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CIRCUM-MEDITERRANEAN OROGENIC BELTS

Alpine — Himalayan collisional system (Mesozoic-Present)
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There are three kinds of plate tectonic boundaries: divergent, convergent, ‘@1
and transform plate boundaries.
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A divergent boundary occurs when two
tectonic plates move away from each other.
Along these boundaries, lava spews from long
fissures and geysers spurt superheated water.
Frequent earthquakes strike along the rift.
Beneath the rift, magma—molten rock—rises
from the mantle. It oozes up into the gap and
hardens into solid rock, forming new crust on
the torn edges of the plates. Magma from the
mantle solidifies into basalt, a dark, dense rock
that underlies the ocean floor. Thus at
divergent boundaries, oceanic crust, made of
basalt, is created.

HOTBPOT

When two plates come together, it is known as a convergent
boundary. The impact of the two colliding plates buckles the
edge of one or both plates up into a rugged mountain range, and
sometimes bends the other down into a deep seafloor trench. A
chain of volcanoes often forms parallel to the boundary, to the
mountain range, and to the trench. Powerful earthquakes shake
a wide area on both sides of the boundary. If one of the colliding
plates is topped with oceanic crust, it is forced down into the
mantle where it begins to melt. Magma rises into and through
the other plate, solidifying into new crust. Magma formed from
melting plates solidifies into granite, a light colored, low-density
rock that makes up the continents. Thus at convergent
boundaries, continental crust, made of granite, is created, and
oceanic crust is destroyed.

from NOAA Ocean Explorer

Two plates sliding past each other forms a transform
plate boundary. Natural or human-made structures
that cross a transform boundary are offset—split into
pieces and carried in opposite directions. Rocks that
line the boundary are pulverized as the plates grind
along, creating a linear fault valley or undersea canyon.
As the plates alternately jam and jump against each
other, earthquakes rattle through a wide boundary
zone. In contrast to convergent and divergent
boundaries, no magma is formed. Thus, crust is
cracked and broken at transform margins, but is not
created or destroyed.



@ CONVERGENT PLATE BOUNDARIES
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THE MEDITARRANEAN MAJOR TECTONIC STRUCTURES
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SEISMICITY AT PLATE BOUNDARIES
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b WESTERN MEDITERRANEAN BASINS
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v Development of Western Mediterranean Basins (1)

 The western Mediterranean is the younger part of the Mediterranean (late Oligocene to

present). It consists of a series of sub-basins: Alboran, Valencia, Provengal, Algerian and
Tyrrhenian seas. These generally rejuvenate moving from east to west. They are partly floored
by oceanic crust (Provencal and Algerian basins, and two smaller areas in the Tyrrhenian Sea).
The remaining submarine part of the western Mediterranean basin is made of extensional
and transtensional passive continental margins.

The Algerian Basin is a deep basin (around 3000 m) located between the Balearic Promontory
and the North Africa margin. The crust in the Algerian Basin seems to have an oceanic
character. In most of the basin the Moho depth is less then 14 km and the crust is 4 to 6 km
thick.

The Liguro-Provencal Basin comprises the Ligurian Sea, the Gulf of Lions as well as the
portion of the Mediterranean Sea located West of Corsica and Sardinia, and East of Menorca.
It is the oldest Western Mediterranean basin and has a maximum water depth of 2800 m.
The lithosphere beneath the Liguro-Provencal basin is thin (less than 30 km) the crust
decreases in thickness to about 5 km beneath the central part of the basin where it is oceanic,
dated as late Aquitanian to late Burdigalian-early Serravallian (Miocene). Rifting in the
Provencal-Ligurian basin started during latest Eocene-Early Oligocene (34-28 Ma) and ended
in the middle Aquitanian. Subsequently, the central oceanic portion of the basin was
generated between the late Aquitanian and late Burdigalian (21-16 Ma) associated with the
counter clockwise rotation of the Corsica-Sardinia Block. Before drifting, this block of the
Iberian plate was located close to the Provencal coast and the present-day Gulf of Lions. The
Liguro-Provencal Basin is considered to be a back-arc basin generated from the south-
eastward roll-back of the Apennines-Maghrebides subduction.
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v Development of Western Mediterranean Basins (2)

* The origin of the Alboran Sea is related to the push northward of the African plate
with the European plate. This movement resulted in the opening of the Albordn
Sea as an effect of the westward roll-back caused by a subduction zone in the
Gulf of Cadiz. This phase ended in the Miocene (23 to 5 Ma).

e This push has caused several things: (1) the narrowing of the Alboran Sea in some
hundred of kilometres; (2) the closing of the Strait of Gibraltar in the Upper
Miocene, which, in turn, caused the drying of the Mediterranean and the
deposition of a very thick layer (thousands of meters) of salt and evaporites
(gypsums) as a result of water evaporation for 600,000 yr.

e During the Pliocene (5 to 1.6 Ma), the connection Atlantic-Mediterranean through
the Strait of Gibraltar was re-established, thus, the Mediterranean being filled
again with water from the Atlantic. According to some authors, the Mediterranean
took around 36 yr to be filled again.

* Crustal thickness of the Alboran Sea is 13 km, and sedimentary column varies
from 4 km (northern part) to 8 km (southern part).



ALBORAN SEA: Regional topographic and bathymetric map
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ALBORAN SEA: main sedimentary processes
(along slope vs. down slope)
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The submarine canyons
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% Mud Volcanos in the Alboran Sea
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Mud Volcanos in the Alboran Sea
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Figure 3

observed on the mud volcanoes of the Ceuta Drift. Partial sections correspond to Dhaka MV (b), Carmen

MV (c), Granada MV (d) and Perejil MV (e). Somoza et al. 2012



Correlation table of major stratigraphic unconformities with episodes of mud extrusion for
the different types of mud volcanoes systems in the Ceuta Drift
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ALBORAN SEA: structural map
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ALBORAN SEA: seismicity
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Earthquake location of magnitude >3 in the Alboran Sea (1990-2010) region taken from the IGN data base (Yellow: M=3-4; Green M=4-5; Red
M>5) on the EMODNET bathymetric model
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ALBORAN SEA: Correletion of multichannel seismic data with biostratigraphy
from IODP 979, 977
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ALBORAN SEA: Late Cenozoic seismic stratigraphy
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ALBORAN SEA: Thermohaline circulation
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through the Strait of Gibraltar incoming surficial Atlantic Water (AW), The Levantine Intermediate Water (LIW), The Western
Mediterranean Deep Water (WMDW)
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u Thermohaline circulation in Alboran Sea
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Thermohaline circulation in Alboran Sea
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Present-day circulation in Alboran sea

Existing knowledge of the general present-day circulation indicates that, after entering the
Alboran Sea through the Strait of Gibraltar, the surficial Atlantic water AW (down to 150—
200 m water depth) describes two anticyclonic gyres, one in the West Alboran Basin and
another in the East Alboran Basin (Parrilla et al. 1986; Millot 1999; Vargas-Yanez et al.
2002).

Mediterranean waters comprise two distinct watermasses that converge on the Strait of
Gibraltar: the Levantine Intermediate Water LIW, which extends down to 600 m water
depth, and the Western Mediterranean Deep Water WMDW (below 600 m water depth)
restricted largely to the Moroccan margin. Nelson (1990) suggested that this circulation
pattern developed after the opening of the strait, although it was interrupted by an
estuarine-type exchange of water masses during the early Quaternary (Huang and Stanley
1972).

Ferran Estrada et al. 2010
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