
Simulations with ROOT

Thanks to Prof. Massimo Masera for the next slides

2

Monte Carlo method

● A technique of numerical analysis that uses random sampling to
simulate the real-world phenomena

● Applications:
● Particle physics

● Quantum field theory

● Astrophysics

● Molecular modeling

● Semiconductor devices

● Light transport calculations

● Traffic flow simulations

● Environmental sciences

● Financial market simulations

● Optimization problems

● ...

What is Monte Carlo Method?

● A method to search for solutions to mathematical problem using a statistical
sampling with random numbers.

● This method was developed by Stanislaw Ulam while he committed the
hydrogen bomb project at Los Alamos Laboratory after Word War II.

● Historical example of the MC method is Buffon’s needle
● Throw a needle randomly on a sheet on which parallel lines with an equal

distance are drawn.

● Counts the number of throwing which makes the needle crossing the
parallel lines.

● You can get π by random throws.
● An other example one is Laplace’s method of calculating π (1886)

● Area of the square = 4
● Area of the circle = π
● Probability of random points inside the circle = π / 4
● Random points : N
● Random points inside circle : Nc
● π ~ 4 Nc / N

4

Monte Carlo methods for radiation transport

● Fermi (1930): random method to calculate the properties of the
newly discovered neutron

● Manhattan project (40’s): simulations during the initial
development of thermonuclear weapons. von Neumann and Ulam
coined the term “Monte Carlo”

● Metropolis (1948) first actual Monte Carlo calculations using a
computer (ENIAC)

● Berger (1963): first complete coupled electron-photon transport
code that became known as ETRAN

● Exponential growth since the 1980’s with the availability of digital

computers

5

Monte Carlo technique

● What is a Random Number?
● Is e.g. 3 a random number?
● A sequence of random numbers is a set of numbers

that have nothing to do with the other numbers in
the sequence

● General procedure for “random” generation:
● A sequence of m random numbers with uniform

distribution in the [0,1] interval is extracted.
● This sequence is used to produce a second sequence

distributed according to a generic f(x), which is the
pool of simulated data

6

Pseudo-Random numbers

● The sequence is reproducible, because the algorithm
for the generation is deterministic.

● General characteristic of a random generator:
● Statistical independence
● “Long” repetition period
● The sequence looks random, when indeed it is not

7

Random generators in ROOT

Are implemented in the TRandom class: fast generator with a short (109)
period, based of the linear congruential method.
● TRandom1: inherits from TRandom and implements RANLUX
● TRandom2: inherits from TRandom has a period of 1026, but only 332

bits word
● TRandom3:inherits from TRandom and implements the Mersenne-

Twister generator which has a period of 219937-1 (≈106002).

BADBAD SLOWSLOW FASTFAST GOOD
(default)

GOOD
(default)

8

Marsenne – Twister generator

● Mersenne Twister is, by far, today's most popular pseudorandom number generator. It is
used by every widely distributed mathematical software package. Mersenne Twister was
developed by professors Makoto Matsumoto and Takuji Nishimura of Hiroshima University
almost twenty years ago.

● Mersenne primes
● Mersenne primes are primes of the form (2^p) - 1 where p itself is prime. They are named after a French

friar who studied them in the early 17th century. We learn from Wikipedia that the largest known prime
number is the Mersenne prime with p equal to 57,885,161. The Mersenne Twister has p equal to 19937.
This is tiny as far as Mersenne primes go, but huge as far as random number generators are concerned.

● Algorithm
● The integer portion of the Mersenne twister algorithm does not involve any arithmetic in the sense of

addition, subtraction, multiplication or division. All the operations are shifts, and's, or's, and xor's. All the
elements of the state, except the last, are unsigned 32 bit random integers that form a cache which is
carefully generated upon startup.

● This generation is triggered by a seed, a single integer that initiates the whole process. The last element of
the state is a pointer into the cache. Each request for a random integer causes an element to be
withdrawn from the cache and the pointer incremented. The element is "tempered" with additional
logical operations to improve the randomness. When the pointer reaches the end of the cache, the cache
is refilled with another 623 elements.

● The algorithm is analyzed by investigating the group theoretic properties of the permutation and
tempering operations. The parameters have been chosen so that the period is the Mersenne prime
(2^19937)-1. This period is much longer than any other random number generator proposed before or
since and is one of the reasons for MT's popularity.

9

Marsenne – Twister generator

Why Marsenne – Twister?

https://blogs.mathworks.com/cleve/2015/04/17/random-number-generator-mersenne-twister/

https://blogs.mathworks.com/cleve/2015/04/17/random-number-generator-mersenne-twister/

10

• Let's consider a system initially having N0 unstable nuclei:
how does the number of nuclei vary with time?

Simulation of a radioactive decay of a single nucleus

• Radioactive decay is an intrinsic random process: the
probability of decay is constant (independent of the age
of nuclei)

• The probability that a nucleus decays in the time Δt is p :

11

Simulation of a radioactive decay of a single nucleus

● The algorithm which has to be implemented is the
following

LOOP from t=0 to T, step Dt

Reset the number of decayed nuclei (Ndec) in the current time bin

LOOP over each remaining parent nucleus (from 0 to Ntot)

Decide if the nucleus decays:
if(gRandom->Rndm()<aDt)
 increment the number of decayed nuclei in this time bin
endif

END loop over nuclei

Ntot=Ntot-Ndec

Plot Ntot vs t

END loop over time
END

12

Esercitazione 11 – Esercizio 1 (Decay.C)

• Write a macro to implement the algorithm shown in
the previous slide. Show the number of remaining
nuclei as a function of time for the two following
cases:

– N0=1000, α=0.01 s-1, Δt=1 s

– N0=50000, α=0.03 s-1, Δt=1 s

• Show the results in linear and logarithmic scale, for t
between 0 and 300 seconds

• Compare the results with the expected result

13

• In the next slide a possible solution implemented
using a macro in ROOT is shown

• The ROOT classes are used to generate random
numbers, to store information in the histograms and
for input/output operations

• The macro (decay.C) is composed by two functions

• It can be interpret or executed by CLANG (CINT)

Possible Solution

14

Header files, need to compile the macro

15 15

Functions are declared before their
implementation. Default values can be

Passed as “default” argument of the
function

16

Definition of the “exponential function”
That can be used in the TF1 definition

17

Result for:
N0=100,

 a=110-2 s-1

 Dt=1 s

Statistical fluctuation are very
important

Continuous line: expected
exponential.

Histogram: simulation result.

18

Risultato per:
N0=100,

 a=110-2 s-1

 Dt=1 s

Same parameters as before,
but different seed: the results
are different!

19

Result for:
N0=5000,

 a=310-2 s-1

 Dt=1 s

The importance of
fluctuations depends on the
number N of residual nuclei

20

• Let's assume the number of decays in time T is much
less than the number of parent nuclei. (i.e. let's
assume a constant probability to observe a decay)

• The time T can be break into m shorter intervals of
duration Δt (T/m):

• The probability to observe 1 decay in time Δt is :

How many decays in a fixed time interval T?

T

Δtt

p=βD t

21

● β = αN (Note that α is the decay probability)

● Δt must be small enough so that βΔt << 1

● The probability of observing n decays in time T is given by the
binomial distribution:

How many decays in a fixed time interval T?

p=βD t

P(n decays in m intervals)=(mn) p
n
(1−p)(m−n)

P=
m!

n ! (m−n)! (
βT
m)

n

(1−
βT
m)

(m−n)

22

● In the limit of large m (m→ ∞ and Δt → 0)

How many decays in a fixed time interval T?

(1−
βT
m)

m

→e−βT

(1−
βT
m)

−n

→1

m!
(m−n)!

→mn

P(n;βT)=
(βT)

n

n!
e−βT

=
μ
n e−μ

n !

Known as Poisson distribution

23

Esercitazione 11 – Esercizio 2 (poisson.C)

● Modify the program written for exercise 1 to simulate an
experiment that counts the number of decays observed in a time
interval, T .

● Allow the experiment to be repeated and represent in a histogram
the distribution of the number of decays for the following two
cases:

N0=1000, α=2.5x10-5 s-1, Δt=1 s, T = 100s

N0=1000, α=2.0x10-4 s-1, Δt=1 s, T = 100s

● Compare the distribution of n for 1000 experiments with Binomial
and Poisson distributions.

24

Result for: N0=1000, α=2.5X10-5, Δt=1 s, T=100 s

Poisson

binomial

25

Result for: N0=1000, α=2.5X10-4, Δt=1 s, T=100 s

Poisson

binomial

26

27

	Slide 1
	Slide 2
	What is Monte Carlo Method? - 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Simulazione decadimento radioattivo
	Slide 11
	Esercizio
	Soluzione
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

