
Material from TMVA Workshop (Andreas Hoecker (CERN))

http://tmva.sf.net

Quick introduction to
Multi Variate Analysis with ROOT:

A short introduction to TMVA

• TMVA started in 2006 on the Sourceforge development platform

• 6 core developers, 21 contributors so far

• TMVA is written in C++, and relies on ROOT functionality

• Since ROOT 5.15 / TMVA v3.7.2 TMVA is part of ROOT, and developed
directly in ROOT SVN

﹣ Continue to maintain primary tmva-users mailing list on Sourceforge

﹣ New TMVA versions also published as downloadable tgz files on Sourceforge

﹣ For bug reports, use ROOT Savannah

Higgs event in an LHC proton–proton
collision at high luminosity
(together with ~24 other inelastic events)

0.1 1 10
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

WJS2009

m
jet

(E
T

jet > 100 GeV)

m
jet

(E
T

jet > 3s/20)

m
jet

(E
T

jet > 3s/4)

m
Higgs

(M
H
=120 GeV)

200 GeV

LHCTevatron

 e
ve

nt
s

/ s
ec

 fo
r
L

=
 1

03
3 c

m
-2
s-1

m
b

m
tot

proton - (anti)proton cross sections

m
W

m
Z

m
t

500 GeV

σ H
nb

-1

3s (TeV)

7 TeV
LHC 2010 Such events occur only in a tiny fraction

of the proton-proton collisions O(10−10)

• Most HEP analyses require discrimination of signal from background:
﹣ Event level (Higgs searches, …)

﹣ Cone level (Tau-vs-jet reconstruction, …)

﹣ Track level (particle identification, …)

﹣ Object level (flavour tagging, …)

﹣ Parameter estimation (significance, mass, CP violation in B system, …)

• The multivariate input information used for this has various sources
﹣ Kinematic variables (masses, momenta, decay angles, …)

﹣ Event properties (jet/lepton multiplicity, sum of charges, …)

﹣ Event shape (sphericity, Fox-Wolfram moments, …)

﹣ Detector response (silicon hits, dE/dx, Cherenkov angle, shower profiles, muon hits, …)

• Traditionally few powerful input variables were combined. New methods
allow to use up to 100 and more variables w/o loss of classification power

 e.g. MiniBooNE: NIMA 543 (2005), or D0 single top: Phys.Rev. D78, 012005 (2008)

• Suppose data sample with two types of events: H0, H1
﹣ We have found discriminating input variables x1, x2, …

﹣ What decision boundary should we use to select events of type H1 ?

Linear boundary? A nonlinear one? Rectangular cuts?

H1

H0

x1

x2 H1

H0

x1

x2 H1

H0

x1

x2

Low variance (stable), high bias methods High variance, small bias methods

• Suppose data sample with two types of events: H0, H1
﹣ We have found discriminating input variables x1, x2, …

﹣ What decision boundary should we use to select events of type H1 ?

Linear boundary? A nonlinear one? Rectangular cuts?

H1

H0

x1

x2 H1

H0

x1

x2 H1

H0

x1

x2

• How can we decide this in an optimal way ? → Let the machine learn it !

• How to estimate a “functional behaviour” from a set of measurements?
﹣ Energy deposit in a the calorimeter, distance between overlapping photons, …

﹣ Entry location of a particle in the calorimeter or on a silicon pad, …

x

f(x)

x

f(x)

x

f(x)

Linear function ? A non-linear one ? Constant ?

• Looks trivial? What if we have many input variables?

Multivariate Event Classification

Each event, Signal or Background, has “D”
measured variables.

RD

“feature
 space”

Find a mapping from D-dimensional
input-observable = ”feature” space
to one dimensional output à class labels

Each event, Signal or Background, has “D”
measured variables.

RD

“feature
 space”

y(x)

R

Most general form
y = y(x); x in RD
x = {x1,….,xD}: input variables

y(x): Rn → R:

Plotting the resulting
y(x) values:

Find a mapping from D-dimensional
input-observable = ”feature” space
to one dimensional output à class labels

Each event, Signal or
Background, has “D”
measured variables.

RD

“feature
 space”

R
y(x): Rn → R:

y(x)

y(x): “test statistic” in D-dimensional space of input variables

Distributions of y(x): PDFS(y) and PDFB(y)

Overlap of PDFS(y) and PDFB(y) affects separation power, purity

> cut: signal
= cut: decision boundary
< cut: background

y(x):
Used to set the selection cut !

y(x) = const: surface defining the decision boundary

 → Efficiency and purity

y(B) → 0, y(S) → 1

Multi-Class Classification

Binary classification: two classes, “signal” and “background”

Signal Background

Class 1

Class 2
Class 3

Class 5

Class 6

Class 4

Multi-Class Classification

Multi-class classification – natural extension for many classifiers

P(Class=C|x) (or simply P(C|x)) : probability that the event class is of type C, given
 the measured observables x = {x1,….,xD} à y(x)

Prior probability to observe an event of
“class C”, i.e., the relative abundance of
“signal” versus “background”

Overall probability density to observe the actual
measurement y(x), i.e.,

Probability density distribution
according to the measurements x
and the given mapping function

Posterior probability

AND
Minimum error in misclassification if C chosen such that it has maximum P(C|y)

 → To select S(ignal) over B(ackground), place decision on:

Likelihood ratio
as discriminating
function y(x)

Prior odds ratio of choosing a signal event
(relative probability of signal vs. bkg)

“c” determines
efficiency and purity

x = {x1,….,xD}: measured observables
y = y(x)

[Or any
monotonic
function of
P(S|y) / P(B|y)]

Posterior
odds ratio

Trying to select signal events:
(i.e. try to disprove the null-hypothesis
stating it were “only” a background event)

Type-2 error:
Fail to identify an event from Class C as such
(reject a hypothesis although it would have been true)
(fail to reject the null-hypothesis/accept null hypothesis although it is false)

→ loss of efficiency (in selecting signal events)

Decide to treat an event as “Signal” or “Background”

Signal
Back-

ground

Signal J
Type-2
error

Back-
ground

Type-1
error

J

Type-1 error:
Classify event as Class C even though it is not
(accept a hypothesis although it is not true)
(reject the null-hypothesis although it would have been the correct one)

→ loss of purity (in the selection of signal events)

Significance α: Type-1 error rate:
(=p-value): α = background selection “efficiency”

Size β: Type-2 error rate:
Power: 1- β = signal selection efficiency

 β= P(x | S

! A
∫)dx

should be small !

α = P(x | B

A
∫)dx

should be small !

“A”: region where event is called signal

Neyman-Peason:

The Likelihood ratio used as “selection criterion”
y(x) gives for each selection efficiency the best
possible background rejection.

i.e. it maximises the area under the “Receiver
Operation Characteristics” (ROC) curve

→ Varying y(x) > “cut” moves the working point (efficiency and purity) along the ROC curve

• How to choose “cut”? → need to know prior probabilities (S, B abundances)

﹣ Measurement of signal cross section: maximum of S/√(S+B) or equiv. √(·p)
﹣ Discovery of a signal : maximum of S/√(B)
﹣ Precision measurement: high purity (p)
﹣ Trigger selection: high efficiency ((sometimes high background rejection)

0 1

1

0

1-
 ε

ba
ck

gr
.

 εsignal

Type-1 error small
Type-2 error large

Type-1 error large
Type-2 error small

ϵ

)ϵ

Unfortunately, the true probability densities functions are typically unknown:
à Neyman-Pearson’s lemma doesn’t really help us…

→ Supervised (machine) learning

* Hyperplane in the strict sense goes through the origin. Here is meant an “affine set” to be precise.

Use MC simulation, or more generally: set of known (already classified) “events”

Use these “training” events to:

• Try to estimate the functional form of P(x|C) from which the likelihood ratio
can be obtained
 e.g. D-dimensional histogram, Kernel densitiy estimators, MC-based matrix-element methods, …

• Find a “discrimination function” y(x) and corresponding decision boundary

(i.e. hyperplane* in the “feature space”: y(x) = const) that optimally separates signal from
background
 e.g. Linear Discriminator, Neural Networks, Boosted Decision, …

Unfortunately, the true probability densities functions are typically unknown:
à Neyman-Pearson’s lemma doesn’t really help us…

à Supervised (machine) learning

* Hyperplane in the strict sense goes through the origin. Here is meant an “affine set” to be precise.

Use MC simulation, or more generally: set of known (already classified) “events”

Use these “training” events to:

• Try to estimate the functional form of P(x|C) from which the likelihood ratio can
be obtained
 e.g. D-dimensional histogram, Kernel densitiy estimators, MC-based matrix-element methods, …

• Find a “discrimination function” y(x) and corresponding decision boundary (i.e.
hyperplane* in the “feature space”: y(x) = const) that optimally separates signal

from background
 e.g. Linear Discriminator, Neural Networks, …

Multivariate Analysis Methods in TMVA

 Examples for classifiers and regression methods

– Rectangular cut optimisation

– Projective and multidimensional likelihood estimator

– k-Nearest Neighbor algorithm

– Fisher and H-Matrix discriminants

– Function discriminants

– Artificial neural networks

– Boosted decision trees

– RuleFit

– Support Vector Machine

 Preprocessing methods:

– Decorrelation, Principal Value Decomposition, Gaussianisation

 Examples for synthesis methods:

– Boosting, Categorisation (valid for all methods, and their combinations)

U s i n g T M V A

A typical TMVA analysis consists of two main steps:

1.  Training phase: training, testing and evaluation of classifiers using
data samples with known signal and background composition

2.  Application phase: using selected trained classifiers to classify
unknown data samples

Code Flow for Training and Application

Can be ROOT scripts, C++ executables or python scripts (via PyROOT),
or any other high-level language that interfaces with ROOT

Code Flow for Training and Application

Strong Methods need Strong Evaluation

A lot of evaluation information is already
provided in the logging output of the training

Simple GUIs provide access to evaluation
plots and tools for single and multi-class
classification and regression

Involved Methods need Thorough Evaluation

Involved Methods need Thorough Evaluation

Involved Methods need Thorough Evaluation

average no. of nodes before/after pruning: 4193 / 968

Practical Tips and Tricks
for TMVA Users

From Eckhard von Toerne University of Bonn

A Closer Look
at

Input Data

General data properties

• Variables may be statistically (un-)correlated

• Signal and/or Background may cover full
volume, partial volume, or are only found on
hypersurfaces.

• Variables may have spikes, steps, tails, poles

• One or many connected regions

• Number of variables

→ beware of “curse of dimensionality“

How to ...
choose input variables

Evaluating the Classifiers

--- Fisher : Ranking result (top variable is best ranked)
--- Fisher : ---
--- Fisher : Rank : Variable : Discr. power
--- Fisher : ---
--- Fisher : 1 : var4 : 2.175e-01
--- Fisher : 2 : var3 : 1.718e-01
--- Fisher : 3 : var1 : 9.549e-02
--- Fisher : 4 : var2 : 2.841e-02
--- Fisher : ---

--- Factory : Inter-MVA overlap matrix (signal):
--- Factory : ------------------------------
--- Factory : Likelihood Fisher
--- Factory : Likelihood: +1.000 +0.667
--- Factory : Fisher: +0.667 +1.000
--- Factory : ------------------------------

Input Variable Ranking

Classifier correlation and overlap

How discriminating is a variable ?

Do classifiers select the same events as signal and background ?
If not, there is something to gain !

(taken from TMVA output…)

B
ett

er
 V

ar
ia

b
le

How to ...
choose the

multivariate method

Basis of our choice
How large is the training sample and how many

variables contain useful information?

Number of parameter that define the method
needs to be smaller than data size.

For most classifiers the number of employed
„parameters“ may be chosen by user:

Examples:

How large are correlations among variables

How conservative is the E.B.?

Choice of MVA methods

• Number of „parameters“ is limited due to small data sample

→ Use Linear classifier or FDA, small BDT (small MLP)

• Variables are uncorrelated (or only linear corrs) → likelihood

• I just want something simple → Cuts, LD, Fisher

• Methods that usually work out of the box, even for complex
problems → BDT, MLP, SVM

List of acronyms:
BDT = boosted decision tree, see manual page 103
ANN = articifical neural network
MLP = multi-layer perceptron, a specific form of ANN, also the name of our flagship ANN,
manual p. 92
FDA = functional discriminant analysis, see manual p. 87
LD = linear discriminant , manual p. 85
SVM = support vector machine, manual p. 98 , SVM currently available only for classification
Cuts = like in “cut selection“, manual p. 56
Fisher = Ronald A. Fisher, classifier similar to LD, manual p. 83

Summary

From the TMVA manual, chapter 10.

Customizing the method via the option string

• Method booking
factory->BookMethod(

TMVA::Types::kBDT, “myBDT",
“BoostType=Grad:SeparationType=
GiniIndex:Ntrees=500“);

• Read description of
method in the manual.

• Choose the number of
defining parameters
according to data size
and number of variables.

BDT option table (from manual)

How to obtain signal
and background

samples for training

Signal and background
samples for training

• What works for a counting analysis usually
works for a MVA too.

• Examples:
– Monte Carlo

– Sidebands (also ABCD method)

– Event Crossing } works with data

Example Analysis
sideband method with

TMVA

Sideband method with TMVA

Region B

Region A

Region C

m

Background in Region A =
cB * NB + cC * NC

void TMVAnalysis()
{
TFile* outputFile = TFile::Open("TMVA.root", "RECREATE");

TMVA::Factory *factory = new TMVA::Factory("MVAnalysis", outputFile,"!V");

TFile *input = TFile::Open("tmva_example.root");

factory->AddVariable("var1+var2", 'F');
factory->AddVariable("var1-var2", 'F'); //factory->AddTarget("tarval", 'F');

TTree* dataTree = (TTree*) input->Get("TreeS");
double coeffA = 1.0, coeffB = 0.34 coeffC = …; //set coefficients
factory->AddTree (dataTree, “Signal”, 1., “m> signalLow && m<signalHigh”); // Region A
factory->AddTree (dataTree, “Background”, weightB, “m> bg1Low && m<bg1High”); // Region B
factory->AddTree (dataTree, “Background”, weightC, “m> bg2Low && m<bg2High”); // Region C

factory->PrepareTrainingAndTestTree("", "", "NormMode=None");

factory->BookMethod(TMVA::Types::kMLP, "MLP",
"!V:NCycles=200:HiddenLayers=N+1,N:TestRate=5");

factory->TrainAllMethods();
factory->TestAllMethods();
factory->EvaluateAllMethods();
outputFile->Close();
delete factory;

}

A complete TMVA training/testing session

Create Factory

Add variables/
targets

Initialize Trees

Book MVA methods

Train, test and evaluate

How to ...
employ trained

classifiers

#include "TMVA/Reader.h„
…
TMVA::Reader* reader = new TMVA::Reader(“Verbose“); // “Silent“ to turn off log-outp.

reader->AddVariable(“var1“, &var1); // add variables in same order as in training, pass all vars as floats
reader->AddVariable(“var2“, &var2);
reader->BookMVA(“BDT method“, „weights/weightfilename.xml“);

//Enter loop over all events
//Fill variables var1 and var2 with current values
float mvavalue =reader->EvaluateMVA(“BDT method“,);

Alternatively, pass all variables to reader as a vector of floats

Std::vector<float> vec(2);
TMVA::Reader* reader = new TMVA::Reader(“Verbose“); // “Silent“ to turn off log-outp.
reader->BookMVA(“BDT method“, „weights/weightfilename.xml“);

//Enter loop over all events
//Fill variables vector with current values
vec[0]=…;
vec[1]= …;
float mvavalue =reader->EvaluateMVA(vec, “BDT method“);

Using the Reader (recommended)

Create Reader

Add variables,
book method

Obtain MVA value for one event

Important: pass all
variables to Reader
as floats!

training and evaluation yields output root file with the results of the training and test

For a quick (and “dirty“) analysis the user might use the test tree TMVA.root:TestTree

Contents of the tree:
root [2] TestTree->Print()

*Tree :TestTree : TestTree
*Entries : 165 : Total = 16578 bytes

*Br 0 :classID : classID/I (ID=0 signal, ID=1, background)
*Br 1 :className : className/C (className “Signal“ or “Background“)
*Br 2 :var0 : var0/F (the list of input variables)
*Br 3 :var1 : var1/F …..
*Br 10 :weight : weight/F (the training weight, this is the original weight *

renormalization factor)
*Br 11 :LD1 : LD1/F (The MVA output of the method named LD1)

+ additional quantities (“spectators“) defined via factory->AddSpectator

If you want to use tree entry “weight“ as a lumi-weighted MC weight, either pass weight on as a
spectator or trun off weight-renormalisation by setting „“NormEvents=None“ in the training
session, using factory->PrepareTrainingAndTestTree("", "","NormMode=None");

Using the test tree (Q&D hack)

 1

Esercitazione 14

● Copy the TMVA tutorial cp -r $ROOTSYS/tutorials/tmva mytmva
● Go to mytmva directory and open the file TMVAClassification.C
● Download the

● TMVA.tree.REAL2011.210.root

● TMVA.treeSignalMC.root

● Inside each root file there are some tree. We are interested on these tree:

● TMVA.treeSignalMC.root : “TreeSignal”

● TMVA.tree.REAL2011.210.root : “TreeLSB”

● Select the variables you want to select (start from tdcaTracks, tCosPointingAngle, tMomHe,
tMomPi, tDecayLenght, tDecayLenght; add tMass as a spectator variable)

● Switch on only Likelihood, MLP and BDT.
● Set to 0.1 the signal weight: Double_t signalWeight = 0.1;
● Run the MVA → A TMVA.root should be there
● Now let’s have a look a the different histograms stored in TMVA.root using

TMVACrossValidation.C
● Alternatively inside a root session you can type:

● TMVA::TMVAGui("TMVA.root")

● And the GUI should pop up.

● Questions
● Which method gives the best performance?

● Play with the weight of training events, how does it effect the training?

● Finally, switch on other methods (not all), which one is the best?

 2

Esercitazione 14

● Choose a value of the discrimination “variable”

Second part :

Application:

● What we want do now is apply the “training” to the “real” data.
This can be done using the TMVAClassification.C macro

● In the reader set the same variables you used for the training →
Inside TMVA.root those are the only stored variables

● Loop on the “signal+background” tree to see how the invariant
mass stored in the tree changes by changing the “discrimination
variable” → i.e. store the IM in a histogram

● Plot the histogram in the same canvas to see which is the “best”
selection

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 1
	Slide 2

