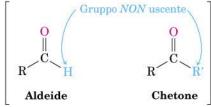

#### **DERIVATI DEGLI ACIDI CARBOSSILICI – gruppo acile**


#### La tipica reazione dei gruppi acilici è la sostituzione nucleofila acilica

## **NOMENCLATURA**



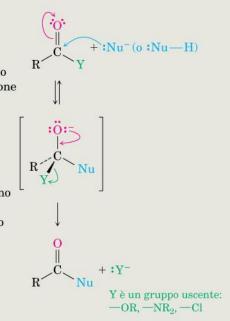
## Differente reattività dei gruppi acili e dei gruppi carbonilici





#### MECCANISMO GENERALE DELLA SOSTITUZIONE NUCLEOFILA ACILICA

dove Y = F, Cl, Br, I (alogenuro acilico); OR (estere); OCOR (anidride); o NH<sub>2</sub> (ammide)

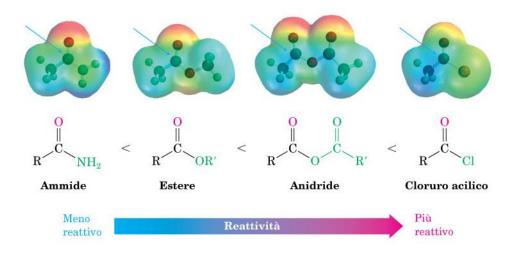

#### MECCANISMO GENERALE DELLA SOSTITUZIONE NUCLEOFILA ACILICA

#### FIGURA 21.1 MECCANISMO:

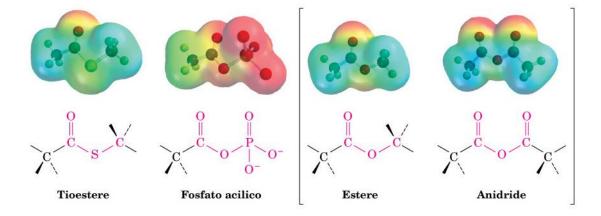
Meccanismo generale di una reazione di sostituzione nucleofila acilica.

Avviene l'addizione di un nucleofilo al gruppo carbonilico, con formazione di un intermedio tetraedrico.

Una coppia di elettroni dell'ossigeno sposta il gruppo uscente Y, generando come prodotto un nuovo composto carbonilico.

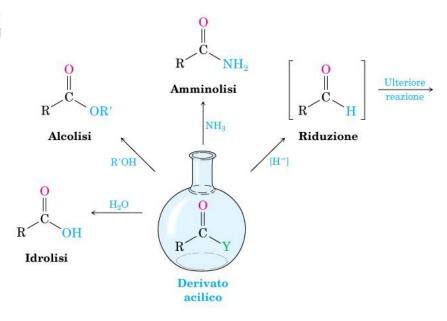



# Tutti i derivati acilici subiscono idrolisi (Nu=H2O) per dare acidi carbossilici


Perciò vengono anche considerati derivati degi acidi carbossilici Velocità relative di idrolisi

$$10^{7}$$

#### REATTIVITA' DEI GRUPPI ACILICI

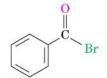



Il carbonio è elettrofilo. Gli atomi elettronegativi aumentano la sua reattività elettrofila

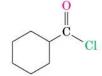


#### REAZIONI DEI GRUPPI ACILICI

FIGURA 21.3 Alcune reazioni generali dei derivati degli acidi carbossilici.



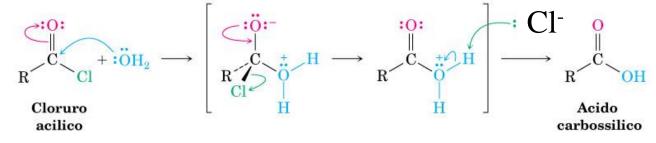

# ALUGENURI ACILICI


## **ALOGENURI ACILICI**



Acetile cloruro (dall'acido acetico)




Benzoile bromuro (dall'acido benzoico)



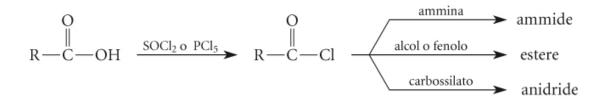
Cicloesanocarbonile cloruro (dall'acido cicloesancarbossilico)

## Idrolisi degli alogenuri acilici

+HC1



### CONVERSIONE DI ACIDI CARBOSSILICI IN CLORURI ACILICI MEDIANTE CLORURO DI TIONILE


$$H_3C$$
 $CH_3$ 
 $CH_3$ 

Acido 2,4,6-Trimetilbenzoico

2,4,6-Trimetilbenzoile cloruro (90%)

#### CONVERSIONE DI ACIDI CARBOSSILICI IN CLORURI ACILICI MEDIANTE CLORURO DI TIONILE

## Una volta trasformato il gruppo carbossilico in cloruro acilico, il C acilico diviene più reattivo verso l'attacco di specie nucleofile

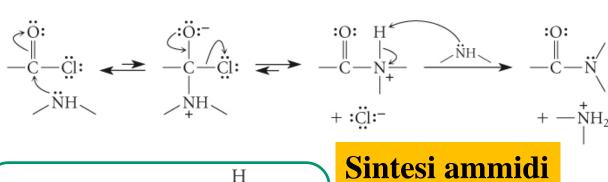


#### ALOGENURO ACILICO + ALCOL

Benzoile cloruro

Isopropile benzoato

Sintesi di esteri


## Alogenuro acilico + alcol

## Sintesi di esteri

# Alogenuro acilico + 2 moli di ammina /ammoniaca

Sintesi ammidi

# Servono due moli equivalenti di ammina perché viene liberato acido cloridrico che protona il nucleofilo inattivandolo



una base forte e un ammina protonata; buon nucleofilo non può agire da

# Si può usare un debole nucleofilo/base debole (per es. piridina) per tamponare l'acido cloridrico liberato nel corso della reazione

$$\begin{array}{c} O \\ \parallel \\ \text{Ph-C-Cl} + \text{PhCH}_2\text{CH}_2\ddot{\text{N}}\text{H}_2 + \\ \text{un'ammina primaria} \end{array} \longrightarrow \begin{array}{c} O \\ \parallel \\ \text{Ph-C-NHCH}_2\text{CH}_2\text{Ph} + \\ \text{un'ammide secondaria} \\ \text{(resa 89-98\%)} \end{array}$$

Sintesi ammidi

## Alogenuro acilico + carbossilato

## Sintesi di anidridi

# **ANIDRIDI**

## **ANIDRIDI**

$$H_3C$$
 $C$ 
 $C$ 
 $C$ 
 $C$ 
 $C$ 
 $C$ 
 $C$ 



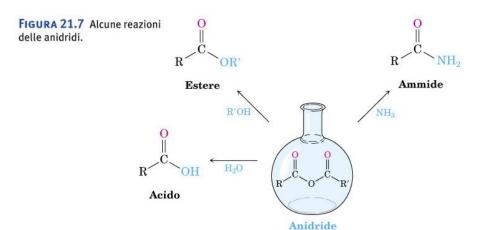
Anidride acetica

Anidride benzoica

Anidride succinica

Anidride acetico benzoica

# Le anidridi cicliche si ottengono mediante disidratazione


$$\begin{array}{c|c} H_2C & & & & & & & \\ H_2C & & & & & & \\ H_2C & & & & & \\ CO_2H & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Anidride succinica

Acido succinico

## Anidridi cicliche: Anidride ftalica

### Reazioni delle anidridi



# Le anidridi sono efficaci reagenti acilanti di gruppi nucleofili

# Le anidridi sono agenti acilanti di gruppi nucleofili: per es. ammine

$$CH_{3}O \longrightarrow NH_{2} + H_{3}C \longrightarrow C \longrightarrow CH_{3} \xrightarrow{acido \ acetico}$$

$$p\text{-metossianilina}$$

$$CH_{3}O \longrightarrow NH \longrightarrow C \longrightarrow CH_{3} + H_{3}C \longrightarrow C \longrightarrow CH$$

$$N-(p\text{-metossifenil})acetammide$$

$$(21.46)$$

(resa 75-

## Sintesi di ammidi

Anche in questo caso si libera acido che va a protonare il nucleofilo inattivandolo

## Le anidridi cicliche sono efficaci reagenti acilanti di gruppi nucleofili: per es. alcol

# Reazioni di acetilazione: sintesi dell'acido acetilsalicilico (aspirina)

estere

# Reazioni di acetilazione: sintesi del paracetamolo (tachipirina)

ammide

# **ESTERI**

# **ESTERI**

Etile acetato (estere etilico dell'acido acetico)

$$\begin{matrix} \mathbf{O} & \mathbf{O} \\ \parallel & \parallel \\ \mathbf{CH_3OCCH_2COCH_3} \end{matrix}$$

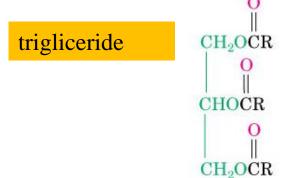
Dimetil malonato (estere metilico dell'acido malonico)

tert-Butile cicloesancarbossilato (estere tert-butilico dell'acido cicloesancarbossilico)

#### Acido carbossilico + alcol + cat. acido

$$\begin{array}{c|c} O & Questi legami vengono rotti \\ \hline \\ OH & + CH_3O & H & \underbrace{\begin{array}{c} HCl \\ \hline \\ Catalizzatore \end{array}} \end{array} \begin{array}{c} O \\ \hline \\ C & OCH_3 \\ \hline \end{array} + HOH \end{array}$$

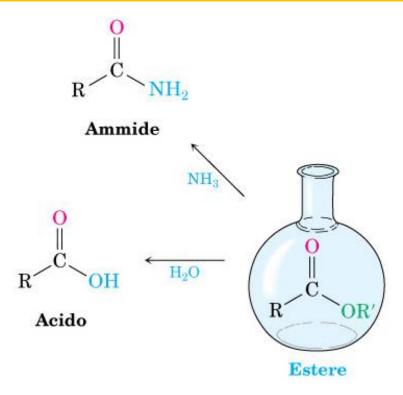
Sintesi di esteri secondo Fischer


#### Acido carbossilico + alcol + cat. acido

Sintesi di esteri secondo Fischer

#### ESTERIFICAZIONE MEDIANTE Sn2 Carbossilato + alogenuro alchilico




#### Alcuni esteri



**Butile** ftalato (plastificante)

#### Esteri come aromi alimentari

#### Sostituzioni nucleofile aciliche negli esteri



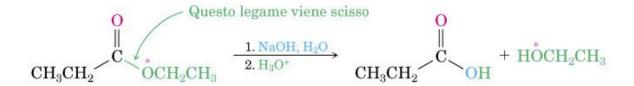
#### Idrolisi acida degli esteri

#### FIGURA 21.10 MECCANISMO:

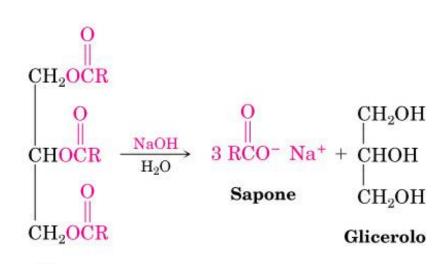
Idrolisi degli esteri acido-catalizzata. La reazione diretta è un'idrolisi, quella inversa è un'esterificazione di Fischer (Figura 21.5).

## Il nucleofilo è l'acqua

H<sup>+</sup> catalizza


La protonazione attiva il carbonile...

...nei confronti dell'attacco nucleofilo da parte dell'acqua, che produce un intermedio tetraedrico.


Il trasferimento di un protone trasforma OR' in un buon gruppo uscente.

L'espulsione dell'alcol fornisce l'acido carbossilico e rigenera il catalizzatore acido.

#### Idrolisi basica degli esteri



## Idrolisi basica di trigliceridi: saponificazione



Grasso (R=catene alifatiche  $C_{11}$ - $C_{19}$ )

Trigliceride

#### Idrolisi basica degli esteri

FIGURA 21.9 MECCANISMO: idrolisi degli esteri indotta dalle basi (saponificazione).

Il nucleofilo è OH-

> Il nucleofilo è molto reattivo per cui non serve un catalizzatore

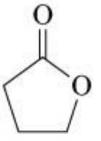
L'addizione nucleofila dello ione ossidrile al carbonio carbonilico fornisce il consueto intermedio tetraedrico a carattere di alcossido.

L'eliminazione dello ione alcossido genera poi l'acido carbossilico.

Lo ione alcossido strappa il protone acido dall'acido carbossilico e fornisce lo ione carbossilato.

La protonazione dello ione carbossilato per aggiunta di un acido nella soluzione acquosa in un passaggio successivo genera l'acido carbossilico.

### Estere + ammina = ammide


$$\begin{array}{c|c}
 & O \\
 & C \\
 & C \\
 & OCH_3 \\
\hline
 & Etere
\end{array}$$

$$\begin{array}{c|c}
 & NH_3 \\
\hline
 & C \\
 & NH_2 \\
 & + CH_3OH
\end{array}$$

Metile benzoato

Benzammide

## Esteri ciclici = lattoni



Butirrolattone

#### Nomenclatura dei lattoni

Dare il nome all'acido carbossilico, tagliare il suffisso -ico, e aggiungere -olattone.

β-lattone 3-propionolattone β-propionolattone

$$\alpha$$
 $\beta$ 
 $\gamma$ 

γ-lattone 4-butanolattone γ-butirolattone

$$\alpha$$
 $\beta$ 
 $\gamma$ 
 $\delta$ 

δ-lattone 5-pentanolattone δ-valerolattone

$$H_3 C$$
  $\stackrel{\textstyle \frac{1}{2} \quad 0}{\stackrel{1}{0}}$   $O$ 

3-butanolattone β-butirolattone



5-esanolattone  $\delta$ -caprolattone

## **AMMIDI**

## **AMMIDI**

$$\begin{array}{ccc} & & & & & & \\ O & & & & & \\ \parallel & & & & \parallel \\ CH_3CNH_2 & & & CH_3(CH_2)_4CNH_2 \end{array}$$

Acetammide (dall'acido acetico)

Esanammide (dall'acido esanoico)

Ciclopentancarbossammide (dall'acido ciclopentancarbossilico)

N-Metilpropanammide

$$C$$
 $N(CH_2CH_3)_2$ 

N,N-Dietilcicloesancarbossammide

IUPAC: N-alchilalcanammide comune: acido –ico + ammide

#### Idrolisi di ammidi

#### Idrolisi acida

#### Idrolisi basica

$$\begin{array}{c} \overset{:\text{O}:}{\underset{\text{R}}{\overset{:\text{O}:}}} \overset{:\text{O}:}{\underset{\text{NH}_2}{\overset{:\text{O}:}}} \\ \end{array} \\ \overset{:\text{O}:}{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \overset{:\text{O}:}{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \\ \end{array} \\ \end{array} \\ \overset{:\text{O}:}{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}{\overset{:\text{O}:}}}} \\ \end{array} \\ \overset{:\text{O}:}{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \\ \end{array} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \overset{:\text{O}:}{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \\ \end{array} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \\ \end{array} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \\ \end{array} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{:\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{\text{N}_2\text{N}}{\overset{\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{\text{O}:}}} \\ \xrightarrow{\underset{\text{H}_2\text{N}}{\overset{\text{N}}}} \xrightarrow$$

Il legame ammidico è meno reattivo rispetto al legame estereo. Le ammidi subiscono idrolisi solo in condizioni molto drastiche

## **TIOESTERI**

## Tioesteri: importanza biologica

Donatore di gruppi acili

#### Acetilazione di glucosammina

$$\begin{array}{c} \text{HO} & \text{CH}_2\text{OH} \\ \text{HO} & \text{NH}_2 \\ \text{OH} & \text{OH} \\ \\ \text{Glucosammina} \\ \text{(ammina)} & \text{N-Acetilglucosammina} \\ \text{(ammide)} & \text{N-Acetilglucosammina} \\ \end{array}$$

L'Acetil CoA dona un gruppo acetile ed acila il gruppo amminico

## Riduzioni di gruppi acili

#### Riduzione di alogenuri acilici con LiAlH4

#### Riduzione di ammidi

#### Riduzione di esteri

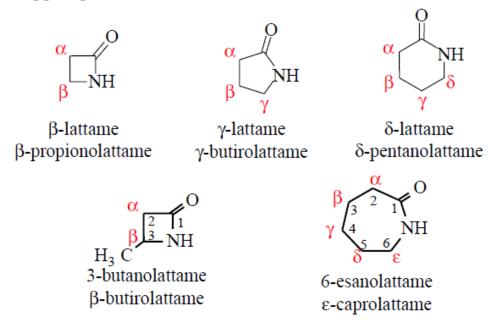
Un alcol primario

#### Riduzione di esteri

$$CH_{3}CH_{2}CH = CHCOCH_{2}CH_{3} \xrightarrow{1. \text{LiAlH}_{4}, \text{ etere}} CH_{3}CH_{2}CH = CHCH_{2}OH + CH_{3}CH_{2}OH$$
Etile 2-pentenoato
2-Penten-1-olo (91%)

#### Ammidi cicliche = lattami




Colonia di muffa *Penicillium* in una capsula di Petri.

Sostituente acilamminico 
$$H$$
  $H$   $H$   $H$   $S$   $CH_3$   $CH_3$   $CO_2^-Na^+$  Anello  $\beta$ -lattamico

Benzilpenicillina (Penicillina G)

#### D. Ammidi cicliche o lattami

Dare il nome all'acido carbossilico, tagliare il suffisso -ico, e aggiungere -olattame.



#### Lattami

penicilline

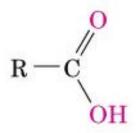
cefalosporine

penicillina G

cefalexina

Cefetamet

## Immidi


- Le immidi sono ammidi doppie in cui un guppo amminico è legato a due gruppi acilici.
  - La immide più comune è la succinimmide.

 Le immidi cicliche si preparano per riscaldamento del sale di diammonio dei diacidi.

#### Nitrili

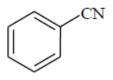


Un nitrile—tre legami con un atomo di azoto



Un acido—tre legami con due atomi di ossigeno

## Nitrili

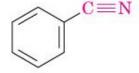

IUPAC: alcanonitrile

comune: nome dell'acido –ico + onitrile

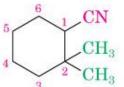
etanonitrile (acetonitrile)

$$\downarrow$$
\_{C $\equiv$ N

2-metilpropanonitrile (isobutirronitrile)

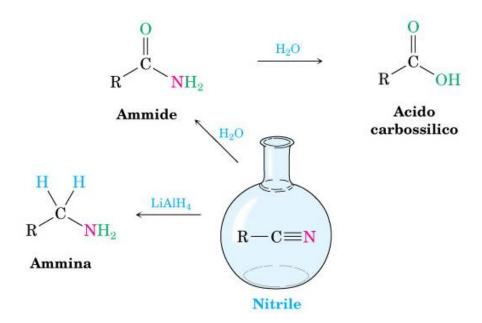



benzenecarbonitrile (benzonitrile)

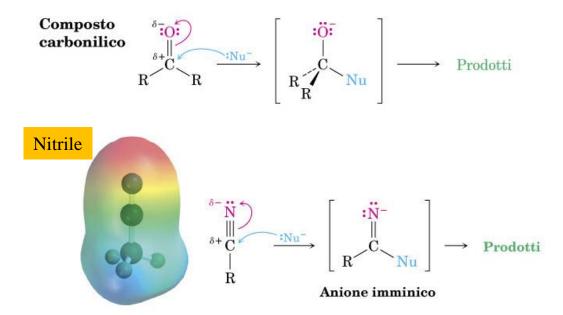

Dal volume: McMı a S.p.A.

## Nitrili

$$CH_3C \equiv N$$




Acetonitrile (dall'acido acetico) Benzonitrile (dall'acido benzoico)




2,2-Dimetilcicloesancarbonitrile (dall'acido 2,2-dimetilcicloesancarbossilico)

#### Nitrili: reattività



#### Sostituzione nucleofila acilica



#### Idrolisi di nitrili:

- -basica
- -acido catalizzata

$$\mathbf{R} - \mathbf{C} \equiv \mathbf{N} \xrightarrow{\frac{\mathbf{H}_3\mathrm{O}^+}{\text{o NaOH, H}_2\mathrm{O}}} \mathbf{R} \stackrel{\parallel}{\sim} \mathbf{C} \xrightarrow{\text{OH}} + \mathbf{N}\mathbf{H}_3$$

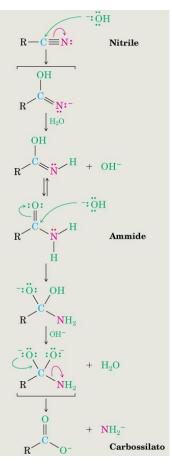
#### FIGURA 20.4 MECCANISMO:

L'idrolisi basica di un nitrile fornisce prima un'ammide, che viene poi idrolizzata ad anione carbossilato.

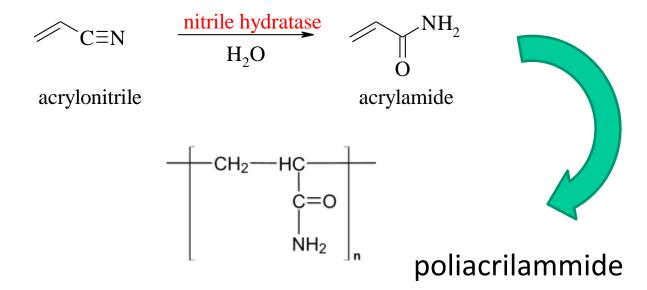
Meccanismo dell'idrolisi basica dei nitrili:

L'attacco della prima mole di OHporta ad una ammide.

L'attaco della seconda mole di OHporta al **carbossilato**  L'addizione nucleofila dello ione idrossido al triplo legame CN dà come prodotto un anione imminico.


La protonazione dell'anione imminico da parte di una molecola di acqua fornisce un'idrossiimmina e rigenera il catalizzatore basico.

Il doppio legame tautomerizza per dare un'ammide, con una reazione simile alla tautomerizzazione di un enolo a chetone.


L'addizione nucleofila di uno ione idrossido al gruppo carbonile dell'ammide fornisce uno ione alcossido intermedio ibridizzato  $sp^3$ ...

....che viene deprotonato dalla base per dare il dianione.

L'espulsione di  $\mathrm{NH_2}^-$  come gruppo uscente genera quindi l'anione carbossilato.



# Importanza industriale dei nitrili: idrolisi enzimatica dell'acrilonitrile ad acrilammide



#### Nitrili: riduzione ad ammine