Simulations with ROOT- 2

General distributions

- In general it is not sufficient to have uniform random numbers.
- In many problems it is necessary to have number distributed according to other p.d.f. (e.g. Gaussian, exponential, Poisson, ...)
- IN ROOT are available in the TRandom class generators with several p.d.f.
- Binomial
- BreitWigner
- Circle
- Exp
- Gauss
- Landau
- Poisson
- Rannor
- Rndm
- Sphere
- Uniform

General distributions

- But, what if you want to generate a number x_{i} distributed according to a certain distribution $\mathrm{f}(\mathrm{x})$?
- It is possible to use at least two techniques:
- Rejection
- Inversion

Inversion Method

- Inversion method
- This method is applicable for relatively simple (i.e. can be easily inverted) distribution functions:
- Normalize the distribution function, so that it becomes a "probability distribution function"
- Integrate the PDF analytically from minimum $x\left(x_{\min }\right)$ to an arbitrary $\mathrm{x}(\mathrm{x})$
>This represents the probability of choosing a value less than x
- Equate this to a uniform random number and solve for x, given a uniform random number λ

$$
\frac{\int_{\frac{x_{m}}{x}}^{x_{m o m}^{x}} f(x) d x}{x}=\lambda
$$

This method is fully efficient, since each random number λ gives an x value

Inversion Method

- Example: Generate x between 0 and 4 according to:

$$
\begin{gathered}
f(x)=\frac{1}{\sqrt{x}} \\
\int_{\frac{x_{m i n}}{4} x^{-\frac{1}{2}} d x}^{\int_{0}^{x} x^{-\frac{1}{2}} d x}=\lambda \\
\frac{x_{\min }^{1 / 2}-2 x^{1 / 2}}{0-2 \cdot 4^{1 / 2}}=\lambda=\frac{x^{1 / 2}}{2}
\end{gathered}
$$

\Rightarrow Generate x according to $\mathrm{x}=4 \lambda^{2}$

Inversion Method : Results for 10000 trials

h

Rejection Method

- Algorithm:
- Chose trial x, given a uniform random number λ_{1} :

$$
\mathrm{x}_{\text {trial }}=\mathrm{x}_{\min }+\left(\mathrm{x}_{\max }-\mathrm{x}_{\min }\right) \lambda_{1}
$$

- Decide whether to accept the trial value:
- If $f($ xtrial $)>\lambda_{2} f_{\text {big }}$ then accept

Where $\mathrm{f}_{\mathrm{big}} \geq \mathrm{f}(\mathrm{x})$ for all $\mathrm{x}, \mathrm{x}_{\text {min }} \leq \mathrm{x} \leq \mathrm{x}_{\text {max }}$.

- Repeat the algorithm until the trial value is accepted. This algorithm can be visualized as throwing darts

Rejection Method

- $\mathrm{u}_{1}, \mathrm{u}_{2}$ are two numbers distributed according to a uniform distribution in $[0,1]$ $\mathrm{x}_{\mathrm{T}}, \mathrm{y}_{\mathrm{T}}$ are extracted:
$-\mathrm{x}_{\mathrm{T}}=\mathrm{x}_{\min }+\left(\mathrm{x}_{\text {max }}-\mathrm{x}_{\text {min }}\right) \mathrm{u}_{1}$
$-\mathrm{y}_{\mathrm{T}}=\mathrm{f}_{\text {big }} \mathrm{u}_{2}$, with $\mathrm{f}_{\text {big }} \geq \mathrm{f}(\mathrm{x}) \forall \mathrm{x} \in\left[\mathrm{x}_{\text {min }}, \mathrm{x}_{\text {max }}\right]$
- x_{T} accepted if $f\left(x_{T}\right)>y_{T}$

Rejection Method : Example

- Example: Generate x between 0 and 4 according to:

$$
f(x)=\frac{1}{\sqrt{x}}
$$

```
TF1 *f1 = new
TF1("f1","1./sqrt(x)",0,4);
Double_t fMax = 4;
Double_t u1 = 0;
Double_t u2 = 0;
Double_t xT = 0;
Double_t yT = 0;
TH1F *h = new TH1F("h","h",100,0,4);
for(Int_t i = 0; i<10000; i++){
    u1 = gRandom->Rndm();
    u2 = gRandom->Rndm();
    xT = xmin + (xmax-xmin)*u1;
    yT = u2*fMax;
    if(f1->Eval(xT) > yT)
        h -> Fill(xT);
}
```


Rejection Method : Results for 10000 trials

Rejection Method : Integral

- This procedure also gives an estimate of the integral of $f(x)$

$$
I=\int_{x_{\min }}^{x_{\max }} f(x) d x \approx \frac{n_{\text {accept }}}{n_{\text {trial }}} f_{\text {big }}\left(x_{\min }-x_{\max }\right)
$$

Limits of the rejection method

- In general this method has a limited efficiency
- Is not suited if the function presents peaks
- Cannot be used if the function have poles or integration limits that tend to ∞
- What if the rejection technique is impractical and you can't invert the integral of the distribution function?

Importance sampling

- Importance Sampling: replace the distribution function $f(x)$ by an approximate form $f^{\mathrm{a}}(x)$ for which the inversion technique can be applied.
- Generate trial values for x with inversion technique according to $\mathrm{f}^{\mathrm{a}}(\mathrm{x})$, and accept the trial value with the probability proportional to the weight:

- The rejection technique is just a special case where $f^{a}(x)$ is chosen to be constant

Esercitazione 12 - Exercise 1

- Write a class that inherits with public inheritance from the ROOT TRandom3 class. In the class, the inversion and rejection methods for the function

$$
\mathrm{f}(\theta)=\left(\sin ^{2} \theta+a \cos ^{2} \theta\right)^{-1}
$$

in the range $0 \leq \theta \leq 2 \pi$ have to be implemented as two class function.

- Write a macro that uses the implemented class and compare the rejection and the inversion technique:
- Generate 1000000 values for each method using $a=0,5$ and $a=0,001$
- Plot the results obtained for each a and overlay the distribution curves $f(x)$ properly normalized
- Compare the CPU time request for the 4 runs (hint: in ROOT it is possible the use the TStopwatch class)

MyRandom3.\{h, cxx\} InversionRejection.C

Result for $a=0,5$

$\left(\sin (\text { theta })^{* *} 2+{ }^{2 l p h a}{ }^{*} \cos (\text { theta })^{* *} 2\right)^{* *}(-1)$

Result for $a=0,001$

$\left(\sin (\text { theta }){ }^{* *} 2+\text { alpha }{ }^{*} \cos (\text { theta })^{* *} 2\right)^{* *}(-1)$

Execution time

```
root [0] .L MyRandom3.cxx+
root [1] .L InversionRejection.C+
root [2] InversionRejection(0.5)
Pararameter alpha = 0.5
Number of bins= 500, Bin size = 0.0125664
Number of extracted numbers: 1e+06
CPU time inversion method (assolute / relative) 0.3/0.9375
CPU time inversion method BIS 0.23/0.71875
CPU time rejection method 0.32/1
CPU time rejection method (recursive) 0.32/1
CPU time standard ROOT via TF1 0.09/0.28125
root [3] Info in <TCanvas::Print>: file /home/ramona/Dropbox/C++/Esercizi/Esercitazionell/
root [3] .q
ramona@ramona-SVS13A1X9ES ~/Dropbox/C++/Esercizi/Esercitazionel1 $ root -l
root [0] .L InversionRejection.C+
root [1] InversionRejection(0.001)
/bin/root.exe: symbol lookup error: /home/ramona/Dropbox/C++/Esercizi/Esercitazionell/./Ir
ramona@ramona-SVS13A1X9ES ~/Dropbox/C++/Esercizi/Esercitazione11 $ root -l
root [0] .L MyRandom3.cxX+
root [1] .L InversionRejection.C+
root [2] InversionRejection(0.001)
Pararameter alpha = 0.001
Number of bins= 500, Bin size = 0.0125664
Number of extracted numbers: 1e+06
CPU time inversion method (assolute / relative) 0.31/0.0461997
CPU time inversion method BIS 0.22/0.0327869
CPU time rejection method 6.71/1
CPU time rejection method (recursive) 6.78/1.01043
CPU time standard ROOT via TF1 0.08/0.0119225
```


Notes of the Inversion method (exercise)

The integral function contain the arctan function: this function return values between $-\pi / 2$ e $\pi / 2$.
If we represent the function we have a periodic function:

Notes of the Inversion method (exercise)

- The function $\mathrm{f}(\mathrm{x})$ is periodic and has to be integrated with an appropriated normalization factor

$$
\begin{gathered}
F(x)=k \int_{-\frac{\pi}{2}}^{x} \frac{d \theta}{a \cos ^{2} \theta+\sin ^{2} \theta}=\frac{k}{a} \int_{-\frac{\pi}{2}}^{x} \frac{d \theta}{a \cos ^{2} \theta\left(1+\frac{\tan ^{2} \theta}{a}\right)} \\
z \equiv \frac{\tan \theta}{\sqrt{a}} \Rightarrow d z=\frac{1}{\sqrt{a} \cos ^{2} \theta} d \theta \\
F(x)=\frac{k}{\sqrt{a}} \int_{-\infty}^{\frac{\tan x}{\sqrt{a}}} \frac{d z}{1+z^{2}}=\frac{k}{\sqrt{a}} \operatorname{atan}\left(\frac{\tan x}{\sqrt{a}}\right)+\frac{k}{\sqrt{a}} \frac{\pi}{2}
\end{gathered}
$$

Notes of the Inversion method (exercise)

- The normalization constant is

$$
F\left(x \rightarrow \frac{\pi}{2}\right)=\frac{k}{\sqrt{x}} \frac{\pi}{2}+\frac{k}{\sqrt{x}} \frac{\pi}{2} \equiv 1 \Rightarrow k=\frac{\sqrt{a}}{\pi}
$$

- If you extract u with a uniform distribution between 0 and 1 you can obtain a requested function as

$$
u=\frac{1}{\pi} \arctan \left(\frac{\tan x}{\sqrt{a}}\right)+\frac{1}{2} \Rightarrow x=\arctan \left[\sqrt{a} \tan \left(\pi u-\frac{\pi}{2}\right)\right]
$$

- To move the function in the $[0,2 \pi]$ interval :
- Extract a second number w uniformly distributed in $[0,1]$
- If $w<0.5 \rightarrow x=x+\pi$ (2nd and $3^{\text {rd }}$ quadrant)
- Else
- if $x<0 \rightarrow x+=2 \pi$ ($4^{\text {th }}$ quadrant)
- Else
- if $X>=0 \rightarrow x=x$ ($1^{\text {st }}$ quadrant)

\#ifndef MYRANDOM3_

\#include "TRandom3.h"

class MyRandom3 : public TRandom3 \{

// Class used to generate random numbers.
// New function(s) to be sampled are added w.r.t. TRandom3
// Origin: M.Masera 17/10/2002
// Last mod. 16/10/2017
//

- Public Inheritance from the

MyRandom3();
/7 Funct1(theta, alpha) returns the value of $f(x, a)=1 /(\sin (x) * * 2+a * \cos (x) * * 2)$ TRandom3 class
virtual ~MvRandom3(): // descructor
double Functl(double theta);
// returns a random number distributed according to Functl
// with the inversion method
double Funct1RndmByInversion();
// returns a random number distributed according to Funct1
// with the inversion method (another implementation)
double Funct1RndmByInversion2();
// returns a random number distributed according to Funct1 // with the rejection method
double Funct1RndmByRejection();
double Funct1RndmByRejection2();

//

// private methods
void Init(); // set alpha parameter

```
// data members
    double fAlpha; //! parameter of the function
    double fPi; //! PI
    double fBig; //! used by rejection method
    Double_t fSqrtAlpha; //! sqrt(fAlpha)
    ClassDef(MyRandom3,1)
```

- Alternative method to initialize data members outside the constructor
- Function definition

Exercise 1 - Easy version

- Write a macro that implement the inversion and rejection method for the function

$$
\mathrm{f}(\theta)=\left(\sin ^{2} \theta+a \cos ^{2} \theta\right)-1
$$

in the range $0 \leq \theta \leq 2 \pi$.

- Compare the rejection and the inversion technique:
- Generate 1000000 values for each method using $a=0,5$ and $a=0,001$
- Plot the results obtained for each a and overlay the distribution curves $\mathrm{f}(\mathrm{x})$ properly normalized
- Compare the CPU time request for the 4 runs (hint: in ROOT it is possible the use the TStopwatch class)

