
Simulations with ROOT

Thanks to Prof. Massimo Masera for the next slides
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Monte Carlo method

● A technique of numerical analysis that uses random sampling to 
simulate the real-world phenomena

● Applications:
● Particle physics

● Quantum field theory

● Astrophysics

● Molecular modeling

● Semiconductor devices

● Light transport calculations

● Traffic flow simulations

● Environmental sciences

● Financial market simulations

● Optimization problems

● ...



  

What is Monte Carlo Method? 

● A method to search for solutions to mathematical problem using a statistical 
sampling with random numbers.

● This method was developed by Stanislaw Ulam while he committed the 
hydrogen bomb project at Los Alamos Laboratory after Word War II. 

● Historical example of the MC method is Buffon’s needle
● Throw a needle randomly on a sheet on which parallel lines with an equal 

distance are drawn.

● Counts the number of throwing which makes the needle crossing the 
parallel lines. 

● You can get  π by random throws.
● An other example one is Laplace’s method of calculating π (1886)

● Area of the square = 4
● Area of the circle = π
● Probability of random points inside the circle = π / 4
● Random points : N
● Random points inside circle : Nc
● π ~ 4 Nc / N
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Monte Carlo methods for radiation transport

● Fermi (1930): random method to calculate the properties of the 
newly discovered neutron

● Manhattan project (40’s): simulations during the initial 
development of thermonuclear weapons. von Neumann and Ulam 
coined the term “Monte Carlo”

● Metropolis (1948) first actual Monte Carlo calculations using a 
computer (ENIAC)

● Berger (1963): first complete coupled electron-photon transport 
code that became known as ETRAN

● Exponential growth since the 1980’s with the availability of digital

computers
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Monte Carlo technique

● What is a Random Number? 
● Is e.g. 3 a random number?
● A sequence of random numbers is a set of numbers 

that have nothing to do with the other numbers in 
the sequence

● General procedure for “random” generation:
● A sequence of m random numbers with uniform 

distribution in the [0,1] interval is extracted.
● This sequence is used to produce a second sequence 

distributed according to a  generic f(x), which is the 
pool of simulated data 
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Pseudo-Random numbers

● The sequence is reproducible, because the algorithm 
for the generation is deterministic.

● General characteristic of a random generator:
● Statistical independence
● “Long” repetition period
● The sequence looks random, when indeed it is not
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Random generators in ROOT

Are implemented in the TRandom class: fast generator with a short (109) 
period, based of the linear congruential method.
● TRandom1: inherits from TRandom and implements RANLUX
● TRandom2: inherits from TRandom has a period of 1026, but only 332 

bits word
● TRandom3:inherits from TRandom and implements the Mersenne-

Twister generator which has a period of  219937-1 (≈106002). 

BADBAD SLOWSLOW FASTFAST GOOD
(default)

GOOD
(default)
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Marsenne – Twister generator

● Mersenne Twister is, by far, today's most popular pseudorandom number generator. It is 
used by every widely distributed mathematical software package. Mersenne Twister was 
developed by professors Makoto Matsumoto and Takuji Nishimura of Hiroshima University 
almost twenty years ago. 

● Mersenne primes
● Mersenne primes are primes of the form (2^p)  - 1 where p itself is prime. They are named after a French 

friar who studied them in the early 17th century. We learn from Wikipedia that the largest known prime 
number is the Mersenne prime with p equal to 57,885,161. The Mersenne Twister has p equal to 19937. 
This is tiny as far as Mersenne primes go, but huge as far as random number generators are concerned.

● Algorithm
● The integer portion of the Mersenne twister algorithm does not involve any arithmetic in the sense of 

addition, subtraction, multiplication or division. All the operations are shifts, and's, or's, and xor's.  All the 
elements of the state, except the last, are unsigned 32 bit random integers that form a cache which is 
carefully generated upon startup. 

● This generation is triggered by a seed, a single integer that initiates the whole process. The last element of 
the state is a pointer into the cache. Each request for a random integer causes an element to be 
withdrawn from the cache and the pointer incremented. The element is "tempered" with additional 
logical operations to improve the randomness. When the pointer reaches the end of the cache, the cache 
is refilled with another 623 elements.

● The algorithm is analyzed by investigating the group theoretic properties of the permutation and 
tempering operations. The parameters have been chosen so that the period is the Mersenne prime 
(2^19937)-1. This period is much longer than any other random number generator proposed before or 
since and is one of the reasons for MT's popularity.
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Marsenne – Twister generator

Why Marsenne – Twister?

https://blogs.mathworks.com/cleve/2015/04/17/random-number-generator-mersenne-twister/

https://blogs.mathworks.com/cleve/2015/04/17/random-number-generator-mersenne-twister/
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• Let's consider a system initially having N0 unstable nuclei: 
how does the number of nuclei vary with time?

Simulation of a radioactive decay of a single nucleus

• Radioactive decay is an intrinsic random process: the 
probability of  decay is constant (independent of the age 
of nuclei)

• The probability that a nucleus decays in the time Δt is p :
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Simulation of a radioactive decay of a single nucleus

● The algorithm which has to be implemented is the 
following

LOOP from t=0 to T, step Dt

Reset the number of decayed nuclei (Ndec) in the current time bin

LOOP over each remaining parent nucleus (from 0 to Ntot)

Decide if the nucleus decays:
if(gRandom->Rndm()<aDt) 
    increment the number of decayed nuclei in this time bin
endif

END loop over nuclei

Ntot=Ntot-Ndec

Plot Ntot vs t

END loop over time
END



12

Esercitazione 11 – Esercizio 1 (Decay.C)

• Write a macro to implement the algorithm shown in 
the previous slide. Show the number of remaining 
nuclei as a function of time for the two following 
cases:

– N0=1000,    α=0.01 s-1,   Δt=1 s

– N0=50000,  α=0.03 s-1,   Δt=1 s

• Show the results in linear and logarithmic scale, for t 
between 0 and 300 seconds

• Compare the results with the expected result
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• In the next slide a possible solution implemented 
using a macro in ROOT is shown

• The ROOT classes are used to generate random 
numbers, to store information in the histograms and 
for input/output operations

• The macro (decay.C) is composed by two functions 

• It can be interpret or executed by CLANG (CINT) 

Possible Solution
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Header files, need to compile the macro 
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Functions are declared before their 
implementation. Default values can be 

Passed as “default” argument of the
function
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Definition of the “exponential function”
That can be used in the TF1 definition
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Result for:
N0=100,

 a=110-2 s-1

 Dt=1 s

Statistical fluctuation are very 
important

Continuous line: expected 
exponential. 

Histogram: simulation result.
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Risultato per: 
N0=100,

 a=110-2  s-1

 Dt=1 s

Same parameters as before, 
but different seed: the results 
are different! 
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Result for: 
N0=5000,

 a=310-2 s-1

 Dt=1 s

The importance of 
fluctuations depends on the 
number N of residual nuclei
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• Let's assume the number of decays in time T is much 
less than the number of parent nuclei. (i.e. let's 
assume a constant probability to observe a decay)

• The time T can be break into m shorter intervals of  
duration Δt (T/m):

• The probability to observe 1 decay in time Δt is :

How many decays in a fixed time interval T?

T

Δtt

p=βD t



21

● β = αN (Note that α is the decay probability)

● Δt must be small enough so that βΔt << 1

● The probability of observing n decays in time T is given by the 
binomial distribution:

How many decays in a fixed time interval T?

p=βD t

P(n decays in m intervals)=(mn ) p
n
(1−p)(m−n)

P=
m!

n ! (m−n)! (
βT
m )

n

(1−
βT
m )

(m−n)
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● In the limit of large m (m→ ∞ and Δt → 0)

How many decays in a fixed time interval T?

(1−
βT
m )

m

→e−βT

(1−
βT
m )

−n

→1

m!
(m−n)!

→mn

P(n;βT )=
(βT )

n

n!
e−βT

=
μ
n e−μ

n !

Known as Poisson distribution
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Esercitazione 11 – Esercizio 2 (poisson.C)

● Modify the program written for exercise 1 to simulate an 
experiment that counts the number of decays observed in a time 
interval, T .

● Allow the experiment to be repeated and represent in a histogram 
the distribution of the number of decays for the following two 
cases:

N0=1000,  α=2.5x10-5 s-1, Δt=1 s, T = 100s

N0=1000,  α=2.0x10-4 s-1, Δt=1 s, T = 100s

● Compare the distribution of n for 1000 experiments with Binomial 
and Poisson distributions.
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Result for: N0=1000, α=2.5X10-5, Δt=1 s, T=100 s

Poisson

binomial
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Result for: N0=1000, α=2.5X10-4, Δt=1 s, T=100 s

Poisson

binomial
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