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The present lecture notes are the supplementary material of a 4 hours course given at the University of
Trieste in December 2019. Most of the material comes from the monographs [4] and [5].
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1 Introduction
The incompressible Euler equations describe the motion of a perfect fluid and consist of the equations

oiu+u-Vu+Vp=0,
divu =0, (E)

Uli=g = Ug.

All along the present lecture notes we suppose (£,x) e Rx R4, d >2, u:R"*? - R% and p: R'*4 - R. Itis
easy to see that we can suppress the pressure since

—Ap =0;j (ui uj),
so that if u exists and it is sufficiently regular p can be determined solving the above equation.

The study of the equations (E) has a long tradition, they have been derived at first by L. Euler in 1757 and
they are the second PDE ever been derived (the first one is the 1D wave equation derived by D’Alembert in
1747). Despite being a very classical topic in PDE the mathematical understanding of (E) when d > 3 is far
from complete, even though remarkable advances have been proved in recent years.



1.1 Preliminaries

Definition 1.1. For any s € R let us define the Sobolev space H*(R“) as the closure of Schwartz functions
w.r.t. the norm

0B gy = [, 1+ R 101 de.
We denote H® = H* (R?).

Notation 1.2. With C we denote a strictly positive constant whose value may vary from line to line and
which is independent of any parameter of the problem, the explicit value of C may vary from line to line.
We use the notation A Bif A< CBand A~Bis A< Band B S A.

Local solvability of (E) in any dimension is well understood, cf. [4,)5], here we propose a statement in the
functional framework of Sobolev spaces H* (R%):

Theorem 1.3. Let s > % +1 and let ug € H* (RY), there existsa T 21/ || Uoll s (mey and a unique solution u, p
of @ in [0, T] x R? such that
wVpeC ([0, T); H' (Rd)).

1.2 Thecased =2

When d = 2 the mathematical theory of (E) is remarkably better understood, the main reason of such stark
difference is that the vorticity
Q=Vu- VT R4 — R4

when d = 2 is the scalar quantity
w = —62u1 + 01 Us.

An explicit computation shows that Q evolves accordingly to the law

0;Q+u-VQ+Q-Vu+(Vu)T-Q=0, (1.1)
while w solves o
—_——
orw+u-Vo+wdivu= | (1.2)

orw+u-Vo=0

so that w solves a transport equation, while in the equation for Q the term
>=Q-Vu+Vu)T-Q,

known as stretching term allows for accumulations of vorticity. This is a key feature for the incompressible
Euler equations and it is the mechanism with which (it is conjectured) finite-time singularities are formed.
In such direction we state the much celebrated Beale-Kato-Majda criterion

Theorem 1.4. Let u the unique solution of (E) identified in Theorem and assume Vug € L! (IR{d), if T is
finite and such that

T
fo 1Q(0) 1 di < 00,

then u can be continued beyond T to a H* (R?) solution of (E).

Using Theorem (1.4) and the fact that w solves a transport equation it is possible to prove the following
global result in the 2D case:

Theorem 1.5. Let d = 2 and let u be the unique solution stemming from ug € Hn WV, s> 2, then u €
C (R; H®) and there exists a ¢y = ¢y (up) > 0 such that

2 2 cot
e (D15 < luglizys e,

forallt>0.



2 Yudovich solutions

It is clear that[1.5]asserts that, given a sufficiently regular initial velocity field, there exists a unique global
solution of (E) which at all times it is as regular as the initial data. Such solution hence do not exhibit loss
of regularity, and the main ingredient in the above theory is the requirement of a initial velocity flow that is
in CY!. Let us now consider a smooth subdomain D of R? (w.l.0.g. we may assume Dy to be the unit disk),
and let us assume

wo =V xuy="Tp,.

It clear that the gradient of the initial velocity flow Vi is not C%! and in fact it is discontinuous in the nor-
mal direction of the interface, thus the theory above does not apply in such setting.

The construction of global-in-time weak solutions for under the very mild assumption that wg €
L' N L is a classical result due to Yudovich (see [6]) and it is the main goal of the present section.

2.1 Weak vorticity-stream formulation of the Euler equations

Notation 2.1. Given a scalar smooth function f = f (¢, x) and a smooth vector field u = u (¢, x) we denote
th = atf‘f‘ qu.
The evolution equation for w writes hence as

Dt(l) =0,
wlt:o = Wo,

moreover since the velocity flow is isochoric we know that there exists a scalar function ¥ known as the
stream function such that

_ol [ 02
“=v W—( 01 )W»

thus Ay = w hence formally we have that

u=vty
=VAlw
=—V~ | loglx—y|l w(y)dy,
o glx—y| w(y)dy o1
1
1 f (x-)
=— | —=wl(y)dy,
=K*w.
The relation is known as Biot-Savart law
We are now in condition to give a suitable definition for weak solution for the Euler equations:
Definition 2.2. Let wg € L' N L™, we say that the couple (w, u) is a weak solution of (E) if
o we L™ ([0,T];L' n L) forany T >0,
o u=Kxwandw =V x u,
o Forany ¢ € C' ([0; T1;C}) the following equality holds true
T
fa) (T,x) ¢(T,x) dx—fwo (x) 0, x)dx = [ fw(t, x) Dyp (¢, x)dx dt. 2.2)
0



2.2 Existence of weak solutions

The result we want to prove is hence the following one:
Theorem 2.3. Letwy € L' N L™, then there exits a unique solution of () in the sense ofDeﬁnition

Let us denote with 7 a smooth, positive function supported in B (0, 1) with unitary total mass, and let us
define the mollification

e 1 X—
wo(x)=g—2fn( o (y)dy.

Let us denote with n (-) = £ 725 (-/¢), for any p € [1,00] we have indeed that

logll s = In° * w0l ;» < |0l lwollzr = |0 11 lwoll = lwollp, (2.3)
moreover
g wol| 1 <= 0. (2.4)

Let us prove (2.4), since wy € L' we know that there exists a sequence of smooth functions J)g which con-
verges to wp in L'and a.e. (up to non-relabeled subsequence) when § — 0 so that

0§ = ol 2 < |wf -3

-5
nt ”wo @oll 1

so that for any g there exists a § = § (o) s.t.
€0
I S EN
Next, since 1 has mass one and is identically zero outside B (0, 1) we have that

”(Z)g — Wy

wg(x)—a)g(x):g_lzfmm (x;Y)(wO(y)_a)g(x))dy,
%[ )b -atm)ar 5 [ a(=2) (@ 0)-afo)a

=hHx)+L(x),

using Young inequality it is immediate to prove that
~ €0
11l < [ s |wo -8 < 3

while since the function (Dg for 6 fixed, is uniformly continuous we have that there exists a € = £ (¢g) > 0 such

that e
@ (1) -af 0| < 3,

thus we proved (2.4).

Theoremassures us that there exists an w® stemming from wj, that solves globally D;w® = 0, moreover
uf = K x w? solves (E) with initial data ug =Kx wg globally-in-time. The couple (w?, uf) indeed solves (2.2).

Proposition 2.4. Let (w®, u®) the global solution stemming from the mollified initial data wg, the following
uniform bounds hold true forany t >0

1.
[ (£, ]| joo S0 (8] 1 p0 S ol prnree (2.5)

2. Thereexistsaw (t,-) € LY N L*® and u = K * w such that

w0t (1) =% 0wt in L}, 2.6)
ul (1,) =2 ut, ) in L2 2.7)

Using the result stated in Proposition [2.4]it is a simple matter to prove that the limit functions (w, u) are
indeed weak solutions of the incompressible Euler equations. In particular given a test function ¢ we want
to prove that

T
f f(wf(t,x) U (£,%) — (1, %) u(t,x)- Ve (t,x) dx dt >0,
0

thus the above limit can be proved using the results of Proposition[2.4/and we conclude.



2.3 Proof of Proposition 2.4]

In the present section we prove the key technical results stated in Proposition|2.4

2.3.1 Proof of of Proposition[2.4} point[1]

The proof of the inequality
o (&) | e S NGl e S llwollzinze,

follows from the fact that the stransport equation conserves L”, p € [1,00] norms and the properties of
mollifiers proved in (2.3). Let us now denote with y a Cg° radial cutoff which is supported in B (0,2) and
1 (x) =1, ¥ xe B(0,1). Next, since u® = K x w® we write is as

u® (t,x) = uj (¢, %)+ u5 (£, %),

where

we have that

([ PN P2 Y 2 P luall o < NO=2) Kl ool 1

from which the inequality
(L0 Sy T2 PR

is immediate.

2.3.2 Proof of of Proposition[2.4} point[2]

The proof of the second point is longer and more involved. Let us denote with X, the particle-trajectory
flow generated by u*, which is the solution of the ODE

d
EXE(t,a):ug(t»XE(t’a))) XE(a»O):ay

and let Y, = Y (t,-) be the inverse flow map at time ¢, i.e.
Xe (8, Ye (8,X) = x, Ye (£, X (8, @) = a,

which exists since solutions stemming from mollified velocities u; = K * (n° * wp) exist globally. We can
think of Y; (£, x) = Y, (¢, x; 1) | ,_, where

Vet xt)=Xe (t— 1, ), Xe (1, @) = x.

Additionally for any ¢ € [0, T'] the backward trajectories solve the ODE

%yg (¢ xt)=—u (e -1, Ve (¢, x51)), Ve (0,%;8) = x. 2.8)

Since the solution is unique we can write w* along the flow as
o (t,x) = w§ (Ye (8, X)).
Assuming there exist a limit (in €) inverse flow map Y it would be natural to define

w(t,x) =wo (Y (1,x)),

(2.9)
u(t,x)=Kxwl(tx)),

and check that the convergence stated in Proposition[2.4]hold for these limit functions.

Before we proceed in such direction let us state the following potential-theoretic estimates for the ve-
locity flow



Lemma 2.5. Letw® (t,-) € L' n L™ forany t € [0, T) and uf = K * w¢, then uf is quasi-Lipschitz, i.e.
|u (£, x1) = u® (x2, | < Cllwoll 1o |21 = x2] (1 - min {0, log|x — x2l}).
The following result is a consequence of Lemmal2.5

Lemma 2.6. Let X and Y, be respectively the forward and backward particle flow generated by u®, let

B(t) =exp{-Cllwollp1nr t},

the following hold true for anye >0 and t € [0, T

| X (£, a1) — X (£, a2)| < Clay — a PP, 210
|Ye (£, x1) = Ye (£, %2)| < Clxy — /PO '
while forany0 < HhH < L <t
|Xe (11, @) — X (2, )| < Clty — /P10 o1
|Ye (£1,X) — Ye (£2, X)] < Clty — 1]PD. '

The proofs of lemma2.5/and2.6|are postponed for the sake of readability.

Let us hence at fist prove that the limit flow map lim, Y exists; we use (2.5) and the fact that for any
t€[0, T] the application x — Y (¢, x) is measure-preserving to argue that

t
|Ye (2,%) — x| = | X, (1, @) —al = f u® (Xe (¢, a),t")dt’| < CT,
0

uniformly in ¢, hence (¢, x) — Y (¢, x) — x (i.e. the flow deformation) is uniformly bounded. From and
we deduce equicontinuity (globally) in space-time, i.e.

| Ye (x1, 1) = Ye (X2, 02)| < | Ye (%1, 01) — Ye (X1, 2)| + 1Y, (1, £2) — Ye (X2, 22)1,
Sl - 11PD 4 | x) — xPO

thus we can invoke Ascoli-Arzela theorem to assert that for any R > 0

e—0

v, =%y, inL°°([0, T] xm).

CLAIM: For all ¢ € [0, T] the inverse flow map Y (t,:) is a measure-preserving map, i.e. for any f € Lt

S (x,0)dx= [ f(x)dx. i

For a proof of the claim we refer the reader to [4} p. 316].

We can now define the limit vorticity and velocity via the relations provided in (2.9), then we have that

o (£, = ()| 2 < | w§ (Ye (£,) —wo (Ve (£,) || 11 + lwo (Ye (£,)) —wo (Y (£, D1,
=JT () + 75 (1),

and since Y; is volume-preserving and thanks to (2.4) we obtain that J f (1) 0, 0. Since wg € L' we know

that there exists a sequence of smooth (@9) 5., s-t. [|wo =@ ||, <&, hence

Bw=Y 5%,

j=L23
and
J52 0 = oo (Ve (6,0 - ) (Ve (1,9,

T35 (1) = ng (Y (£,)) — @) (Y (£,)

L’
7550 = |88 (v (6, N - wo (¥ (1,9)

L’



9
0

6 > 0 we have that d)g (Y (t,) £20, (I)‘g (Y (t,) point-wise, an application of Lebesgue dominated conver-
gence concludes hence that

The first and third term tend to zero as § — 0, so the only term to study is ]g’g (1), since @¢ is continuous for

w8 (Ve (2,9) = w0 (¥ (£, ;1 = 0.
It remains now to prove only that u® — win Lj> , let us denote with y the standard radial cutoff and with
x5 (x) = y (x/0), so that we have the following
|uf (1, 0) — u(t, )| <|(xsK) * (0° - ) (1, 0|+ |((1 - x5) K) * (0° - 0) (£, %),

and
(1K) 5 (@ - 0) (9] < oK o - 0] o < C Lok 220,

£—0

(1= x0) K) % (0 — ) (&, 0] < [ (1= 26) K| 1 [0 ~ @[ < €l ~ 0], =0,

thus we conclude.

2.3.3 Proof of Lemma[2.5]
Recall that
uf (x) = Kxof (%),

1 [(x—2)*

2n ) |x-—zl?

ot (2)dz,

and letus select x # y s.t. d = |x— y| < 1, we have that

|u£(x)—u£(y)|<(f +/ +/ )|K(x—z)—K(y—z)||w5(z)|dz:]1+]2+]3.
R2\B(x2) JB(x2)\B(x2d) JB(x2d)

We use the identity
2
x oy |-y
K@-Ky)|~|—-—5| = :
so that
lw® (2)]

YRSIEE dz 5 g lx-yl.

R\B(x2) |x -zl |y — 2]
Next we study J», we use the mean value theorem in order to argue that
|K(x—2)-K(y-2)| < sup |VK(x—z+&(y—x))||x-y| < LyL,
Ee(0,1) |x -zl
so that

dz

B(x,2)\B(x,2d) |Xx—z

2dr
S < lolie o] [ ol -1 0 gl o).

The last term can be bounded as

1
1S [

3d
— 4+ — |dz< £ oof dr < £ . _ ,
B(x,2d)(|X—Z|+|y_Zi) z 5 [|leg]l A r <ol e |x =]

the bounds are uniform in &.



2.3.4 Proof of Lemma[2.6]

Let us recall that Y (£, x) = Ve (¢, x; )| ,,_, and that

Ve(t, %0 ) =X (t -1, ), x=X(t,).
So that we deduce
d
I (Ve (¢, a1;8) = Ve (a5 0)) == [uf (1=, Ve (V' ar;0)) = uf (£ = ¢, Ve (¢, a5 1)),

so that we obtain the differential inequality
% | Ve (£, a158) = Ve (¢, az; 8)| = [uf (t =1, Ve (¢, @15 1)) — uf (1= £, Ve (¢, a2; 1))
Let us denote with g (¢') = | Ve (¢, a1; £) = Ve (¢, @2; t)|, using Lemma2.5|we deduce that
0 () < Claolings e () (1 -minfo,ee ().
Let us now assume w.l.o.g. that g, (') € [0,1] so that the above differential inequality simplifies to

)

1+log

d
a@e < Cllwgll g¢

Setting z. = logp, we deduce the linear ODE

dz,
—<C o (1= 2z¢),
T lwoll oo (1 — 2¢)

which can be solved providing the bound
0c () < € pe (P Cllenlier},
Let us now prove 2.11), set a,x € R? and 0 < f; < & < t such that x = X, (f», @), we want to estimate
| Ye (11, %) — Ye (12, X)].
Let us define a* = Y, (f», x; t» — t1), we indeed have that
a=Ye(a—t,a%6-t)=Y:(tr—t,a*),
so that we can use to deduce that

|Ye (11, %) — Ye (£, 0)] = | Ye (01, ) — Ye (11, @*)| < | — @ PP = X, (2, @) = Xe (11, @) PO

t> B(1)
f ut (¢, Xe (¢, @))da|  <Sltp—11P0,
n

2.4 Uniqueness of weak solutions

Before starting to prove uniqueness of weak solutions let us remark that that since u(t,-) € L* for each
t€[0,T] there existsaL =L (T) s.t.

J suppw(t,)=B(O,L).
te[0,T]

We will use the following technical lemma whose proof is omitted:

Lemma 2.7. Let u be weak solution of constructed in Theorem then for each p € (1,00)

IVullr < Co (lwoll ) p.



Let uy, up be the solutions of (E) stemming from the same initial data ©y and let us define
E@®) = lluy (6,) = uz (1,113,
since the evolution equation for w = u; — uy is
dw+w-Vw+uz - Vw+w-Vup +V(p1—p2) =0,

we easily deduce the differential inequality

p-1
B Pt
E’(t)SfIVuz(t,~)IIW(t,-)|2dx<Cop(IIW(t,-)IlfoolfILUIzdx) " <MpEW®"7.

It is well known that the differential equality f' = f%, a € (0,1) has no unique solution stemming from
zero, but we know that E (¢) = (M) si a solution that is maximal in the sense that E () < E(t). Set t* s.t.
Mt* < 1/2 and we obtain that

Em<2?2=0, in|o,¢*],

concluding.

3 Vortex patches

Let us at first introduce the problem we want to study: Let us consider a domain Dy c R? such that dDg
is a bounded, simple C Ly = clr (§1), Y > 0 curve. Let X be the (unique) Yudovich flow stemming from the
initial vorticity wg = 1p,, accordingly to Theorem[2.3|we have that if D (¢) = X (¢, Do) then the vorticity at time
¢ will be simply the deformation of wg by the flow X (#), i.e. w (t) = 1p(y), so we ask the following question:

Question. Is D(t)aC LY curve for any ¢ > 0?

Such problem has a long history and it was considered to be false due to some numerical simulations
pointing in that direction, Majda in [3] proposed the vourtex patch problem as a model of inviscid small
scale creation and finite-time singularity formation.

The question has been definitively settled by J.-Y. Chemin in [2] (we refer as well to the more geometrical
approach of Bertozzi and Constantin [1] which is the one adopted in the present notes) which proved, by
means of paradifferential calculus tools, that despite Vu is discontinuous in the normal direction of the
interface it is in fact continuous in the tangential direction to the interface, thus exploiting such observation
in order to prove that the curvature of the interface grows, at most, as a double exponential in time.

3.1 Global regularity for Vortex Patches

A fundamental quantity in order to understand the evolution of an Euler flow is Vu, where indeed due to
the Biot-Savartlaw u = K *w where K is —1 homogeneous function. Let us recall again that the velocity flow
u is at most quasi-Lispschitz (or log-Lipschitz) in the regularity setting of Yudovich solutions, so that Vu has
to be understood in the sense of distributions. We will compute explicitly Vu in the seeting required.

Definition 3.1. Let f € C® (R?\ {0}) n L (R?) the Cauchy principal value integral is

p.V.ff dx = lim fdx.

e=0"Jyx>e
Let now K be an homogeneous 1 — d function defined in R, i.e. K (Ax) = A1~9/C (x). Let us remark that
Kel. (R%), let us consider a test function ¢ and let us compute the distributional derivative of K, since
Ke LllOC (IR{d) we can apply Lebesgue dominated convergence and Green formula in order to obtain that

<’C,6j(P>= lim ICaj(p dx

e=0"Jx|>¢

_ lim [—f 0k ¢dat [ Ko Lan's|.
|x|>€ |x|=¢ | x|

e—0*

9



A change of variables moreover shows that

e—07 |x|=¢

lim Ko %d?—[l(s):<p(0)f K (x)x; dH' (s).
|x|=1

~~

we have hence computed the derivative in the sense of distributions and we have that

<aj/<,¢>=-</c,a,.¢>=p.mfaj/c¢dx-cj<50,¢>. 3.1)

Definition 3.2. Let 7 be a —d homogeneous function smooth outside zero with zero mean value on the
unit sphere $97!. Let us formally define the operator

TP (x) = p.V.fj(x—y)gb(y) dy. 3.2)

An operator of the form will be always referred as Singular Integral Operator (SI0).

We apply and we compute Vu (recall that K (x) = x/ |x|):

1 0 -1
Vu(x) = p f I (x). (3.3)
I—ﬂ 1o
The 2 x 2 symmetric matrix o has the explicit form

2_ 2
22122 2 zl)

1
o(z)= —(
1212\ 25 -2}

z] —2z12

We will never use the explicit formulation of o, but only the following properties:
e Itis a smooth function homogeneous of degree zero,

e it has zero mean on the unit circle,

* 0(-2)=0(2).
Let hence Do be a CY patch, this means that there exists a ¢ € C1Y (R?) function such that
Do ={x : ¢o(x) >0}, 0Dg ={x : o (x) =0}. (3.4)

Let us now ¢y be advected by the flow, this defines a time-dependent function ¢ satisfying the evolution
equation
0rp+u-Vo=0,
(P| t=0 = Po-

The existence of weak solutions for the equation (3.5) is guaranteed by Theorem[2.3] and in fact

(3.5)

@ (t,x)=¢o (Y (t,x)),

where Y is the backward flow generated by wg = 1p,.

Since ¢ is initially equal to ¢ the patch D () will be defined at later times as a level set of the function
@, i.e.

D) ={x: ¢(t,x) >0}, 0D (1) ={x : ¢ (t,x) =0}.

Let us remark that the evolution equation for ¢ (3.5) can be expressed in terms of ¢ only since using the
Biot-Savart law

1 (x-y)"

u(t,x)=
2n Jpa |x—y[®

(3.6)

10



Let us now denote with W = W (t,x) = Vi(p(t, x) and Wy (x) = W (0,x). We remark that Wylsp, is a
divergence-free vector field tangent at the boundary of Dy, moreover W solves the equation

OW+u-VW=VuW. (3.7
Let z(-,0) € C17 (S!;R?) be a parametrization of 8D, i.e.
6D0={x€[R2 x=2z(a,0), a€§1},

and let us denote with z (a, t) = X (¢, z(a,0)) the Lagrangian parametrization of the boundary of the patch.
remark that z, (a,0) = W (z(«,0),0) and z, (a, t) = W (z(a, 1), 1), so it is sufficient to provide bounds for the
Eulerian field W in order to control z

Notation 3.3. > Letus recall that the velocity flow of Yudovich solutions is L, so that if wy = 1p,, and since
the vorticity is transported by the velocity flow, then D (#) is bounded set for any ¢ > 0. We denote with

L:L(T):inf{R>o(D(t)cB(o,R), v te[o,T]}<oo,

> We use the notation
Vi = xiE%%W‘P ()],

[V (x) - Voo ()]

> We use the notation |V(p|y = |V(p|c-y =s

lx—y"
> Given A, B < R? and ¢ € R? we denote with
d(c,A)=infd(c,a), d(A,B)= inf d(a,Db).
acA (a,b)e AxB

The following result is the main result result of the present section:

Theorem 3.4 (Global regularity for Vortex Patches). Let Dy be aC'" patch and ¢o € C1Y (R?) function satis-
fying 3.4) which is regular on Dy, i.e.
|V(p0|inf =m>0,

then there exists a
C= C(L, |V(po|y, Vol oo |V(P0|inf) >0,

and a Cy > 0 such that has a unique solution defined in R, x R? and such that
1V (£, )|l g0 < |
Vo), <|
IV ()| 1o < [ Vpoll o €
|V(,0 (£,7) |inf > |V(p0|1nfe ¢

Ve (0, €,
v(poi e(C0+y)e

NN

The main technical result required in order to prove Theorem3.4]is the following control of the L> norm
of Vu in terms of the CbY norm of ¢:

Proposition 3.5 (Key technical Proposition). Let u be given by and let D be the level set of ¢, the follow-
ing bound holds true

IVullp~ < C

L|V<p|y) 58

|V(p|inf

1+log(

11



Let us recall that we can decompose Vu is symmetric and anti-symmetric part as it was done in (3.3),
thus we only need to estimate the symmetric part and we only need to control the case in which x is close
to the boundary of D as often happens in computation of SIO.

Let us select a xp € R?\ D and let us denote
d (x0) = d (x0,0D),

let us define moreover the cutoff distance
— |V(p|inf
Vol

and let us define the tubular neighborhood of 6D

=%}

73/2Z{XO€R2 2 d(xp) < 5}
Let xo € 75,2 and let us define for any p > d (xp) the set
Sp(xo) ={se€S' : xo+pse D},

i.e. the set of directions s.t. xp + ps € D. Let now X = X (x) € 0D be s.t. |x9 — X| = d (xp), and let us define the
semicircle
T (xp) ={seS': Vo () -s>0},

and the symmetric difference
Ry (x0) = [Sp (x0) \ Z (x0) ] U [Z (x0) \ Sp (x0) ] -

The key technical point is that, denoting with ! the Lebesgue measure on S', as d (xy) — 0 the quantity
H' (R, (x9)) — 0 at a controlled rate, i.e.

Lemma 3.6 (Geometric Lemma). The following estimate holds true

H' (Rp (x0)) <27 | (1+27)

4

d
‘0 oy

forp > d(xy) and d (x¢) <0/2.

We postpone at the moment the proof of Lemma[3.6/and we show to use it in order to prove the technical
estimate (3.8).

Recall that we want to provide a bound for

xo—
I(xp) = —p f | |
Xo—Yy

and we suppose xp € D. We split the integration sets in points "close" to xy and far ones, i.e.

I (x0) = I (x0) + I» (xo),

1 O\ Xp—
Il (xo) = —pr (O—J;)dy’
27 Dnf|xo-y|<6} |xo—y|

1 O\ Xg—
IZ (xo) =—pW (O—J;)dy
2m Dn{lxo-y|>6} |xo— y|

Let us at first bound I, recalling that we suppose that D < B (0, L) we have, passing to polar coordinates

o (xo—
f —( 0 );)dy',
Dnf|xo—y|>6} |x0—y|
Ldp L
cof 2 <cuglt)
5 P &5
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We study now I; and we write it in polar coordinated centered in x( obtaining

I (x0) = f f 7(0e%) 1301 () dp,

where the integration set in the radial direction is an unspecified and irrelevant set which in bounded in
B (0,0) since we are integrating in the tubular neighborhood 75,,. Let us suppose now that pg < d (xg), this
means that B (x, pg) < D, so since o has zero average on S! we have that

fgl U(poeis) dH! (s) =

b . d
I (x0) = f f o (pe’) an! (s)] by
d(xp) 1J8p(x0)

where again p < ¢ is irrelevant in our context. Next let us consider the semicircle Z (xp), since we are consid-
ering xo € D we have that X (xo) < R, (xo), moreover since 0 (z) = 0 (-z)

fZ(on U(peis) dH 9 = %fz(xo) U(peis) +U(_peis) (9 :fB o dH' (s)=

(x0,0)

p . d
1) (xo) =f f o (pe”) dH! (s)] i
d(xp) LIS, (x0)\Z(x0)

Since o is homogeneous of order zero the bound

so I; becomes

so we obtained that

& H(S \Z
|17 (x0)| <f (Sp () \ 2 (x0)) d
d(xo) P

The above estimate is true when x € D, if xo ¢ D we have

& HY (Z(x)\S
|I1(x0)|<f (2 (x0) p(XO))d

)

d(xo) P
so that the bound s . ( )
H* (R, (x0)
|1 (x0)] < f —FP""" dp,
d(xo) p

covers both cases. We use now the estimate provided in Lemma|3.6/and we have that

o 1(d(x0) (pYY 11 1
II(x)|<f —( +(= )d <-4+ 1——)<c,
P s o U p (5) R Y

which we combine it now with (3.9) and we obtain

L|Ve
11(xp)| <C | |Y)

1+10g(|

(p|inf

Proposition 3.7. Let W be a divergence-free vector field tangent to 6D and let u be give by the Biot-savart law
(3.6), then
o(x-y)

1
Vu(x) W=—pv. | — (Wx)-W(y))dy.
R

Proof. Let us exploit the following identity

o(x-y)

vy (Vf,log|x—y|) = W»
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so that integration by parts give

1 L _ L :
gp.v.fvy(vy log|x—y|)W( )dy = gl_}ofmﬂx y|>£6yl. (ayjlog|x—y|)Wl(y)dy,

N Lol (XY
B zﬂ}}_rgfm{|x_y|:£}vylog|x VW) (=) dy

1
S f ot —v|a,. Wi (y)dy,
27 60 Daflx-y|>e} ¥ o8| ylw ¥

thus since W is tangent to 0D we obtain that

1 . 1 xX-y _ 1 0 -1
_glﬂfl)n{|x_y|:£}Vylog|x—y|W(y).( . )dy_ 21]D(x)(1 0 )W(x),

which in turn implies that

Vu(x) W(x) = ( pr 1(0 _l)ﬂn(x))W(x),
I—yl Lo

—p.V.f %T) (W) -w(y))dy

1 0 1
p f ’x y| dy+ 1]D(-x)( 1 0 )W(x))

v~

=0

concluding.

We need the following commutator estimates in Hélder spaces before proceeding

Lemma 3.8. Lety € L, f € C, K a Calderon-Zygmund kernel homogeneous of degree —d with zero mean

on S and such that |VK)| < |x|~@*D) ot

G =pv. [ K(x=7)(f 0= (1) w () d,

then
IGly < Co(v,d) ([K* vl 1o + W] 1) | £1, -

An application of Lemma 3.8|gives the following result

Corollary 3.9. Let u and W be as in Proposition|3.7, then
IVu Wi, < CoIVul = IW1, .
We can now finally prove the required global bounds

Proposition 3.10. Let ¢ be the solution of in[0,T], T < oo, then we have
t
vho el < V4ol e (Co+ 1) [ 19u (e, ) mae},
t
174069 < 1900l exp] [ 17(2.)] e},

t
740 6> [Vl oo { - [ I7a(e. )] .

(3.10)

(3.11)

(3.12)

(3.13)

Once Proposition is proved Theoremfollows; we plug the estimates (3.11) and (3.13) in (3.8) and

apply Gronwall lemma deducing the bound

IV (t, )l oo < IVl oo €€,

14



which we apply to (3.11)-(3.13) obtaining that
74069 s < 9 g0l el D, 9406 > [T

Let us denote with w (t,x) = W (t, X (t,x)) = V*¢ (t, X (t, x)) and we rewrite (3.7) in Lagrangian coordi-
nates we obtain that

iW(z‘,)C) =Vu(t, X (t,x) w(tx),

dt
thus multiplying the above equation for w/|w| and applying Gronwall inequality we obtain that
t,
exp{f|Vutth|d}|w(—x)| {f|Vutth|dt}
lw (0,2
proving (3.12) and (3.13).

We have to prove now only (3.12), we have that
t
W (1, x) = Wy (Y (¢, X)) +f Vuw)(¢,Y (r-1,x))dr,
0
sothatifx # y

t
W (t,x) =W (t,y)] < |Wo (Y (£,0)) - Wy (Y (£,5))] + f Vuw) (£, Y (t—1t,x)) - VuwW) (¢, Y (t-1,y))d|,

< Woly IVY (5,91 |x = y|" + f|VuW N ANVY (2= 7)o [x = y]7 d2"

Since for any ¢' < t we have that Y (¢, x;t) = —u(t -, Y (¢, xt)), Y = Y|y, an application of Gronwall
inequality gives

t
IVY (£, x)| < exp{f ||Vu(t’,-)||Loodt'},

VY (t-1,x) {f IVa(e", ||Loodt"}

so we obtain that

t
W (0= W (5.9)] < Wolyexp {y [ ||w(rc-)||mdr/}|x—y|y

f VW (¢ exp{y/ IVu (e, ||Loodt”}|x Y7,
thus
W (2,9l < IWOIYexp{yfot||Vu(t',-)||Loodt'} +f0t|Vu W(t',-)|yexp{)ffﬂt ||Vu(t",-)||Loodt"}dt'.
Let us denote with Q (¢') = |Vu(#,+)| ., we use the commutator estimate (3.10) and we obtain that

t t t
W (t,)]y < IWolyexp{yf Q(t')dt'} +f Q(t')|W(t’,-)|Yexp{yf Q(t")dt"}dt',
0 0 v
we multiply both sides for exp {—y fot Q(t')dt'} and copute the evolution equation for

t
G(t)=|W(t,')|yeXp{Yf0 Q(t’)dt’},

which is )
G <IWoly+Co [ Q(F)G(K)ar,
0

so that an application of Gronwall lemma concludes the proof.
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