <iostream>
using std::cout;
using std::endl;

#include <string>
using std::string;

#include "Date.h"

class Person1
{public:
 Person1(string n="", string nat="U.S.A.", int s=1)
 : name(n), nationality(nat), sex(s) {}
 void setDOB(int m, int d, int y){dob.setDate(m,d,y);}
 void setDOD(int m, int d, int y){dod.setDate(m,d,y);}
 void printName () { cout << name; }
 void printNationality () { cout << nationality; }
 void printDOB(){cout<<dob;}
 void printDOD(){cout<<dod;}

private:
 string name, nationality;
 Date dob, dod;
 int sex;
};

Note that a member function
of one class is used to
define member functions of
the composed class

Person1.{cpp,h)

35

Composition of Date class with Person Class

int main()
{
 Person1 author("Thomas Jefferson", "USA", 1);
 author.setDOB(4,13,1743);
 author.setDOD(7,4,1826);
 cout << "The author of the Declaration of Independence is ";
 author.printName();
 cout << ".\n He was born in ";
 author.printNationality();
 cout << " on ";
 author.printDOB();
 cout<<" and died on ";
 author.printDOD();
 cout<<".\n"<<endl;
 return 0;
}

The author of the Declaration of Independence is Thomas Jefferson.
He was born in USA on April 13, 1743 and died on July 4, 1826.

usePerson1.cpp

36

Composition

● Composition is often referred to as a “has-a” relationship because
the objects of the composite class “have” objects of the composed
class as members.

● Each object of the Person class “has a” name and a

nationality which are string objects.

37

Inheritance

● Another way to reuse exiting software to create a new one is
by means of inheritance (also called specialization or
derivation)

● This is often referred as an “is-a” relationship because every
object of the class being defined “is” also an object of the
inherited class.

● The common syntax for the deriving class Y from class X is

class Y : public X {

// ….

};

38

Inheritance

39

Inheritance

● Another way to reuse exiting software to create a new one is
by means of inheritance (also called specialization or
derivation)

● This is often referred as an “is-a” relationship because every
object of the class being defined “is” also an object of the
inherited class.

● The common syntax for the deriving class Y from class X is

class Y : public X {

// ….

};

40

Inheritance

● Another way to reuse exiting software to create a new one is
by means of inheritance (also called specialization or
derivation)

● This is often referred as an “is-a” relationship because every
object of the class being defined “is” also an object of the
inherited class.

● The common syntax for the deriving class Y from class X is

class Y : public X {

// ….

};

Base class (or superclass)Derived class (or subclass)

public specify public inheritance →
public members of the base class are
public members of the derived class

41

Inheritance

● Inheritance
● Single Inheritance : Class inherits from one base class

● Multiple Inheritance: Class inherits from multiple base classes

● Three types of inheritance:

– public: Derived objects are accessible by the base class objects

– private: Derived objects are inaccessible by the base class

– protected: Derived classes and friends can access protected members of
the base class

42

Base and Derived Classes

● Implementation of public inheritance

class CommissionWorker : public Employee {
 ...
};

Class CommissionWorker inherits from class Employee

– friend functions not inherited

– private members of base class not accessible from derived class

43

Deriving a Student Class from Person1 Class

// Definizione Classe STUDENT

#ifndef STUDENT_H
#define STUDENT_H
#include <iostream>

using std::ostream;
using std::istream;

#include "Person1.h"
#include "Date.h"

class Student : public Person1
{
 public:
 Student(string n="", string id="", int s=1);
 void setDOM(int m, int d, int y){dom.setDate(m,d,y);};
 void printDOM();
 private:
 string id; //student identification
 Date dom; //student date of matriculation
 int credits; //course credit
 float gpa; // grade-point average
 //name and sex are implemented in Person
};

#endif // STUDENT_H

44

Deriving a Student Class from Person1 Class

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

#include "Student.h"

Student::Student(string n, string id, int s)
 : Person1(n,"Italy",s), id(id), credits(0) {}

void Student::setDOM(int m, int d, int y)
{
 dom.setDate(m,d,y);
}
void Student::printDOM(){
 cout<<dom;
}

Note how initialization works

45

Deriving a Student Class from Person1 Class

#include <iostream>
using std::cout;
using std::endl;

#include <string>
using std::string;

// #include "Date.h"
// #include "Person1.h"
#include "Student.h"

int main()
{
 Student x("Anna Rossi", "123456789K" ,0);
 x.setDOB(4,13,1996);
 x.setDOM(7,9,2016);
 x.printName();
 cout<<" Born on ";
 x.printDOB();
 cout<<" Matriculated on ";
 x.printDOM();
 cout<<".\n"<<endl;
 return 0;
}

Anna Rossi Born on April 13, 1996 Matriculated on July 9, 2016.

46

protected class members

● The Student class in has a significant problem: it cannot directly
access the private data members of its Person1 superclass:
name, nationality, DOB , DOD , and sex.

● The lack of access on the first four of these is not serious because
these can be written and read through the Person class’s
constructor and public access functions.

● However, there is no way to write or read a student's sex.

● One way to overcome this problem would be to make sex a data
member of the Student class. But that is unnatural: sex is an
attribute that all Person objects have, not just Students.

● A better solution is to change the private access specifier to
protected in the Person class.

● That will allow access to these data members from derived classes.

47

Person class with protected Data Members

// Definizione Classe PERSON2

#ifndef PERSON2_H
#define PERSON2_H
#include <iostream>
#include "Date.h"

using std::ostream;
using std::istream;

class Person2
{
 public:
 Person2(string n="", string nat="U.S.A.", int s=1);
 void setDOB(int m, int d, int y);
 void setDOD(int m, int d, int y);
 void printName() ;
 void printNationality();
 void printDOB();
 void printDOD();
 protected:
 string name, nationality;
 Date dob, dod;
 int sex;
};

#endif // PERSON2_H

Person2.cpp

48

Person class with protected Data Members

// Definizione Classe STUDENT

#ifndef STUDENT_H
#define STUDENT_H
#include <iostream>

using std::ostream;
using std::istream;

#include "Person2.h"
#include "Date.h"

class Student : public Person2
{
 public:
 Student(string n="", string id="", int s=1);
 void setDOM(int m, int d, int y);
 void printDOM();
 void printSex();
 protected:
 string id; //student identification
 Date dom; //student date of matriculation
 int credits; //course credit
 float gpa; // grade-point average
 //name and sex are implemented in Person
};

#endif // STUDENT_H

Student.{h,cpp}

49

Person class with protected Data Members

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

#include "Student.h"

Student::Student(string n, string id, int s)
 : Person2(n,"Italy",s), id(id), credits(0) {}

void Student::setDOM(int m, int d, int y)
{
 dom.setDate(m,d,y);
}
void Student::printDOM(){
 cout<<dom;
}
void Student::printSex(){
 cout<<(sex? "male":"female");
}

useStudent1.cpp

50

Person class with protected Data Members

#include <iostream>
using std::cout;
using std::endl;

#include <string>
using std::string;

// #include "Date.h"
// #include "Person1.h"
#include "Student.h"

int main()
{
 Student x("Anna Rossi", "123456789K" ,0);
 x.setDOB(4,13,1996);
 x.setDOM(7,9,2016);
 x.printName();
 cout<<"\nSex ";
 x.printSex();
 cout<<" Born on ";
 x.printDOB();
 cout<<" Matriculated on ";
 x.printDOM();
 cout<<".\n"<<endl;
 return 0;
}

Anna Rossi
Sex female Born on April 13, 1996 Matriculated on July 9, 2016.

51

protected Data Members

● The protected access category is a balance between private and
public categories:

● private members are accessible only from within the class itself and its
friend classes;

● protected members are accessible from within the class itself, its friend
classes, its derived classes, and their friend classes;

● public members are accessible from anywhere within the file.

● In general, protected is used instead of private whenever it
is anticipated that a sub-class might be defined for the class.

● A subclass inherits all the public and protected members of its base
class. This means that, from the point of view of the subclass, the public
and protected members of its base class appear as though they actually
were declared in the subclass.

52

protected Data Members

class X
{
public:
 int a;
protected:
 int b;
private:
 int c;
};

class Y : public X
{
public:
 int d;
};

X x;
Y y;

a

b

c

a

d

b

X Y

x ypublic

protected

private

53

Overriding and dominating inherited members

● If Y is a subclass of X, then Y objects inherit all the public and protected
member data and member functions of X .

● In some cases, you might want to define a local version of an inherited
member. For example, if a is a data member of X and if Y is a subclass of
X, then you could also define a separate data member named a for Y.

● In this case, the a defined in Y dominates the a defined in X. Then a
reference y.a for an object y of class Y will access the a defined in Y
instead of the a defined in X.

● To access the a defined in X, one would use y.x::a.

● The same rule applies to member functions: if a function named f() is
defined in X and another function named f() with the same signature is
defined in Y, then Y.f() invokes the latter function, and y.x::f()
invokes the former.

● In this case, the local function y.f() overrides the f() function defined
in X unless it is invoked as y.x::f().

54

Overriding and dominating inherited members

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class X {
public:
 void f() {cout<<"X::f() executing\n";}
 int a;
};
class Y : public X {
public:
 void f() { cout << "Y::f() executing\n";}
 int a;
};

int main(){
 X x;
 x.a = 22;
 x.f();
 cout << "x.a = "<<x.a<<endl;
 Y y;
 y.a = 44; //assign 44 to the a defined in Y
 y.X::a = 66; //assign 66 to the a defined in X
 y.f(); //invokes the f() defined in X
 y.X::f(); //invokes the f() defined in Y
 cout << "y.a = "<<y.a<<endl;
 cout << "y.X::a = " <<y.X::a << endl;
 X z = y;
 cout << "z.a = : "<< z.a << endl;
}

X::f() executing
x.a = 22
Y::f() executing
X::f() executing
y.a = 44
y.X::a = 66
z.a = : 66

X

X

Y

x

y

z

a

a

X::a

a

22

66

44

66

DominatingOverriding.cpp

55

virtual functions and polymorphism

● One of the most powerful features of C++ is that it allows objects of
different types to respond differently to the same function call.

● This is called polymorphism and it is achieved by means of
virtual functions.

● Polymorphism is rendered possible by the fact that a pointer to a
base class instance may also point to any subclass instance

class X
{ //
};

class Y : public X // Y is a subclass of X
{//
};

int main(){
 X* p; // p is a pointer to object of class X
 Y y;
 p = &y; // p can also point to object of subclass Y
}

56

virtual functions and polymorphism

● If p has type X* (“pointer to type x”), then p can also point to any
object whose type is a subclass of X. However, even when p is
pointing to an instance of a subclass Y, its type is still X*.

● An expression like p→f() would invoke the function f() defined
in the base class.

● Recall that p→f() is an alternate notation for (*p).f()

● This invokes the member function f() of the object to which p
points.

● p→f() will always execute x::f() because p had type X* .

● The fact that p happens to be pointing at that moment to an
instance of subclass Y is irrelevant; it’s the statically defined type
X* of p that normally determines its behavior.

57

virtual functions and polymorphism

#include <iostream>
#include <string>
using std::cout;
using std::cin;
using std::endl;
using std::string;

class X {
public:
 void f() {cout<<"X::f() executing\n";}
};
class Y : public X {
public:
 void f() { cout << "Y::f() executing\n";}
};

int main(){
 X x;
 Y y;
 X *p = &x; // invokes X::f() because p has type X*
 p->f();
 p = &y; // invokes X::f() because p has type X*
 p->f();

}

X::f() executing
X::f() executing

virtualfunction.cpp
Two function calls p→f() are made. Both calls invoke the same version of
f() that is defined in the base class X because p is declared to be a pointer
to X objects. Having p point to y has no effect on the second call p→f() .

58

virtual functions and polymorphism

#include <iostream>
#include <string>
using std::cout;
using std::cin;
using std::endl;
using std::string;

class X {
public:
 virtual void f() {cout<<"X::f() executing\n";}
};
class Y : public X {
public:
 void f() { cout << "Y::f() executing\n";}
};

int main(){
 X x;
 Y y;
 X *p = &x; // invokes X::f() because p has type X*
 p->f();
 p = &y; // invokes Y::f()
 p->f();

}

X::f() executing
Y::f() executing

virtualfunction1.cpp

This example illustrates polymorphism:
the same call p→f() invokes different
functions. The function is selected
according to which class of object p
points to. This is called dynamic
binding because the association (i.e.,
binding) of the call to the actual code to
be executed is deferred until run time.
The rule that the pointer’s statically
defined type determines which member
function gets invoked is overruled by
declaring the member function
virtual.

59

virtual functions and polymorphism

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class Person
{public:
 Person(string n=""): name(n) {}
 void print () { cout << "My name is: "<<name<<endl; }
protected:
 string name;
};

class Student : public Person
{public:
 Student(string n="", float g = 0): Person(n),gpa(g) {}
 void print () { cout << "My name is: "<<name<<" and my gpa is:
"<<gpa<< endl; }
private:
 float gpa;
};

class Professor : public Person
{public:
 Professor(string n="", int p = 0): Person(n),publs(p) {}
 void print () { cout << "My name is: "<<name<<" and I have: "<<publs<<
" publications "<<endl; }
private:
 float publs;
};

Polymorphism.cpp

60

virtual functions and polymorphism

int main()
{
 Person *p;
 Person x("Bob");
 p = &x;
 p->print();
 Student y("Tom",28.8);
 p = &y;
 p->print();
 Professor z("Ann",52);
 p = &z;
 p->print();
 return 0;
}

Polymorphism.cpp

My name is: Bob
My name is: Tom
My name is: Ann

The print() function defined in the base class is not virtual. So the call
p→print() always invokes that same base class function
Person::print() because p has type
Person*. The pointer p is statically bound to that base class function at
compile time.

61

virtual functions and polymorphism

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class Person
{public:
 Person(string n=""): name(n) {}
 virtual void print () { cout << "My name is: "<<name<<endl; }
protected:
 string name;
};

class Student : public Person
{public:
 Student(string n="", float g = 0): Person(n),gpa(g) {}
 void print () { cout << "My name is: "<<name<<" and my gpa is:
"<<gpa<< endl; }
private:
 float gpa;
};

class Professor : public Person
{public:
 Professor(string n="", int p = 0): Person(n),publs(p) {}
 void print () { cout << "My name is: "<<name<<" and I have: "<<publs<<
" publications "<<endl; }
private:
 float publs;
};

Polymorphism.cpp

62

virtual functions and polymorphism

int main()
{
 Person *p;
 Person x("Bob");
 p = &x;
 p->print();
 Student y("Tom",28.8);
 p = &y;
 p->print();
 Professor z("Ann",52);
 p = &z;
 p->print();
 return 0;
}

Polymorphism.cpp

My name is: Bob
My name is: Tom and my gpa is: 28.8
My name is: Ann and I have: 52 publications

Now the pointer p is dynamically bound to the print() function of
whatever object it points to. The call p→print() is polymorphic because
its meaning changes according to the circumstance

63

Esercitazione 9

Esercizio 1

Implement a Cerchio class that inherits from the Punto class.

An object of the Punto class will be the center of the circle. For the Punto class,
implement two get functions (one for the x and one for the y coordinates) and one set
function (i.e. you set x and y with a single function).

For the Cerchio class implement the functions SetRadius() and GetRadius() and
GetArea().

Start from the Exercise6 in Esercitazione7 for the implementation of the Punto class

Example of execution:

./cerchio

Center and Radius

x: 1 y: 1 r: 4

New Center Coordinates [3, 2]

Area : 50.24

	Slide 1
	Slide 2
	7.4 friend Functions and friend Classes
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	8.4 Operator Functions As Class Members Vs. As Friend Functions
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Objectives
	Slide 20
	date1.h (1 of 1)
	date1.cpp (1 of 3)
	date1.cpp (2 of 3)
	date1.cpp (3 of 3)
	employee1.h (1 of 2)
	employee1.h (2 of 2) employee1.cpp (1 of 3)
	employee1.cpp (3 of 3)
	fig07_10.cpp (1 of 1)
	fig07_10.cpp output (1 of 1)
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	19.1 Introduction
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

