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A n organoid is a three-dimensional construct composed of mul-
tiple cell types that originates from stem cells by means of self-organiza-
tion and is capable of simulating the architecture and functionality of na-

tive organs. Organoids permit in vivo and in vitro investigation and represent one 
of the latest innovations in the quest for a model to recapitulate the physiologic 
processes of whole organisms. (For historical notes on the origins of organoids, 
see the Supplementary Appendix, available with the full text of this article at 
NEJM.org.)

Organoids have advantages over traditional two-dimensional cultures. They can 
display near-physiologic cellular composition and behaviors. Many organoids can 
undergo extensive expansion in culture and maintain genome stability,1-4 which 
makes them suitable for biobanking and high-throughput screens.5 As compared 
with animal models, organoids can reduce experimental complexity, are amenable 
to real-time imaging techniques, and, more important, enable the study of aspects 
of human development and disease that are not easily or accurately modeled in 
animals (Fig. 1).6-9 Here we review the common platforms of organoid technology 
and their applications (see video, available at NEJM.org).

Organoids can be generated with the use of somatic cells, adult stem cells 
(including progenitor cells), or pluripotent stem cells. Because of limitations in 
the availability, expandability, and throughput of tissues needed for somatic-cell 
organoids,8 they are less widely used than stem-cell organoids and are not the 
focus of this article.

Modeling Org a noids from A dult S tem Cell s

Modeling the Intestine

A breakthrough in organoid technology occurred in 2009 when Clevers and col-
leagues showed that stem cells resident in the adult intestine proliferate and self-
organize in vitro.6 Intestinal stem cells are characterized by the expression of LGR5, 
a gene encoding the receptor for the Wnt agonist R-spondin,7,8 and they require 
specific molecules, such as Wnt, epidermal growth factor, and noggin (a bone 
morphogenetic protein inhibitor) within their environs.6 Extracellular matrix also 
has important signaling roles: dissociated intestinal cells undergo anoikis.9 Sato 
et al.6 therefore developed a three-dimensional culture to reconstitute an in vitro, 
nichelike milieu for intestinal stem cells and obtained organoids, each originating 
from a fragment of the intestinal epithelium or even a single LGR5+ stem cell and 
maintaining a crypt–villus architecture with each of the four differentiated intes-
tinal cell types in a self-renewing fashion. These organoids can expand for more 
than 3 months and remain genomically stable, facilitating the purification of large 
quantities of organ-specific cell types.

An illustrated glossary 
and a video overview 
of organoid technology 
are available at  
NEJM.org
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The method developed by Sato et al.6 has 
since been adapted to generate organoids from 
epithelial tissues of major organs (Table 1, and 
Table S1 in the Supplementary Appendix).37,38,40-46

It is worth noting that LGR5 expression is unde-
tectable in several tissues,47-49 and the presence 

of steady-state LGR5+ stem cells is not a pre-
requisite for organoid generation. The cells of 
the liver and pancreas do not express much 
LGR5 under homeostatic conditions, although 
LGR5+ ductal cells are induced during regenera-
tive responses after liver or pancreatic injury. 

Figure 1. Comparison of Organoid Cultures with Two-Dimensional Cell Cultures and Studies in Animals.

Organoids can be generated from stem cells in adult tissue or from pluripotent stem cells. In serving as a bridge between conventional 
two-dimensional culture and animal models, organoids have multiple advantages that provide experimental manipulability and capture 
biologic complexity.
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Target Tissue  
and Cellular Input Species Applications References

Intestine

Intestinal crypts Human or 
mouse

Drug screening, transplantation, modeling of genetic 
disease (e.g., cystic fibrosis and cancer)

Sato et al.,6 Vlachogiannis et al.,10  
Fujii et al.,11 Schwank et al.12

Embryonic stem 
cells or induced 
pluripotent  
stem cells

Human or 
mouse

Drug screening, transplantation, modeling of genetic 
disease (e.g., cystic fibrosis and cancer)

Spence et al.,13 Múnera et al.14

Gastric: embryonic stem 
cells or induced 
pluripotent  
stem cells

Human Modeling of Helicobacter pylori infection and cancer McCracken et al.15

Liver

Induced pluripotent 
stem cells

Human Drug screening, transplantation, single-cell RNA se-
quencing, modeling of cell–cell communications

Camp et al.,16 Takebe et al.17

Adult tissue Human Drug screening, transplantation, modeling of genetic 
diseases (e.g., Alagille’s syndrome)

Huch et al.1

Adult tissue Mouse Transplantation, gene-expression profiling Huch et al.18

Pancreas

Adult tissue Human or 
mouse

Transplantation, modeling of pancreatic cancer Huch et al.,19 Boj et al.20

Adult tissue Mouse Transplantation, modeling of treatment of mice  
with diabetes

Takebe et al.21

Lung: embryonic stem 
cells

Human Modeling of lung differentiation, homeostasis,  
and disease

Dye et al.22

Retina: embryonic stem 
cells or induced 
pluripotent  
stem cells

Human or 
mouse

Transplantation, modeling therapy for advanced  
retinal degenerative diseases

Eiraku et al.,23 Nakano et al.,24 
Assawachananont et al.25

Brain: embryonic  
stem cells

Human or 
mouse

Single-cell RNA sequencing; modeling of corticogene-
sis, including folding of cortex; treatment of genetic 
diseases (e.g., lissencephaly); modeling of Zika vi-
rus exposure during human cortical development

Monzel et al.,26 Mugurama et al.,27 
Sakaguchi et al.,28 Lancaster et al.,29 
Qian et al.30

Pituitary: embryonic 
stem cells

Mouse Transplantation rescues in hypopituitary mice Suga et al.31

Kidney

Induced pluripotent 
stem cells

Human Transplantation, transcriptomic analysis, and toxico-
logic study

Taguchi et al.,32 Xia et al.,33 Takasato  
et al.34,35

Fetal kidney tissues Human or 
mouse

Transplantation, CRISPR-based genome editing, toxi-
cology study, disease modeling

Li et al.4

Uterus: endometrium Human Modeling human early pregnancy, endometriosis,  
and endometrial cancer

Turco et al.36

Prostate: adult tissue Human or 
mouse

Modeling prostate homeostasis, tumorigenesis,  
and drug discovery

Chua et al.,37 Karthaus et al.38

Testis: dissociated testis Human Modeling spermatogenesis and male fertility preser
vation and treatment

Baert et al.39

Inner ear: embryonic 
stem cells

Human or 
mouse

Modeling inner-ear development and disorder, drug 
screening for hearing and balance disorder, and 
cell-based therapy

Koehler et al.,40,41 Liu et al.42

Mammary gland:  
adult tissue

Human or 
mouse

Drug screening, modeling normal mammary gland 
development, molecular mechanism of hormonal 
regulation and intercellular signaling, and breast 
tumorigenesis

Jardé et al.,43 Pasic et al.,44 Zeng  
and Nusse45

*	�Details on these and other organoids and additional references can be found in Table S1 in the Supplementary Appendix.

Table 1. Summary of Selected Organoid Models.*
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Such LGR5+ cells can form clonal organoids 
composed of bipotential progenitors (hepatocyte 
and bile-duct potential for the liver, and ductal and 
endocrine lineages for the pancreas).18,19 Bipotent 
organoids have also been generated from the hu-
man liver and pancreas.1,19,20 Thus, the R-spondin 
method appears to be applicable to long-term 
maintenance of adult stem cells in different types 
of epithelial tissues in the format of organoids.

Modeling the Genitourinary System

Several organoid cultures of the components of 
the genitourinary system have been reported. 
Organoids have been derived from female and 
male reproductive tracts as well as the kidney.

In the female reproductive tract, the human 
endometrium provides the microenvironment for 
implantation and nutritional support for the 
early conceptus. Because in vivo study is imprac-
tical, long-term culture models are needed to 
better understand the role of endometrial secre-
tion and endometrial–placental interactions dur-
ing early pregnancy. To culture isolated endo-
metrial epithelia, Turco et al.36 started with the 
R-spondin method and supplemented the medium 
with growth factors to mimic the in vivo niche of 
glandular progenitor cells (Table 1, and Table S1 
in the Supplementary Appendix). Using speci-
mens from the endometrium and decidua of 
nonpregnant women, the researchers established 
genetically stable endometrial organoids that 
mount an appropriate transcriptional response 
to sex hormones and that recapitulate character-
istics of the gestational endometrium when stim-
ulated with prolactin and placental hormones, 
signals of early pregnancy. Whether these ef-
forts represent a suitable model for the implan-
tation of in vitro cultured blastocysts has yet to 
be established. Organoids have also been ob-
tained from malignant endometrium, although 
further work is required to substantiate their 
value as a model for endometrial cancer.

There also has been some progress in the 
development of organoids derived from the male 
reproductive system. One report39 showed self-
organization of dissociated human testicular cells 
under conditions similar to those characterizing 
the organotypic culture50 of neonatal mouse tes-
tes. The dissociated cells formed a condensed 
spheroid that has been described as a testicular 
organoid.39 Despite the absence of native tissue 
topography, niche cells and spermatogonia per-
sisted in testicular organoids39 (Table  1, and 

Table S1 in the Supplementary Appendix). How-
ever, the differentiation of spermatogonia, meio-
sis, and sperm formation were not reported. The 
testicular constructs do not undergo long-term 
expansion and are therefore more akin to a pri-
mary organ culture.

The functional unit of the kidney, the nephron, 
which is composed of a glomerulus (renal cor-
puscle) and a renal tubule, depends on an intri-
cate tissue architecture. During development, 
nephrogenesis requires reciprocal interactions 
between two kidney progenitor populations in 
the intermediate mesoderm — the metanephric 
mesenchyme and the ureteric epithelium. The 
spatiotemporally coordinated processes of mu-
tual induction between the mesenchyme and 
epithelium, cell movement, cell proliferation, 
and cell adhesion suggest a genetically encoded 
self-organization program.51 Indeed, dissociated 
embryonic kidney cells self-organize into their 
tissue of origin with spatial fidelity.52 The devel-
oping kidney contains transient nephron progeni-
tor cells that give rise to all nephrons.53 These 
progenitor cells have not been found in the adult 
human kidney, which cannot regenerate neph-
rons.54 Although several putative adult kidney 
progenitors capable of tubulogenesis in organ-
oids have been reported,55-57 there is disagree-
ment regarding their identity and potential.55,56

Embryonic nephron progenitor cells, on the 
other hand, are better characterized and have 
been successfully used to create kidney organ-
oids.32,58-60 However, many hurdles remain: first, 
the loss of differentiation potential in cultured 
nephron progenitor cells; second, the limited 
self-renewal of these cells; third, a lack of evi-
dence for in vivo nephrogenic potential; and, 
finally, the dependence on transgenic markers of 
cell identity. On the basis of previous observa-
tions,61-63 we developed a long-term, three-dimen-
sional culture of genomically stable nephron 
progenitor cells4 (Table 1, and Table S1 in the 
Supplementary Appendix). These cells can self-
renew only under artificial culture conditions 
but can be induced to form nephronlike struc-
tures with appropriate spatial orientation, indi-
cating an intact nephrogenic potential. We ob-
served that these nephron progenitor cells 
contribute to nephrogenesis in neonatal mice 
and chick embryos, generating ectopic, nephron-
like structures that connect with the host vascu-
lature. A urinelike filtrate was obtained when 
these nephronlike structures were transplanted 
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into the omentum of immunodeficient mice.4 
Cultures of human nephron progenitor cells with 
similar properties can be derived from fetal kid-
neys between 9 and 17 weeks of gestation, and 
human nephron progenitor cell lines are amena-
ble to genome editing for the purpose of study-
ing human organogenesis and genetic diseases 
(Table S2 in the Supplementary Appendix).4

Plur ipo ten t S tem Cell s

Pluripotent stem cells — both induced and em-
bryonic — can self-renew indefinitely and dif-
ferentiate into any cell type in the body, thus 
offering an attractive alternative to the use of 
primary tissues to create organoids. Because 
organoids derived from pluripotent stem cells 
are formed through directed differentiation of 
a homogeneous population, tissue-specific cell 
types and their microenvironment must be creat-
ed anew in a dynamic process that is reminis-
cent of embryogenesis. Accordingly, pluripotent 
stem-cell organoid culture must provide stage-
appropriate niche signals during differentiation. 
Because this process is neither simple nor 
straightforward, pluripotent stem-cell organoids 
often contain cell types that differ from those in 
the modeled organ, complicating the signaling 
environment and self-organization of the target 
tissue.15,16,64

Early work in directed differentiation of pluri
potent stem cells established signaling require-
ments for germ-layer formation, patterning, and 
induction of tissue identity in two-dimensional 
cultures. Pluripotent stem cells can also sponta-
neously differentiate as embryoid bodies. These 
embryoid bodies typically differentiate further 
along a tissue-specific lineage in the presence of 
specific cues in two-dimensional culture.

Pluripotent stem cells in two-dimensional cul-
ture are known to default to a neural fate in the 
absence of any inductive signal.65 The differenti-
ated neuroepithelial cells self-organize into ro-
settes that resemble neural progenitor cells of 
the developing neuroepithelium.66 Building on 
this knowledge, Eiraku et al. generated neuro-
ectodermal organoids (Fig. 2).67 Neurons in these 
organoids showed properties characteristic of neo-
natal cortical brain tissues, and the organoids 
recapitulated the spatial and temporal regula-
tion of early corticogenesis (including the orga-
nization of distinct zones along the apicobasal 
axis and the “birth order” of layer-specific neurons 

in the developing cortex).67 The neuroepithelia 
generated by this approach were stimulated to 
exhibit specific regional identities. For example, 
when basement-membrane matrix components 
(e.g., Matrigel) were added to the differentiation 
culture, the neuroepithelial cells formed a rigid, 
continuous neuroepithelium that on exposure to 
the growth factor NODAL self-organized into 
optic cups composed of a retinal pigment epithe-
lium and a neural retinal epithelium.23 Similar 
strategies have been successfully used to gener-
ate organoids representing diverse regions of the 
neuroepithelium, including the retina,24 adenohy-
pophysis,31 midbrain,26 cerebellum,27 and hippo-
campus28 (Table 1, and Table S1 in the Supple-
mentary Appendix).

The growth of cortical organoids is limited 
by the free diffusion of oxygen, nutrients, and 
growth factors. Consequently, cells in deep areas 
of organoids undergo apoptosis.6,29 A protocol in 
which the organoid culture is kept spinning in a 
bioreactor was developed to enhance nutrient 
exchange, thus substantially improving growth 
and development of neuroepithelia. These neuro-
epithelia spontaneously form regions reminis-
cent of the cerebral cortex in the absence of in-
ductive signals.29 Morphologic, histologic, and 
transcriptional analyses showed that these “cere-
bral organoids” contained interdependent do-
mains recapitulating various regions of the 
brain.29 Importantly, human-specific features, 
including the outer subventricular zone, were 
observed in cerebral organoids29,30 (Table S1 in 
the Supplementary Appendix).

Single-cell RNA sequencing, a powerful tool 
for studying cellular identity, revealed that cere-
bral organoids contain neural and mesenchymal 
cells with progenitor and differentiated pheno-
types. A remarkable level of transcriptional simi-
larity was found between the cells of organoids 
and fetal tissues, lending credence to the notion 
that the cerebral organoid can be used as a 
model for human cortical development.68,69

Organoids of the mesodermal kidney have 
been reported. The ureteric epithelium renal 
progenitors can be generated from human pluri
potent stem cells with the use of defined media 
for intermediate mesoderm induction.33,70 These 
progenitors can self-organize into ureteric bud 
structures when aggregated with dissociated 
murine embryonic kidney cells.33 Another renal 
progenitor, the metanephric mesenchyme, can be 
differentiated from pluripotent stem cells through 
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the phasic activation of Wnt and the addition of 
stage-specific growth factors that promote the 
formation of the posterior intermediate meso-
derm, a key precursor of the metanephric mesen-
chyme. The resulting metanephric mesenchyme 
can form nephronlike structures with tubules 
and glomeruli in three-dimensional culture.32 It 
is also possible to simultaneously induce the 

ureteric epithelium and metanephric mesenchyme 
through directed differentiation of human pluri-
potent stem cells.34 The correctly patterned renal 
progenitors then self-organize in three-dimen-
sional culture to generate nephrons with defined 
glomeruli and segmented tubular structures, 
which are associated with a network of collect-
ing ducts and surrounding interstitial and endo-
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thelial cells.35 Because it is difficult to distin-
guish immature pronephric and mesonephric 
nephrons from mature metanephric nephrons 
with the use of lineage markers only, further 
work is needed to ascertain the functional ma-
turity of the organoid nephrons.71 It would also 
be desirable to develop cultured conditions for 
ureteric epithelial progenitors, which have not 
been propagated as a pure population in culture. 
Their presence is inferred by means of gene ex-
pression and the immunofluorescence of known 
markers.33-35 Once isolated, ureteric epithelial pro-
genitors could be tested for the capacity to un-
dergo reciprocal induction with nephron pro-
genitor cells or to reconstitute collecting ducts 
in embryonic kidney reaggregation assay.72

For endodermal lineages, pluripotent stem 
cells are first differentiated into definitive endo-
derm through exposure to activin–nodal signal-
ing and low concentrations of serum, and the 
resulting gut tube can be patterned along the 
anterior–posterior axis through temporal and 
spatial manipulation of the Wnt and other sig-
naling pathways.73,74 Organoids representing tis-

sues that originate from the foregut, including the 
lung,22 thyroid,75 stomach,15 pancreas,21,76,77 and 
liver,17 as well as tissues from the midgut and 
hindgut, such as the small and large intestines,13,14 
have been reported46 (Table 1, and Table S1 in 
the Supplementary Appendix).

An unusual feature of pluripotent stem-cell 
organoids is that tissue-specific epithelia are 
differentiated through a series of progenitors, a 
process that entails interaction between germ 
layers. In pluripotent stem-cell organoids, the 
residual mesodermal cells that are present after 
endodermal induction become fibroblasts and 
smooth-muscle cells that develop around the 
epithelium,13,15,22 a phenomenon reminiscent of 
the mesenchymal tissues that develop around 
endodermal organ primordia during organogen-
esis.78 Consistent with their supporting roles in 
epithelial morphogenesis, mesenchymal stem 
cells and endothelial cells can be intentionally 
mixed with human pluripotent stem-cell–derived 
hepatic progenitors to produce three-dimensional 
liver buds that become vascularized and func-
tional upon transplantation (Fig. 2). Single-cell 
RNA sequencing has revealed that communica-
tions between different lineages in the liver bud 
help them become transcriptionally similar to 
their counterparts in human fetal liver.16 Such a 
heterotypic approach to the culture of organoids 
has been shown to support the formation of 
vascularized organ buds from the pancreas, kid-
ney, intestine, heart, lung, and brain.21

A pplic ations of Org a noid 
Technol o gies

Modeling Disease

As compared with two-dimensional cultures, or-
ganoids may provide more fundamental insights 
into development, homeostasis, and pathogenesis 
and may offer new translational approaches to 
the diagnosis and treatment of disease (Fig. 2). 
For instance, cerebral organoids recapitulate 
human-specific neurogenic processes, thereby 
presenting an opportunity to study human brain 
development.29 Human cerebral organoids have 
been grown in a microfabricated compartment 
that allows long-term in situ imaging. This sys-
tem has been used to model the physics of corti-
cal folding and to study the mechanism underly-
ing lissencephaly, which is caused by mutations 
in LIS1.79 One study showed that cerebral organ-

Figure 2 (facing page). Schematics of Mainstream  
Human Organoid Models and Their Applications.

Human organoids can be generated from normal or 
malignant primary tissues, most often by the R-spondin 
method, which is the essential design principle for gen-
erating small-intestine organoids, namely, extracellular 
matrix support (Matrigel), activation of the Wnt signal-
ing pathway (R-spondin1 and Wnt3a), growth factors 
for organ-specific epithelial proliferation (e.g., epithelial 
growth factor), and stem-cell self-renewal factors (inhib-
itors of bone morphogenetic protein (BMP) and trans-
forming growth factor β (TGF-β) (for additional details, 
see the Supplementary Appendix). Alternatively, somatic 
cells can be reprogrammed to become induced pluri
potent stem cells, which are used as sources of organ-
oids for all three germ layers through directed differen-
tiation. The SFEBq method, which involves serum-free 
culture of embryoid-body–like aggregates with quick 
aggregations, entails dissociation of pluripotent stem 
cells into a homogenous single-cell suspension to min-
imize any endogenous inductive signals, followed by 
quick aggregation in a serum-free and growth-factor–
free medium. Organoid technologies have integrated 
well with other technologies, including genome editing, 
single-cell genomics, live imaging, and microfluidics, 
thus providing new insights into developmental pro-
cesses and disease pathogenesis as well as enabling 
translational approaches to the diagnosis and treatment 
of disease. FGF denotes fibroblast growth factor, and 
HUVEC human umbilical vein endothelial cell.
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oids generated from induced pluripotent stem 
cells obtained from a person with lissencephaly 
have a mitotic defect in outer radial glial cells, 
which are poorly represented in mouse models.69 
Brain organoids have also been used to show 
that the Zika virus preferentially infects neural 
progenitors and reduces their proliferation and 
viability, which may in turn be a cause of Zika 
virus–associated microcephaly.30,80-82

Screening Anticancer Drugs

Organoids have been successfully grown from 
primary tumors of the colon, prostate, breast, 
and pancreas.46 These “tumoroids” have emerged 
as preclinical models that have the potential to 
predict an individual patient’s response to treat-
ment (Table S2 in the Supplementary Appendix). 
For example, a living biobank of tumoroids from 
patients with metastatic gastrointestinal cancer 
recapitulated the response of these patients to 
anticancer agents in clinical trials.10 Tumoroids 
can also be used to study the tumor niche. An 
organoid library representing different grades of 
colorectal tumors revealed a decreased depen-
dency on niche factors along the transition from 
normal tissue to adenoma to carcinoma. Niche-
factor dependency is found to be primarily associ-
ated with the genetic makeup of a tumor.11 This 
example and others (Table S2 in the Supplemen-
tary Appendix) suggest that tumoroids are a 
means of linking cancer-related genomic data to 
tumor biology and can provide a substrate for 
drug screening and personalized treatment.

Identifying Drug Toxicity

Organ toxicity is the primary reason for failures 
in drug development and postapproval with-
drawals.83 Current toxicology screens that use 
cell lines and animal models often do not pre-
dict adverse effects in humans, in whom renal 
and hepatic toxicities are among the most com-
mon. Three-dimensional organoids may offer 
more accurate means of toxicity prediction. En-
couragingly, kidney organoids have been shown 
to recapitulate the nephrotoxic effects of cis-
platin35 and gentamicin.4 Other advantages of 
organoids include their genetic stability1-4 and 
scalability for high-throughput screens. For in-
stance, human nephron progenitor cells have a 
nearly unlimited ability to self-renew in three-
dimensional culture,4 which could be a boon for 
standardization of nephrotoxicity screens. Re-

cently, the Food and Drug Administration has 
started testing three-dimensional “liver-on-a-chip” 
constructs to screen for the hepatic toxicity of 
compounds used in food additives, nutritional 
supplements, and cosmetics.

Testing Genetic and Cell-Based Therapies

The functional integration of transplanted or-
ganoids (or cells from organoids) has been ob-
served in the colon,84 liver,17,18 pancreas, retina,25 
and thyroid.85 In these studies, different levels 
of evidence were used to support functionality, 
including morphologic similarity to native tis-
sues,4,21,25,84 connection to the host (through the 
vasculature4,21 or synapses25), epithelial permea-
bility,84 and rescue from a disease or injury.18,85 
Genome editing has also been used to correct 
mutations in CFTR and to restore the functional-
ity of the CFTR protein in colon organoids de-
rived from patients with cystic fibrosis.12 Such 
studies suggest that organoids may be a source 
of cells in future approaches to cell therapy. 
However, more studies are needed to evaluate 
the efficacy and safety of such approaches. Ef-
forts to bring induced pluripotent stem cells to 
the clinic could offer guidance in this area.86

Ch a llenges a nd Fu t ur e Uses

Despite the progress in organoid research, the 
field still faces challenges, including the vari-
ability and lack of standardization in methods. 
Fortunately, biologic and bioengineering solu-
tions are being developed at a rapid pace to ad-
dress these issues.

Extracellular Matrix and Cellular 
Composition of Organoids

Variability among animal-derived and chemically 
undefined extracellular matrixes (e.g., Matrigel, 
from Corning Life Sciences and BD Biosciences87) 
could confound high-throughput screens.88 Risks 
from such xenobiotics may also be problematic 
when translating basic research findings to 
clinical applications. In addition, the isotropic 
Matrigel is unable to recapitulate the dynamic 
changes in biomechanical forces in vivo. To ad-
dress these issues, synthetic matrixes that can 
change their biophysical and biochemical prop-
erties on demand are being developed.89 Extra-
cellular matrix engineering may not only replace 
xenobiotics but also elucidate the ways in which 
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tissues are organized, thus improving the repro-
ducibility of organoids.

The lack of representation of important phys-
iological processes, including vascularization and 
innervation, could be a hindrance to organoid 
research. Although several types of organoids 
become vascularized on transplantation,4,17,21,90 
reports of in vitro organoid culture with a vascu-
lature are lacking. Stroma–tumor interaction is 
important for tumorigenesis and metastasis.91 
Various stromal components, such as immune 
cells92 and endothelial cells,93 have been added to 
tumoroids for the purpose of studying tumori-
genesis. The peripheral nervous system plays an 
integral role in tissue homeostasis and repair94 
but is rarely represented in organoids. To this 
end, a recent study generated human intestinal 
organoids with a functional enteric nervous sys-
tem by including pluripotent stem-cell–derived 
neural crest cells.95

The source material used to create organoids 
may introduce variability.5,29 Small but detectable 
variations exist in organoids derived from patient-
induced pluripotent stem cells,29,96,97 which differ 
depending on the age and genetic background of 
the patient and the culture protocol used by the 
research group. CRISPR-Cas9 (clustered regularly 
interspaced short palindromic repeats) technol-
ogy can be used to engineer organoids with an 
isogenic background, thus reducing variability 
(Table S2 in the Supplementary Appendix). Other 
innovations (e.g., the use of a bioreactor30) may 
minimize variation in culture conditions. Tumor-
oids generated from patient tumors vary consid-
erably, probably as a result of the heterogeneity 
of tumors.5 Medium composition may also af-
fect the growth of tumor and nontumor cells 
differently.11,98,99 Systematic studies of a large 
number of tumoroids (e.g., the TUMOROID 
trial [NL49002.031.14] and the SENSOR study 

[NL50400.031.14; EudraCT number, 2014-003811-
13]) may answer questions regarding how such 
variability may affect clinical application.

Tissue Architecture of Organoids

Organoid cultures rely on self-organization that 
sometimes results in abnormal tissue architec-
tures (e.g., the closed lumen of intestinal organ-
oids6). Tissue architecture may be improved by 
providing a scaffold made of biomaterials or 
printed with bioinks.100,101 The latter technique 
has been used to print three-dimensional renal 
proximal tubules in a perfusable tissue chip.102 
Such “organ-on-a-chip” systems that combine 
microfluidics and organoids provide precise con-
trol over biomechanical variables and the deliv-
ery of bioactive molecules. These systems may 
facilitate real-time monitoring of single cells, 
cell–cell interaction, and metabolic processes at 
the tissue level. However, such real-time moni-
toring capabilities are generally lacking in cur-
rent studies of organoids. The development of 
such techniques will necessitate close collabora-
tion between engineers and developmental biolo-
gists. In the future, mature commercial platforms 
for biomaterial and bioprinting may accelerate 
the pace of discovery. Organoid technology has 
been effectively integrated with other cutting-
edge technologies (Fig.  2). The resolution of 
current challenges may further increase the preci-
sion with which organoids recapitulate human 
physiological processes.
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