I Simulations with ROOT

Thanks to Prof. Massimo Masera for the next slides



Monte Carlo method

e A technique of numerical analysis that uses random sampling to
simulate the real-world phenomena

e Applications:
e Particle physics
e Quantum field theory
e Astrophysics
e Molecular modeling
e Semiconductor devices
e Light transport calculations
e Traffic flow simulations
e Environmental sciences
e Financial market simulations

e Optimization problems




What is Monte Carlo Method?

» A method to search for solutions to mathematical problem using a statistical
sampling with random numbers.
e This method was developed by Stanislaw Ulam while he committed the
hydrogen bomb project at Los Alamos Laboratory after Word War |l.
 Historical example of the MC method is Buffon’s needle
e Throw a needle randomly on a sheet on which parallel lines with an equal
distance are drawn.

e Counts the number of throwing which makes the needle crossing the
parallel lines.

* You can get t by random throws.
* An other example one is Laplace’s method of calculating t (1886)
* Area of the square =4
* Area of the circle =1t
 Probability of random points inside the circle =/ 4
* Random points : N
* Random points inside circle : Nc
et~4Nc/N




Monte Carlo methods for radiation transport

e Fermi (1930): random method to calculate the properties of the
newly discovered neutron

e Manhattan project (40’s): simulations during the initial
development of thermonuclear weapons. von Neumann and Ulam
coined the term “Monte Carlo”

e Metropolis (1948) first actual Monte Carlo calculations using a
computer (ENIAC)

e Berger (1963): first complete coupled electron-photon transport
code that became known as ETRAN

e Exponential growth since the 1980’s with the availability of digital

computers




Monte Carlo technique

e \What is a Random Number?
*|se.g.3arandom number?

e A sequence of random numbers is a set of numbers
that have nothing to do with the other numbers in
the sequence

e General procedure for “random” generation:

e A sequence of m random numbers with uniform
distribution in the [0,1] interval is extracted.

* This sequence is used to produce a second sequence
distributed according to a generic f(x), which is the
pool of simulated data




Pseudo-Random numbers

e The sequence is reproducible, because the algorithm
for the generation is deterministic.

e General characteristic of a random generator:
e Statistical independence
e “Long” repetition period
e The sequence looks random, when indeed it is not




Random generators in ROOT

Are implemented in the TRandom class: fast generator with a short (109)
period, based of the linear congruential method.

* TRandom1: inherits from TRandom and implements RANLUX

* TRandom?2: inherits from TRandom has a period of 1026, but only 332
bits word

* TRandom3:inherits from TRandom and implements the Mersenne-
Twister generator which has a period of 219937-1 (=106002),

Here are the CPU times obtained using the four random classes on an Ixplus machine with an Intel 64 bit
architecture and compiled using gcc 3 .4:

TRandom TRandoml TRandom2 TRandom3
(ns/call) (ns/call) (ns/call) (ns/call)
Rndm () - - 6 9
Gaus () 31 161 35 42
Rannor () 116 216 126 130
Polisson (m=10) 147 1161 162 239
Polisson (m=10) UNURAN | 80 -/| |\- 294 89 A 99 A

GOOD
FAST
o o T o




Marsenne — Twister generator

e Mersenne Twister is, by far, today's most popular pseudorandom number generator. It is
used by every widely distributed mathematical software package. Mersenne Twister was
developed by professors Makoto Matsumoto and Takuji Nishimura of Hiroshima University
almost twenty years ago.

 Mersenne primes

» Mersenne primes are primes of the form (22p) - 1 where p itself is prime. They are named after a French
friar who studied them in the early 17th century. We learn from Wikipedia that the largest known prime
number is the Mersenne prime with p equal to 57,885,161. The Mersenne Twister has p equal to 19937.
This is tiny as far as Mersenne primes go, but huge as far as random number generators are concerned.

e Algorithm

e The integer portion of the Mersenne twister algorithm does not involve any arithmetic in the sense of
addition, subtraction, multiplication or division. All the operations are shifts, and's, or's, and xor's. All the
elements of the state, except the last, are unsigned 32 bit random integers that form a cache which is
carefully generated upon startup.

e This generation is triggered by a seed, a single integer that initiates the whole process. The last element of
the state is a pointer into the cache. Each request for a random integer causes an element to be
withdrawn from the cache and the pointer incremented. The element is "tempered" with additional
logical operations to improve the randomness. When the pointer reaches the end of the cache, the cache
is refilled with another 623 elements.

e The algorithm is analyzed by investigating the group theoretic properties of the permutation and
tempering operations. The parameters have been chosen so that the period is the Mersenne prime
(27019937)-1. This period is much longer than any other random number generator proposed before or
since and is one of the reasons for MT's popularity.




Marsenne — Twister generator

Why Marsenne — Twister?

Why the name?

Matsumoto explains how the name "Mersenne Twister” originated in the Mersenne Twister Home Page.

MT was firstly named "Primitive Twisted Generalized Feedback Shift
Register S5equence" by a historical reason.

Makoto: Prof. Knuth said in his letter "the name is mouthful."™

Takuji:z: ........

a few days later

Makoto: Hi, Takkun, How about "Mersenne Twister?" Since it uses Mersenne
primes, and it shows that it has its ancestor Twisted GFSR.

Takuji: Well.

Makoto: It sounds like a jet coaster, so it sounds guite fast, easy to
remember and easy to pronounce. Moreover, although it is a secret, it
hides in its name the initials of the inwventors.

Takuji: .......

Makoto: Come on, let's go with MT!

Takuji: ....well, affirmative.

Later, we got a letter from Prof. Knuth saying "it sounds a nice name." :-}

https://blogs.mathworks.com/cleve/2015/04/17/random-number-generator-mersenne-twister/



https://blogs.mathworks.com/cleve/2015/04/17/random-number-generator-mersenne-twister/

Simulation of a radioactive decay of a single nucleus

« Radioactive decay is an intrinsic random process: the
probability of decay is constant (independent of the age

of nuclei)
e The probability that a nucleus decays in the time Atis p :

p = aAt (per aAt < 1)

o Let's consider a system initially having N, unstable nuclei:
how does the number of nuclei vary with time?

-



Simulation of a radioactive decay of a single nucleus

e The algorithm which has to be implemented is the
following

LOOP from t=0 to T, step At

Reset the number of decayed nuclei (N,.) in the current time bin

dec

LOOP over each remaining parent nucleus (from 0 to N,,)

Decide if the nucleus decays:
if(gRandom->Rndm()<aAt)
increment the number of decayed nuclei in this time bin
endif
END loop over nuclei

Ntot= Ntot_ Ndec
Plot N, vs t

END loop over time
END




Esercitazione 11 — Esercizio 1 (Decay.C)

e Write a macro to implement the algorithm shown in
the previous slide. Show the number of remaining
nuclei as a function of time for the two following
cases:

- N,=1000, a=0.01s", At=1s
- N,=50000, a=0.03 s, At=1s

« Show the results in linear and logarithmic scale, for t
between 0 and 300 seconds

« Compare the results with the expected result

dN = —Nadt

¥

N = Nge_at




Possible Solution

* |n the next slide a possible solution implemented
using a macro in ROOT is shown

* The ROQT classes are used to generate random
numbers, to store information in the histograms and
for input/output operations

* The macro (decay.C) is composed by two functions
* |t can be interpret or executed by CLANG (CINT)




#if tdefined(_ CINT__} || defined(__ MAKECINT_ )
#include <TF1.h>

#include =<TFile.h=>

#include <THID.h>

#include <TMath.h=

#include <TRandom3.h=

#include =Riostream.h=

#endif

// Declare function
Double t exponential(Double t *x, Double t *par);

void Decay(Int_t n® = 58888, Double t alpha = 8.83, Double t Delt = 1.8, Double t = 3808, Int t seed = 95689){

gRandom-=SetSeed(seed] ;

Int_t WNbins = static_cast<Int_t>{ttot/Delt); // number of time intervals
cout == "Numersof bins: "<<Nbins<<" di ampiezza "=<=Delt==" s5";

Double t timetot = Delt*Nbins; // totale time = ttot

cout=<" Tempo totale "<<timetot=<endl;

// histogram booking

TH1D *hl = new TH1D{("h1l","Remaining nuclei”,Nbins+1,-Delt/2.,timetot+Delt/2.);
h1l-=SetFillColor(kOrange-4);

J/Theoretical function

TF1 #*fteo = new TF1l{"fteo",exponential,®.,timetot,2);
fteo-=SetLineColor(kRed);

Double t N® = n@;

Double t ALPHA = alpha;

fteo-=SetParameters (NO,ALPHA) ;

fteo->5etParNames("normalizzazione","coefficiente"); Header ﬁles) need to com p||e the macro

Double t prob = alpha*Delt; //probability
hl-=Fill(®.,static cast=double=(n@));
for(Double t time=Delt; time<timetot+Delt/2.; time+=Delt){
Int t ndec = 8;
for(Int t nuclei=B; nuclei<n®;nuclei++)if(gRandom-=Rndm(}<prob)ndec++;
n@-=ndec;
hl-=>Fill{time,static cast<double={(n@));
I

TFile *file = new TFile("decay.root","recreate");
hl-s>write();

fteo-=Write();

hl-=Draw("histo");

fteo-=Draw("same") ;

file-=Close();

Double t exponential(Double t *x, Double t *par){
Double t xx = x[8];
return par[@]*exp(-par[1]*xx};

}




#if tdefined(_ CINT__} || defined(__ MAKECINT_ )
#include <TF1.h>

#include =<TFile.h=>

#include <THID.h>

#include <TMath.h=

#include <TRandom3.h=

#include =Riostream.h=

#endif

S/ Declare function

Double t exponential(Double t *x, Double t *par); 'K\
I r

void Decay(Int _t n@ = 508088, Double t alpha = 8.83, Double t Delt = 1.8, Double t ttot = 3808, Int t Need = 95689){

gRandom-=SetSeed(seed] ;

Int_t Nbins = static_cast<Int_t>{ttot/Delt); // number of time intervals
cout == "Numersof bins: "<<Nbins<<" di ampiezza "=<=Delt==" s5";

Double t timetot = Delt*Nbins; // totale time = ttot

cout=<" Tempo totale "<<timetot=<endl;

// histogram booking

TH1D *hl = new TH1D{("h1l","Remaining nuclei”,Nbins+1,-Delt/2.,timetot+Delt/2.);
h1l-=SetFillColor(kOrange-4);

J/Theoretical function

TF1 #*fteo = new TF1l{"fteo",exponential,®.,timetot,2);
fteo-=SetLineColor(kRed);

Double t N® = n@;

Double t ALPHA = alpha;

fteo-=SetParameters (NO,ALPHA) ;
fteo->5etParNames("normalizzazione","coefficiente");

Double t prob = alpha*Delt; //probability
hl-=Fill(®.,static cast=double=(n@));
for(Double t time=Delt; time<timetot+Delt/2.; time+=Delt){

Int_t ndec = 8; _ o Functions are declared before their

for(Int t nuclei=B; nuclei<n®;nuclei++)if(gRandom-=Rndm(}<prob)ndec++; . .

ne-=ndec; implementation. Default values can be
: Passed as “default” argument of the

hl->Fill(time,static_cast<double>(nd));

TFile *file = new TFile("decay.root","recreate"); c
hl-=Write(); funCtlon
fteo-=Write();
hl-=Draw("histo");
fteo-=Draw("same") ;
file-=Close();

Double t exponential(Double t *x, Double t *par){
Double t xx = x[8];
return par[@]*exp(-par[1]*xx};

}




#if tdefined(_ CINT__} || defined(__ MAKECINT_ )
#include <TF1.h>

#include =<TFile.h=>

#include <THID.h>

#include <TMath.h=

#include <TRandom3.h=

#include =Riostream.h=

#endif

// Declare function
Double t exponential(Double t *x, Double t *par);

void Decay(Int_t n@ = 50888, Double t alpha = 8.83, Double t Delt = 1.8, Double t ttot = 3808, Int t seed = 95689){

gRandom-=SetSeed(seed] ;

Int_t Nbins = static_cast<Int_t>{ttot/Delt); // number of time intervals
cout == "Numersof bins: "<<Nbins<<" di ampiezza "=<=Delt==" s5";

Double t timetot = Delt*Nbins; // totale time = ttot

cout=<" Tempo totale "<<timetot=<endl;

// histogram booking

TH1D *hl = new TH1D{("h1l","Remaining nuclei”,Nbins+1,-Delt/2.,timetot+Delt/2.);
h1l-=SetFillColor(kOrange-4);

J/Theoretical function

TF1 #*fteo = new TF1l{"fteo",exponential,®.,timetot,2);
fteo-=SetLineColor(kRed);

Double t N® = n@;

Double t ALPHA = alpha;

fteo-=SetParameters (NO,ALPHA) ;
fteo->5etParNames("normalizzazione","coefficiente");

Double t prob = alpha*Delt; //probability
hl-=Fill(®.,static cast=double=(n@));
for(Double t time=Delt; time<timetot+Delt/2.; time+=Delt){
Int t ndec = 8;
for(Int t nuclei=B; nuclei<n®;nuclei++)if(gRandom-=Rndm(}<prob)ndec++;
n@-=ndec;
hl->Fill(time,static_cast<double>(nd));
I

TFile *file = new TFile("decay.root","recreate");
hl-s>write();

fteo-=Write();

hl-=Draw("histo");

fteo-=Draw("same") ;

file-=Close();

Definition of the “exponential function”
That can be used in the TF1 definition

Double t exponential(Double t *x, Double t *par){
Double t xx = x[8];
return par[@]*exp(-par[1]*xx};

}
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Remaining nuclei
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How many decays in a fixed time interval T?

* Let's assume the number of decays in time T is much
less than the number of parent nuclei. (i.e. let's
assume a constant probability to observe a decay)

* The time T can be break into m shorter intervals of
duration At (T/m):

* The probability to observe 1 decay in time At is :

p=PAt




How many decays in a fixed time interval T?

p=PAt

* B = aN (Note that a is the decay probability)
* At must be small enough so that At << 1

* The probability of observing n decays in time T is given by the
binomial distribution:

P(n decays in m intervals)=|"| p"(1—p)™ "
n
n (m—n)
p=— M pPTI_BT
n!(m—n)!\ m m




How many decays in a fixed time interval T?

* In the limit of large m (m—> o= and At - 0)

\
(1 BT|" >e P!
m
—n Tn - n_—u
BTV ) P(n;m):(ﬁ " er_ue
m n! n!
!
T SEU.
(m—n)! ) Known as Poisson distribution




Esercitazione 11 — Esercizio 2 (poisson.C)

e Modify the program written for exercise 1 to simulate an
experiment that counts the number of decays observed in a time
interval, T .

e Allow the experiment to be repeated and represent in a histogram
the distribution of the number of decays for the following two
cases:

Ny=1000, a=2.5x10-5s1 At=1s, T =100s
N,=1000, a=2.0x104s1 At=1s, T = 100s

e Compare the distribution of n for 1000 experiments with Binomial
and Poisson distributions.




Result for: N,=1000, a=2.5X10>, At=1s, T=100 s

Number of deacys in 100.0 s

ndecays
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250 — Mean 2.436
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Result for: N,=1000, a=2.5X10*, At=1s, T=100 s

Number of deacys in 100.0 s

ndecays
Entries 1000
Mean 24.81
BRMS 5.045
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Jf Function declaration
double Decay(int n®,double alpha, double Delt,double timetot); // Decay simulation

double poissonian{double xx, double norm, double p); // POISSONIAN density
double binomial(double xx, double norm, double ntrials, double prob); // BINOMIAL density
void poisson{int n® = 1888,double alpha = 2.5e-5, double Delt = 1.,double time=188.,unsigned int seed = 1234); //main function

FELIEETEETEEITEE TR EL LR E LT EE T E TR T EE LT EL T T R T ET

void poisson(int n®,double alpha, double Delt,double time,unsigned int seed){
gRandom-=5etSeed(seed);

TString title = Form{"Number of deacys in %4.1f s",time);
int nbins = static cast<int={n@*alpha*time*4);
cout=="numer of bins"=<nbins<=endl;

double high = nbins-8.5;

TH1F *ndecays = new TH1F({"ndecays",title,nbins,-8.5,high);

//theoretical function (poissonian)
double mu = alpha*n@*time;
title =Form{"Poissonian distribution with parameter %18.4g

,mul;
TH1F *fteo = new TH1F("fteo",title,nbins,-8.5,high);

Jf/theoretical function 2(binomial)

double ntrials = time/Delt;

double prob = alpha*n@*Delt;

title = Form("Binomial with parametris p= %18.4g9 e m = %8.2g",prob,ntrials);

TH1F *fteo? = new TH1F("fteo2",title,nbins,-8.5,high);

cout<<"Numer of nuclei: "<=<nB<<endl;
cout<<"Parameter of polissonian distribution "<<mu<<endl;
cout<<"Parameters of binomial distribution p= "<<prob<<" m ="<< ntrials<<endl;

J/ Fill histo with theoretical functions

for (double x=8.;x<high;x+=1.}
fteo-=Fill(x,poissonian(x,knorm,mu));

for (double x=8.;x<high;x+=1.)
fteo2->Fill(x,binomial(x,knorm,ntrials,prob}};

// Simulation of the decay

for(int exper = 8; exper<knorm; exper++){
if({(exper%le0)==0)cout<<"Processinf event n. "<<exper<<endl;
double nodecay=Decay(n8,alpha,Delt,time);
ndecays-=Fill({nodecay);

i



T iiririridirrdfrdridiidrrfrdiririrriridriridiiirifdriirdiddrfriireisry
double Decay(int n@,double alpha, double Delt,double timetot){

double prob = alpha*Delt; //probabilita
int n@init = nB;
for{double time=08.; time<timetot; time+=Delt){
int ndec = 8;
for{int nuclei=B8; nuclei<n®;nuclei++)1if(gRandom->Rndm{)<prob)ndec++;
nd-=ndec;
I
return static cast<double>(nBinit-n@);
k
FEEEEEEEEELEE i ririririidridiririirridiridifirriiiridifirrifiriiirrrieiss

double poissonian(double xx, double norm, double p){

return norm*(TMath: :PoissonI{xx,p));

// return norm*(TMath: :Power(param,xx)*TMath: :Exp(-param-Gamma(xx+1)));
I
LTI rrrrrdrirrrrrridrrdiridrirrrdiridrrrrrfiridrirrrfiririrrrritry

double binomial{double xx, double norm, double ntrials, double prob) {

Double £t n = TMath::Binomial(ntrials,b xx);

n *= TMath::Power(prob,xx)*TMath: :Power((1-prob), (ntrials-xx));
n *= norm;

return n;
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