1 Fourier transform

Definition 1.1 (Fourier transform). For f € L'(R? C) we call its Fourier transform the

function defined by the following formula
i _d —itx
fie) = @nt [ e fayn

We use also the notation Ff(£) = F(€).
Ezxample 1.2. We have for any € > 0

2
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e = (2775)_g/ e e 5 d.
Rd

We set also
FHI(E) = (2m) 8 / €€ f () dar
Rd
We have what follows.

Theorem 1.3. The following facts hold.

~

(1) We have |f(§)] < (271)7%||f||L1(R47(C). So in particular we have

_d
[ F fll oo ra,cy < (2m) 2| fll 1 (rec)-

~

(2) (Riemann— Lebesque Lemma) We have 5lim f(& =o.
—00

(1.1)

(1.2)

(1.3)

(1.4)

(8) The bounded linear operator F : L}(RY,C) — L>®(R%,C) has values in the following

space Co(R%, C) c L=(R?,C)

Co(R%,C) := {g € C°'(R%,C) : lim g(z) = 0}.

(1.5)

(4) F defines an isomorphism of the space of Schwartz functions S(R?, C) into itself.

(5) F defines an isomorphism of the space of tempered distributions S'(R?, C) into itself.

We have F[O,, f] = —i&;F f.
(6) For f,g € L'(R%,C) we have

Theorem 1.4 (Fourier transform in L?). The following facts hold.



(1) For a function f € LY(R?,C) N L3(R?,C) we have that f € L2(R%,C) and ||f]| 2 =
| f|lz2- An operator

F:L*(R%,C) — L*(R%,C) (1.6)
remains defined. For f € L*>(R%,C) for any function p € C.(R%,C) with ¢ = 1 near
0 set

F1(©) = lim 2m) 7 [ O p@)p(a /Ao
A oo Rd
] . (1.7)
= lim (27 2/ e ST f(x)dx.
tment [ s

Then (1.7) defines an isometric isomorphism inside L*(R%,C), so in particular we
have

IFfll2@ae,cy = 1 fll L2 rac)- (1.8)

(2) The inverse map is defined by

*flz) = lim 71'_g ele®
Fe (@) = Jim ) [ € p(eole/ndg »

— i g i€ .
tmenf [ oo

(8) For f € LY(RY,C) N L?(RY,C) the two definitions (1.1) and (1.7) of F coincide (by
dominated convergence). Similarly, for f € L'(R%,C) N L*(R?,C) the two definitions
(1.3) and (1.9) of F* coincide.

The above notions extend naturally to vector fields. So we have a Fourier transform f —
7 from (L1(RY)? — (Co(R))", from (LA(RD)? — (L2(RY))? , from (S(RD)! — (S(RY))?
and more generally from (S'(R9))? — (S'(R?))?. Notice that all these maps except the 1st
are isomorphisms, and all are one to one maps.

The Fourier transform extends to the spaces LP(R?, C) for p € [1,2].

Theorem 1.5 (Hausdorff-Young). For p € [1,2] and f € LP(R? C) then (1.7) defines a

function Ff € LP (R, C) where p' = p%l and an operator remains defined which satisfies

1
o

—dli—
IF £l o rac) < (27) (5= MmeWm. (1.10)

We know already cases p = 2 and p = 1. This implies that Theorem 1.5 is a consequence
of the Marcel Riesz interpolation Theorem, which we discuss now.

Theorem 1.6 (Riesz-Thorin). Let T be a linear map from LPo(RY) N LP*(RY) to L% (RY) N
L1 (RY) satisfying
ITfllpe < M|l fllges for j =0,1.



Then fort € (0,1) and for p; and g defined by
11—t ¢ 11—t ¢

)

p po p1 @ Qo QO

we have
IT fllzae < (Mo)' ™ (M) (| fll Lo for f € LP(RY) N LPH(R?).

Proof of the Hausdorﬁ Young ’s Theorem. We have % = % +t fort = % — 1. Hence

1—t=2(1-1/p) = , and —;; L and

1

1l < @) 3 = 2m) 46 = 2my G2 = @m)G31) = (am =3,

Proof of Riesz—Thorin’s Interpolation Theorem. First of all notice that if f € LN LY
with a < b then f € L€ for any ¢ € (a,b). To see this recall Holder

1 1

1
HngLT < HfHLpHgHLq for - = -4+ =
r P q

Then, since 2 = L + L=t for ¢t € (0,1) from |f| = |f|!|f|*~! we have

a
I lze = NAA e < WA N Ay = 1N "

For p; = pp = p1 = oo (in fact we can repeat a similar argument for p; = py = p; any fixed
value in [1, c0]) we then have

ITFllzse < ITFIZar 1T F 7m0 < (Mo)' ™" (M) f ]| poe.

So let us suppose p; < oo. Then it is enough to prove
| / Tfgde| < (Mo) ™ (M| £l lgll oy = (Mo)'~*(M)"

considering only ||f|[r = [|g||,, = 1 for simple functions f = >7", a;xp; where we can

L%
take the Ej; to be finite measure sets mutually disjoint. If ¢; < oo we can also reduce to

simple functions g = ijv 1 bexF, where the F} are finite measure sets mutually disjoint.
The case ¢; = oo reduces to the case p; = 0o by duality. In fact, see Remark 16 p. 44 [2],

Il oqzee 2y = 1T e ot

Notice that if both py < oo and p; < oo and since we are treating qo = ¢1 = 1, then

| Tl geri ey = IIT ”L LOOL]) < M; and so one reduces to the case p; = oo. If, say,

po = oo, then [T zpr 1y = [T < M since p1 < oo, but ||T|zpro,r1y =

£(L%,LP1)
IT* | (zoo,(Looyy < Mo, so in other words, we don’t get a Lebesgue space. However, the



issue is to bound for f € LPPNL>® a T*f € L' N (L>®) = L' where ||T* f||(zooy = IT* f| 1,
so that one can still apply the above argument used for p; = oc.

Let us turn to the case p; < oo and ¢ < oo. For a; = €l%|a;| and by, = €¥*|bg| the polar
representations, set

U alz) . 1—2z z
fz = a;|°® % g with a(z) := —
z ];‘ ]| J ( ) Do P
N
1-8(2) . 1—
g, 1= Z ’bk‘ 1-p4(t) enkaFk Wlth l@(z) = qOZ i

k=1

Notice that since we are assuming ¢; < oo, then ¢; > 1 and so 3(t) = q—lt < 1, so that g, is

well defined. Similarly, since p; < oo we have «a(t) = plt > 0, so also f, is well defined.
We consider now the function

F(:) = [ Th.g.de

Our goal is to prove |F(t)| < My~ ‘M.
F(z) is holomorphic in 0 < Rez < 1, continuous and bounded in 0 < Re z < 1. Boundedness
follows from estimates like

R z
l|a; | Co) | =|a;| @  which is bounded for 0 < Rez < 1.

We have F(t) = [T fgdx since f; = f and g, = g.
By the 3 hnes lemma, see below, which yields |F(z)| < Mj 8¢ MJe? if the two estimates
below are true, our theorem is a consequence of the following two inequalities

|F(2)] < My for Rez =0 ;
|F'(2)] < M for Rez=1.

For z = iy we have for pg < oo

Loy L L) PO

m m Po P1 PO
Po atiy) |P =
| fiyl”* = E |aj| «® XEj = E |aj| Pt XE;
= j=1

yPt pl ) . f o — S | Pt — bt
aj| P70/ g Po XE; = § |aj] XE; = | fIP*.
Jj=1

I fiyllpo = (/R |f1y|p0d:z> = (/R f|’“dx> Yo (1.11)

Notice that we have also || fiy|loo = 1 when py = oo.

This implies



Proceeding similarly, using 1 — 5(z) = 152 + =, for z = iy and ¢, < oo we have

!
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’giy‘q(l) = Z

k=1

N
xe = Y [bk|%x, = lg|%.
j=1

This implies

S

1
/ a; /
gl = </ !giy\%da:> ° = (/ |g]qtdx> =1. (1.12)
R4 Rd

Notice that we have also ||giy|lcc = 1 when g, = oco.
Then
[F ()| < T fiyllao 9y ll gy < Mol fiyllpo gyl = Mo-

By a similar argument
| fraiy [Pt = [ f

/ /
9143y = [g[*

Indeed by a(l +iy) = % — ;,%

= a(1+iy) [P1 m m p1
il = Z o= XE; = Z |a;] Pt XE;
Jj=1 =
n m
Z“aﬂ'pl xg; = ) laj[Pxe, = |fIP*
=t j=1
. Lt ,
and by 1 — 8(1 +1iy) = ;r/lly _%
iy(i_i> 1 qi
/ 1-B(1+iy) |91 oe % | |
g1l =D |1oel O | xm =) el T bkl T xm = Y [bkl%xs, = [g]%.
k=1 P 3

Finally
w
3 q
PO+ i) < IT iyl lgvsisll < MillFrig s lgneill, = Ml FIE gl = M.

Here we have used the following lemma.



Lemma 1.7 (Three Lines Lemma). Let F(z) be holomorphic in the strip 0 < Rez < 1,
continuous and bounded in 0 < Rez <1 and such that

|F'(2)] < My for Rez =10 ;
|F'(2)] < Mj for Rez=1.

Then we have |F(z)| < My~ RZMEe* for all 0 < Rez < 1.

Proof. Let us start with the special case My = M; = 1 and set B := ||F||ze. Set he(z) :=
(1 + ez)~! with € > 0. Since Re(1 + €z) = 1 + ex > 1 it follows |hc(2)| < 1 in the strip.
Furthermore Im(1 + €z) = ey implies also |h(2)| < |ey| . Consider now the two horizontal
lines y = £B/e and let R be the rectangle 0 <z <1 and |y| < B/e. In |y| > B/e we have

B B
|[F(2)he(2)] < Teal < B/

On the other hand by the maximum modulus principle

sup |F(z)he(z)| = sup [F(z)he(2)] < 1,
R R

where on the horizontal sides the last inequality follows from the previous inequality and
on the vertical sides follows from |F(z)| <1 for Rez = 0,1 and from |h.(z)| < 1.
Hence in the whole strip 0 < x < 1 we have |F(2)he(z)| < 1 for any € > 0. This implies

lim [F(2)he(2)] = |F(2)] <1

in the whole strip 0 < z < 1.
In the general case (M, My) # (1,1) set g(z) := My~ *M7. Notice that

g(z) _ e(l—z)logMoezlong - ‘g(z)’ _ MOI_IM{C -
min(Mo, M) < |g(2)| < max(My, My).

So F(2)g1(2) satisfies the hypotheses of the case My = M; = 1 and so |F(2)| < |g(2)| =
M(:]l.—Re ZMlRez
, O
We consider now for A =3, % and for f € S'(RY, C) the heat equation
i

u—Au=0, u0,z)=f(x). (1.13)

By applying F we transform the above problem into

~

U+ EPa=0, u(0,&) = f(&).

This yields (¢, &) = e~ t€” F(¢). Notice that since f € §'(R%, C) and e~I'* € S(R?,C) for
any t > 0, the last product is well defined. Furthermore, we have (¢, -) € C°([0, +00), S’(R%, C))



and, as a consequence, since F is an isomorphism of S’(R%, C) also u(t, -) € C°([0, +o0), S’ (R", C)).
o~ T 2 o~ o~

We have e t€I* = G(t, ¢) with G(t,z) = (2t)_ge_%. Then, from u(t,&) = G(t,£)f(§) it

follows u(t, x) = (277)_%G(t, % f(z). In particular, for f € LP(R?, C), we have

| —y|?

u(t,z) = (47Tt)_% /]Rd e f(y)dy.

Notice that by (1.2) we have

d ||
(47rt)_2/ e it dr=1.
]Rd

We will write
|z —y|?

et f(x) = (47Tt)g/ e” 2t f(y)dy. (1.14)
R4

Notice that for p > 1 we have ||€tAfHLp(Rd) < ||l (mey and for f € LY(R?) and any x € R?

@) < ([ S wldn < [y = )

|2
We set also Ky(x) := (47rt)7%ef%. Then e f = K; * f. Ki(x — y) is the Heath Kernel.
As a corollary to the Riesz—Thorin Theorem we obtain the following result.

Corollary 1.8. For any ¢ > p > 1 and any f € LP(R?) we have

€ Flpagen < (@78) 270 1)Ly (1.15)

Proof. Notice that (1.15) is true for p = ¢ and for ¢ = co and p = 1. For ¢ > p =1
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< (4mt) 2 (1 q) = (4nt)” 20 with ¢’ = 4

el paspe < lle 1 =<

Next,f0r1<p<qwehave%:a+177a:%+%s.t.azq’(%—l)Then

_d _daf1_1
12 sz < €% ol 0 < (dmt)™ 57 = (amt) 2 (570,

Another application of M. Riesz’s Theorem is the following useful tool.

Lemma 1.9 (Young’s Inequality). Let

Tf(z)= . K(z,y)f(y)dy



where
sup / |K (z,y)|dy < C, sup / |K (z,y)|dz < C. (1.16)
TrERM n yeRn n

Then
ITfll ey < Cllfllppwny for all p € [1,00]

Proof. The case p = 1,00 follow immediately from (1.16). The intermediate cases from
Riesz’s Theorem. O

Theorem 1.10. p € L'(RY) be s.t. fp Ydz = 1. Set p.(x) := ¢ p(z/e). Consider
C.(R% C) and for each p € [1,00] let Co(R%,C) C),, be the closure of C.(R%,C) in LP(R?,C),
so that C.(R4,C), = LP(R?,C) for p < oo and C.(R%,C),, = Co(R%,C) & L>®(R?,C).
Then for any f € C.(R%,C), we have

. _ . p(md
lim pex f=f in L (R% C). (1.17)
In particular we have
. tA p . p/md
%{%e f=fin LP(R%C). (1.18)

Proof. Clearly, (1.18) is a special case of (A.10) setting € = v/¢ and p(x) = (4#)_%6_7.
To prove (A.10) we start with f € C.(R%,C). In this case

por @) = 1) = [ (e =) = FlaDoludy

so that, by Minkowski inequality and for A(y) := ||f(- — y) — f(*)||r, we have

locx 5@) = F@ler < [ o)A v

Now we have lim,_,0 A(y) = 0 and A(y) < 2|/ f||zr. So, by dominated convergence we get
i € - =1i = U.
lny o £(2) ~ (@)1 = lim [ ool e p)dy =0
So this proves (A.10) for f € C.(R?, C). The general case is proved by a density argument.
O
2 First part on Sobolev Spaces

We recall some basic definitions of Sobolev Spaces. We will redefine them later.
We consider an open set Q C R%. Recall that LP(Q) C D'(2) for any p € [1,00]. For
u € LP(2) and any multi-index o € (NU{0})¢ we can consider the derivatives 9%u € D'()
d

where 0% = 07'*...05". We set |a| = Zaj.



Definition 2.1. Given an open subset 2 C R? and and m € N we set
W™P(Q) :={u e LP(Q) : 0% € LP(Q) for all |a| < m}. (2.1)

In W™P(Q) we introduce the norm

l|ullym.p () = Z 10%ul| Lo (02)- (2.2)

laj<m

In the special case p = 2 we use also the notation H™(Q) := W™2(Q). In this space it is
possible to introduce the following inner product:

(u, U>Hm(Q) = Z <8°‘u, 8a’l)>L2(Q) (2.3)

la<m

where (u,v)r2(q) = Re/ u(x)v(z)dz. Notice that the corresponding norm,
Rd

Z \\8%\\%2(9)

laj<m

is equivalent to (2.2) when p = 2.

We recall the following result. We have the following form of the Sobolev Embedding
Theorem

Theorem 2.2. Ford > 2 let 1 < p < d. Then there exists a constant C(p,d) s.t. for any
u € WHP(RY) we have

[ull o+ ey < C(p, )| Vul|Lp(gay where (2.4)
1 1 1
pr p d (25)

Remark 2.3. For (2.4) to be true relation (2.5) is necessary by scaling. Indeed if we set
ux(x) = u(Az) for A > 0 then

_d
luall o may = A7 |ull Lo (may
1—4
HVU/\”LP(Rd) =Ar ||vu||LP(Rd)
hence (2.4) applied to u) implies
1-44 4
lull o ey < Clo, N[Vl o gy

But since this must be valid for any v € W'P(R%) and any A > 0, if the exponent of X is
different from 0, by considering either A — 0% or A — 400 we obtain |[u|| j¢(ra) = 0, that is
u = 0 for any v € W1P(RY), which is absurd.



Remark 2.4. For p = d > 1 and p* = oo the statement would be false, contrary to the
somewhat special case p =d =1 and p* = co. See later Example 2.7.

Before proving the general case in Theorem 2.2 we consider the special case p =1 and
P= gt
Proposition 2.5. For any u € WHY(R?) with d > 2 we have

d

1

5 g < 3 2 195l e (2.)
]:

The proof of Proposition 2.5 is based on the following lemma.

Lemma 2.6. For a point = (T1, ..., Tj_1,Tj, Tj41, -, Tq) € RY set Tj := (21, e, Tj—1,Tj 11, Tn) €
RI1. Let

d
u(a) = [ [ ui(@)-
j=1

Then we have .

Jull L1 (may < H 1wl pa—1 (a-1y- (2.7)
j=1

Proof. The case d = 2 reduces to [|u1(@1)uz(z2)| 1 (r2) = H?:1 sl 21 gy -
Let us see the case d = 3, that is [lu|f1(rs) < H?Zl ||l 22y We have

u(x) = uy (22, 23)uz(w1, v3)uz(T1, T2)

Keeping z3 fixed we have

. |u(z)|dz1dre = / lui(x2, z3)| |ue(z1, 23)| |us(z1, x2)|dr1dee
R R

1
2
< [Jusllp2(r2) (/R2 d$1d$2\ul($2,$3)|2|U2($17ﬂ?3)\2>

2 2
= ||u3||L2(R2) (/ dm2|u1(x2,x3)|2> </ dx1|UQ(IE1,x3)|2>
R R2
Hence
3 3
/ |u(x)|deidredrs < ||u3||L2(R2)/ </ dl‘2|u1(x27x3)|2> </ dx1|u2(x1,x3)|2> dxs
R3 R R R2

yields by Schwartz inequality

3

JullLr(gsy < H )l 22 (r2)-
j=1

10



Assume the result known for d and let us prove it for d + 1. We have fixing z411

[ u@ldnrdes = [ fur(@)ean @) 1 @os) do.day
R R
-1
~ ol d
< HUd+1HLd(Rd) (/d ]ul(xl)...ud(xd)]d1d:):1..dxd>
R

d—1
d d
= g | g ( [ b @ a5, da:d)
Rd

d—1
d d
_d_
< g1l pogay H ([ |77 || pa-1 a1y
e
d—1
d d
= ”Ud+1”Ld(Rd H Hu]HLd Rd-1) = Hud+1HLd(Rd) H H“jHLd(Rd—l)a

j=1

where in the last inequality we used induction. So, applying fR dzgsq,

/RdJrl |d:n—/dwd+1/ (x)|dzy..dxg

S llUd+1llLd(rd) jllLd(rd-1)0%d+1
< Jluaall AL s dx

j=1
d d
< ||ud+1||Ld(Rd) H HHujHLd(Rd*l)HLgdH = Hud-‘rlHLd(Rd) H HUJ'HLd(Rd)-
=1 j=1
O
Proof of Proposition 2.5. We assume u € C°(R?). Then we have
1 1
lu(z)] < 5 |0ju(x, ..oy i1, t, Tjq1, .., T |dE = P U uj(Z;) where ZTj := (21, ..., Tj—1,, Tjt1, - Tn)-
R
Then
_d_ 1 JURN
[u(z)[+T < —- H |uj (@) T
—1 ]:1

Hence, by Lemma 2.6

d 1

JREClES EN =Y Prapaa——— § JICR TSN
j=1 -1 j=1
1
d d—1
H ||6 uHLl (Rd) — 71 H ”8]u||L1(Rd)
j=1

11



-
—_

d d
Then using (H aj)d < p Z (follows by the concavity of log) we get
it s

=

d d
1
d_ S H 105ull L1 (ray < 54 Z 10jull L1 (ray < 2dHVU||L1(1Rd

ol 2 g

By density this estimate extends to all v € WH1(RY).
O
Proof of Theorem 2.2. We know already case p = 1, so we will consider 1 < p < d. For
t > 1 set v = |u|'~'u. Notice that if u € C°(R?) then v € C}(R?). Indeed v = G o u with
G(s) := |s[*~1s which is in C1(R). We have G'(s) = t|s|'~! and by the chain rule
v = G'(w)du = tlul"~'d;u.

We apply (2.6) to v. Then for p’ = -£-

d d
1
t t—
10 gy < 0 2 0l < it s 2 Il (25

We look for td%‘ll = (t — 1)p/. This is equivalent to
td(p—1) = (d—pt — (d— L)p <= (d = Dp— d(p— 1))t = (d— 1)p <=
d = (d—1 ap(f-L)i=@ a1
(@t == p e dp (- 5 )t == Dpem =T

Notice that 1 < p < d implies

,_d=1., d—1 pd _d—1
TTa P T Td da—p a7
Since (t — 1)p’ = t7% = p*, inequality (2.8) becomes
d-1 ,< (d—
lull Lo ety < <7517 > 105ull pogray = W Z 10jull Lr(ay < C(p, )| Vul|Lr(ra)-
j=1 j=1
(2.9)
O
We show with an example that W14(R9) ¢ L>°(R?)
Ezample 2.7. Fix R > 0 and consider a function u € C*°(R%\{0}) such that
() = v(z) :=log <log (va\ )) for |z| < R (2.10)
0 for |z| > 2R .

12



Clearly u ¢ L°°(Dga(0,4R)). On the other hand, for |z| < R

N < M)w__l v

4R 4’1% _F - AR ?
1Og(l\) ] M log(H)‘ |
Then . ;
1 1 1 1
Vol = C/ ———? Ty = c/ ——————dr
/DRd(O,R) | o log? (%) rd o log? (g) r
f 1 1 log(R) .
B c/ didT = C/ —dds
0 (log(4R) —log(r))" " —~ (log(4R) — s)
c (d-1) log(R) c )
= o= (log(4R) —s) = log (4))~@=1
7 Qo 4R =) Y| - 2 o a)
So it is easy to conclude that u € Wh4(R9). .

We recall the following important theorem.

Theorem 2.8 (Rellich-Kondrakov). Let 2 C R? be bounded and with 9Q a C* sub-manifold
of R%. Then we have the following statements.

1. For1<p<d and q € [1,p*) the embedding W1P(Q2) < LI(S2) is compact.
2. For q € [1,00) the embedding W14(Q) — LI(Q) is compact.
3. For p > d the embedding WP(Q) < L>®(Q) is compact.

We skip the proof. We will need later a special case of this theorem, and we will prove
that case. O

Remark 2.9. 1. Recall that we have seen W14(R?) ¢ L>°(R9) in Example 2.7. The
discussion therein shows that always Wh4(Q) ¢ L>(Q).

2. For 1 < p < d the embedding W'P(Q) < LP"(Q) is not compact. This is related to
the scaling argument in Remark 2.3. Indeed, pick ¢ € D(Dga(0,1)) and for ¢ € (0,1)

consider . (x) := 5_1%<p (%). Then we have
_d s _d s
1€ (2) e a0y = 16779 (2) v (00000 = 1012 (00,0

e—0

_d sz d_a
le™® @(g) ILr(Dga0.1)) = €7 P l@llLo(Dya0,1)) = €llell Lo (Dya01)) = O

and
—d_q x
IVeellrpgaory == 7 V) (2) lisbgatoey = IVl r(bato)-

On one hand we see that ¢, 2 weakly but it cannot obviously converge to 0 in
norm in LP" (Dga(0,1)).

13



3 Some spaces of functions on L? based Sobolev Spaces

We will introduce the homogeneous Sobolev spaces H k(R?) and we will generalize the
standard Sobolev spaces H¥(R?). For ¢ € R? let (£) = /1 + |€]2 be the Japanese bracket.
For a tempered distribution u we denote by u its Fourier transform. We consider for s € R
the space formed by the tempered distributions u

H*(R?) with norm Jull gy = [1(€)°@]] 12 (e < o0 - (3.1)

We consider for s € R the space formed by the tempered distributions u s.t. 7 € L} (R?)

loc
H*(RY) with norm Hu||H5(Rd) = ||[§]°l] L2 (ray < 00 . (3.2)
Exercise 3.1. Check that for s € N, the definition of H*(R%) in (3.1) and the definition in
Sec. 2 are equivalent.
The following lemma is elementary.

Lemma 3.2. The following statements are true.

o L2(RY) — H5(RY) defined by f — F* (ﬁ) is an isometric isomorphism and all the

H*(RY) are Hilbert spaces with inner product (f,g)gs = (€)5F,(€)5G) 2 .
o We have S(R?) C H*(RY) if and only if s > —d/2.
o The H*(R?) have an inner product defined by (f,g) ;. = (€IS T, 1€159) e

While the H $(R?) have an inner product, in general they are not complete topological
vector spaces and the following will be important to us.

Proposition 3.3. For s < d/2 the space.Hs(]Rd) is complete and the Fourier transform
establishes an isometric isomorphism F : H*(R?) — L2(R?, |¢|?3d€).

The above proposition is a consequence of the following lemma.

Lemma 3.4. Let s < %. Then we have the following facts.
o L*(RY,[¢[*°d€) C Lj,.(RY, d€)

o L2(RY,[]de) C S'(RY)

e The Fourier transform F : S'(RY) — S'(RY) is s.t. F (HS(Rd)> = L%(R4,|€]?5d¢)
and establishes an isometry between these two spaces.

14



Proof. Let g € L*(R%, |¢]?*d€). Obviously g € L} (RN\{0},d€). Let now B = {¢ € R? :
|€] < 1}. Then

[ tat@as < ( [ 1e1ac0 2d5> ([1er 28d5>

s vol(S§d-1)
< 4/ vol(S7- 1)(/0 rd=t=2 dT) HQHLZ(Rd,|5|2Sd§) = WHQHLZ(W,MPS@)-

Next, we check that L2(R?, |£[2%d¢) ¢ S'(RY). We split ¢ = xBg + xBeg. Then xpg €
LY (R4, d¢) implies xpg € S'(RY). On the other hand we have xpgeg € L*(R?, (€)2°d¢). This
in turn implies xpcg € S'(R?), where the embedding L?(R%, (€)2°d¢) ¢ S'(R?) for any
o € R follows from

NI

y f&e)de = | (©)7F(E)(&) 7p(§)ds < [ fllr2ra 20d£)(/ (€)7*7p(€)de)

Rd

< I lzagus eear | (€72 A Al qan

for m chosen s.t. 20+m>d O
Remark 3.5. For s > & the space H? (Rd) is not a complete space for the norm indicated.

In particular, the Fourler trasform defines an embedding H*(R%) S L2(R%, |€]25d€) with
image which is strictly contained and dense in L?(R?, |£[?d¢). The fact that the image
is dense can be seen observing that Cg° (RN\{0}) is dense in L2(RY,[£]?d€) and we have
FH*(RY) 2 C2(RN{0}).

For s = g + &0 with g9 > 0, if we pick f € C°(R%) with f(0) # 0, then |£fd(f>50

2

is a Borel

f(€)

€+ 3

function not contained in Lt

loc
f€)

g

_ P e LY(RY, d¢) implies

(R?, d€). But |¢[* T

that e L*(RY, |¢|?dg).

X 9kd
% consider f(§) = Z ?X[3/475/4}(2k]§|). Notice that for each £, at most one term
k=1
of the sum is non zero, because [27%3/4,27%5/4] N [2773/4,2775/4] = () for j # k. Indeed,
if 7 < k then

For s =

27%5/4 < 27U"V5/4 < 2773 /4 where the latter follows from 5 < 6.

Then |£]2|£(€)] € L*(R?, d¢) since
/ 5 Pde = 3 L2k / My (21EDde =3 5 / €03 4.5y (ED dE < o0
]Rd =1 k2 Rd ’ 1 k)2 ]Rd ’
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but f, which is supported in the ball B(0,5/4), is not in L'(RY, d¢) since otherwise we
would have

~ 1 ~ 1 noso0
o> [ @D 12 [ xousraHebde =30 [ xiasalehas " e

Later on we, when discussing the Navier Stokes Equation, we will deal with vector
fields. Given a vector field u = (u/ );l:l € (S'(R%))4 its divergence is

divu =V -u:= E)au]
j=1 9t
Notice that dive = —i Z;l:l &7 so that a u is divergence free, that is dive = 0, if and only
if Y20, & = 0.
We define now an operator P by
. ) 1 &
FEY = - 13 > g (3.3)
k=1

Lemma 3.6. Let s < %. Formula (3.3) defines a bounded operator from (H*~'(R%))9) into
itself.

P is a projection with image Range(P) represented by the divergence free elements of (H*~1(R%))?).
It is the orthogonal projection.

We have ker P = VH*(R?).

Proof. First of all for P defined by (3.3) we have
1
IPull o = ZH Pu) || jgor = Z el F(Pu)| L2 = Z el @Zijfkﬂk)“m
k=1

§k —1~k ' k
S e ol ¥ < S Il + 3 s < G+ Dl

J,k=1 j=1 G k=1

d
<D MEP e +
j=1

Hence this is a bounded linear operator from (H*~!1(R%))? — (H*~1(R%))?. In fact it is a
projection (so ||Pul| g.—1 < [Jul|z.—1) as we will see in a moment. But first observe that

d d .
FdivPu) =1 & (FPuw) =1y & —
(@vP0) =1 YR =1

J=1
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which shows that the image of IP is formed by divergence free vector fields. Notice also that
if divu = 0, and hence Z;l:l &) =0, we have

. o 1 d =N o
(F@u)Y = — 8 > Gk =1,
k=1

=
0
and so Pu = u.
Now we check that P? = P. We have
(F(P2u)) = (F( WZ&
0

where we use the fact checked above that divlPu = 0.

All the above steps show that (3.3) defines a projection in (H*~!(R%))? whose image is
formed by the divergence free operators in (H5~(R%))4.

Pick now V € H®. Then VV € (H*1(R%))% and we have

(FEVV)Y @ Zﬁﬁ —o.

Hence ker P D VH*(R?). We now show ker P C VH*(R?).
If Pu = 0 then

W = —i&;V(€) where V(€) : \€|2 ng

It is easy to see that V € L2(R?,|€]?%d€) and in view of the identification of this space with
H*(R?) through the Fourier transform when s < % we conclude that V € H*(R?) with
VV =u.

O

For u € H¥(R%) and A > 0 let us set Pyu := F* (X|¢|<rFu). Notice that this map sends
L?*(R%) into itself since
HPAUHHk(Rd) = |||§’kX\§|§)\]:uHL2(Rd) < H’f\k}—UHL?(Rd) = HUHHk(Rd)-
Notice that P is a projection, that is Pi =Py, by
Piu =P, oPyu=F*(xg < FPru) = f*(x%ﬂg)\}"u) = F*(Xjgj<rFu) = Pyu.

If divu = 0 then also divP u = 0. Indeed

d d d
(divu=0e > & @ =0)= FdivPyu) = > &xgai = x> & @ =0,
Jj=1 j=1 =1

which in turn implies divPyu = 0.
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4 L? based Sobolev Spaces

The following spaces, for p € (1,00) are formed by tempered distributions u s.t. u is in
L} (RY) for s € R:

loc
WHP(R?) defined with [|ullyiysp(ga) := [1(1€1°@)" || o ra) ; (4.1)
WHP(R?) defined with ||ullyyena) = [|((€)°8)" || r ey - (4.2)
We will not use the above spaces except for p = 2. The following is true.

Theorem 4.1. We have
WEP(RY) = WFEP(R?) for all p € (1,00) and all k € N. (4.3)

Proof. Maybe, later. For this we need the theory of Calderon and Zygmund operators. [J
For p =1 and p = 0o (4.3) is not true, see [13].
To generalize the Sobolev Embedding Theorem 2.2, we need information on the Hardy
Littlewood maximal function.

4.1 Hardy Littlewood maximal function

Let f € L}, .(R?) and consider (for B(z,r) the ball of center = and radius r in R?) averages

1
AL = T /B L

Notice that for any r > 0 the function x — A, f(z) is continuous. Indeed, fix dp > 0 and
consider éx € B(0,dp). Then by the triangular inequality B(z + dx,r) C B(x,r + dp). So,
for 6z € B(0,dp)

1

A, f(z)—Ay f(z+dz) = ol(BO. 1)) /B(M”O) (XB(2)\Bats2,) U) = XBlatosz.)\Bar) ) fy)dy

with for any y

[6x]—0
H

(X B2\ Bla+oz,0) (U) = XBatser\Ber) ¥) XB@r+60) ) (1Y)

By dominated convergence A, f(x) — A, f(x + d0x) — 0. We define

M f(z) = sup Ar|f|(x). (4.4)

r>0

From the definition we conclude that M f is lower semi continuous that is {z : M f(z) > a}
is open for any a. It also obvious that M is sub additive:

M(f+g)(x) < Mf(z)+ Mg(x).
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We have the following obvious estimate
[Mf(2)] < [fzoma)- (4.5)

One important fact is that it is not true that M maps L'(R9) into itself. Indeed if say
K C R%is any compact set and if B(0, ¢y) D K, then since for |z| > ¢y we have B(z, 2|z|) D
B(0, |z|) D K, we have computing at r = 2|z|

- vol(B(z,7) N K) vol(K)
ML) =308 om0, Dy = Vol(B(0, 1)l

which shows that My ¢ L'(R).
Notice that each g € L'(R?) satisfies Chebyshev’s inequality:

vol({z : |g(x)] > a}) < M for any o > 0 (4.6)
Indeed (4.6) follows immediately from.
sl = [ lowldy = [ oy > | ady = avol({z : g(2)] > a})
R {z:lg(z)|>a} {z:]g(x)|>a}

If T : LY(RY) — L' (RY) satisfies ITfllrray < Allfll o1 ey for all f € LY(R?) and for a fixed
constant A, from (4.6) it is easy to conclude that

A
vol({z : |T'f(x)| > a}) < E|f|L1(Rd) for any o > 0 and any f € L'(R%).

Unfortunately we have seen that M does not map L!(R?) into itself. However we will show
that it satisfies the last property. Indeed we will prove now that M is weak (1,1) bounded,
that is there exists a constant A > 0 (in fact we will prove A = 39) s.t.

vol{z : M f(z) > a}) < g’f‘Ll(Rd) for any a >0 . (4.7)

To prove this we consider the set {z : M f(z) > a}. Then, for any x in this set, there is a
ball with center in z, which we denote by By, with [ |f| > avol(B). Pick any compact
subset K of the above set, and cover it with such balls B,. Extract now a finite cover,
corresponding to finitely many points z1, ...xy. We have the following covering result,
which we state without proof.

Theorem 4.2 (Vitali’s lemma). Let B,,,...,Bzy be a finite number of balls in R:. There
exists a subset of balls

{Bi1,....; B} C{By,,..., Bay} (4.8)

with the Bi...B,, pairwise disjoint, s.t.

vol(Byy U---U Byy,) < 3% Z vol(By). (4.9)
j=1
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We consider balls Bj...B,, as in (4.8) and from
K C By, U---UBy, = vol(K) <vol(Bg, U---UDBy,),

from (4.9) and from the definition of the B,, we get
37vol(K) < ivol(Bj) < i 1/ If] < @ (4.10)
=t —oaJs @

(4.10) implies vol(K) < 3%~ f|;. By vol({z : |M f(z)| > a}) = SUP K  {:| M f (2)| >} VOL(K)
for compact sets K, then (4.10) implies (4.7).

(4.5) and (4.7) imply by the Marcinkiewicz Interpolation Theorem 4.3, proved below,
M fl o ray < Apll fll Lo (ray for all p € (1,00] . (4.11)

We will use this result in the proof of the Hardy-Littlewood-Sobolev Theorem, and of
Sobolev’s estimates.

Before introducing the Marcinkiewicz interpolation Theorem, we recall that for a mea-
surable function ¢ : R? — R the distribution function is

Ma) == vol({z € R? : |g(z)| > a}).

Notice that A : [0,00) — [0, 00] is decreasing. This implies that it is measurable.
For a function g € LP(R%) with 1 < p < oo we have

l9()] o0
[atwpar= [ aw [*7 portaa= [~ doper "
Rd Rd 0 0 (veR%|g(z)[>a}

(4.12)
[o.¢]
= / paP I\ (o) do
0
where the 1st equality is elementary, the last follows immediately by the definition of A(«),
and the 2nd follows from Tonelli’s Theorem applied to the positive measurable function

F(z,a) = |af~Ixz, (lg(z)] — @)xr, ().

Theorem 4.3 (Marcinkiewicz Interpolation). Let T : LY(RY) + L°(R?) — L} (RY) be a
sublinear operator s.t. for two constants A1 and As and for all f
1T fl oo (may < Aooll fll oo (mey (4.13)
Ay
Hx: |Tf(x)] >a}|§;|f\L1(Rd) for any >0 . (4.14)

Then for any p € (1,00) there is a constant A, such that for any f € LP(RY) we have
1T fll r ey < Apll fll Lo (wa)- (4.15)
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Proof. Dividing T by a constant, we can assume Ay, = 1. Fix p € (1,00) and f € LP(R%).

For a > 0 arbitrary set
_ @) it |f(z)] = §
hilz) = { 0 otherwise.

Notice that f; € L'(R?) by

2r—1
/Rd frl@)lde = /{lef(x) = ol < o /Rd f (@)l da.

Using (4.13), we get |T'f(x)| < |Tf1(z)| + §, since ||f — fillpeoray < 5. Then

{o:|[Tf(2) > a} € {a: [THE)] > 5}
We have, using (4.14),

o 2 2
vl [TA@] > §H <A [ @)z =42 /{ s T

Substituting g = T'f in (4.12)
/ |Tf(x)|Pdx —/ pa? Yvol({z : |Tf(z)| > a})da
R4 0
< [ per ol [Tfi(0)] > Gda <240 [ par® [ (@)lda
0 2 0 {z:|f(@) 125}

2|f ()| 2Pp
= 2pA1/ dx]f(:v)]/ P 2da = Al/ |f(x)|Pdx.
RY 0 p—1 " Jpa
| S ——

2P =1 (a)|P—1
p—1

4.2 Back to Sobolev Embedding

We will use the properties of the Hardy Littlewood Maximal function, and specifically the
definition and (4.11), to prove the following important theorem.

Theorem 4.4 (Hardy-Littlewood-Sobolev inequality). For any

1 1 d-
76(0,(1)cmd1<p<q<oowith;0:§—l—77 (4.16)
there exists a constant C' s.t.
I ] 5=l oy < sy (117)
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Proof. For an R > 0 to be chosen momentarily, we split

/ flz—y)ly|'dy = / flxz—y)lyldy + / flz—y)ly|dy.

R lyl<R ly|>R

We claim that
Sl < M [l iy = eR £ ), (4.18)

yI<R ly|<R

We assume for a moment this claim and complete the rest of the proof. By Hélder we have
!/| Rf(fc — )yl dyl < \[f ey 1191~ Xqyatyi>r3 | Lo (-
y>

We have |y|™7X{y:y>R) € L (RY) exactly if yp' > d. The latter inequality is true because

SRS

1 1

= - =~ <0=v —d=—>0.
p q

In this case

1

d_
7

/ P _d
Xt e = (vol62Y) [ rwsitar)” — et et

Hence

>R

_d
[ £ =)yl S R @) + 1 sy R

Now we choose R so that the two terms on the r.h.s. are equal:

Mf(z) _ py-a-2 _ -2
N
Then we get
i.%
[ Fo =l S RN+ g B =20 g ()

— 2 (M S (@) f15 "
Then

_ 1-2 P 1-2 P
| /Rd f@ =9yl dyll paay S W11 NLF) e = [1f e IO S (1fIlze-

To complete the proof we need the inequality in (4.18). More generally, we prove that if
® € LY(R?) is radial, positive and decreasing, then

[ fe=netdn < M) | o (419)

Ra
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Then (4.18) is just (4.19) for ®(y) = |y[~7 X {y:|y|<R}-
Notice that (4.19) is true for radial functions of the form

P = Zajxgj
J
for a; > 0, B; a ball of center 0. Indeed
Vol
—y)|dy =
S [ e = S

In the general case the result follows from the fact that ® can be approximated by these
functions.

/ |f(z—y |dy<ZaJvol M f(x) :Mf(m)/<1>dy.

L]
For the above proof see [14] p.354, while for the next one see [13] p.73.

Lemma 4.5. For any vy € (0,d) there exists ¢y > 0 s.t.
F(I- 7)) = eyle . (4.20)
Proof. Tt is enough to show that for any ¢ € S(R?) we have

[ Jal oo = e, [ 1ep-idie)de. (1.21)
R4 R4

Starting from (1.2) and Plancherel we have

/nageZ: o(z)dx = /Rd 75%;?\(5) d¢.

Now we apply to both sides fo —e = and commuting order of integration we obtain

[e.e] x2 R o - )
[ dwote) [ "ot L [ gt [T
R 0 ¢ R4 0 €

~
aylz| =7 bylg|7—d

for appropriate constants a., and b,.

O

Theorem 4.6 (Sobolev Embedding Theorem with fractional derivatives). Let p € (1,00),
0<s <) d gnd 1 = 23 5+ Then there exists a C s.t. we have

11 zasy < ClElponga for any f € SED. (4.22)
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Proof. For f € S(RY) we have for some fixed ¢

-4 i€z e)—s Y 5— ~ 57
fla)i= 2m) 4 [ eele= (16F©) de = [ 1o =yl glu)dy where 5(6) = €' Fi6)
where we used m = (27r)%{5 T which holds for ¢ € S(RY) and T € S'(R%).
Since g € LP(R?), by the Hardy-Littlewood-Sobolev Theorem we have that f € LI(R9) for

1 1 d—(d—s)

1
q p d P

Ul ®»

O
Notice that for 0 < s < ¢ we know that H*(R%) contains S(R?) as a dense subspace,
0 (4.22) with p = 2 extends to all f € H*(R?).

5 Assorted inequalities

Lemma 5.1 (Interpolation of Sobolev norms). For any s € [0,1] and any k = sk1+(1—s)ka
we have

W iz ay < 1 Wes ey | s gy Jor amy £ € HP (RY) 0 HE (R, (5-1)
(R%) ( Fk2 (Rd)
In particular, for s € [0,1] and any f € H'(R?)
11 ey < 112 Gy 1 5 ey (5.2)
( (

Proof. (5.2) follows from (5.1) for k; = 1 and ko = 0. So let us turn to (5.1).
Obviously there is nothing to prove for s = 0,1, so we can assume s € (0,1). Notice that

for p = % we have p/ := z% = ﬁ Now, we have

10y = [ (P 1F@P) (IR Fre) 20 ag
< EPF TN 2 gy NP2 FEO P

LT=5 (RY)
2(1-s

= P LTI gy €15 TSz = 1 W2 ey I s

O]

Theorem 5.2 (Gagliardo—Nirenberg). If p € [2,00) is s.t.
s.t.

> % - é then there exists C

) . (5.3)

1
p

N |
| =

1oy < OIS sy where s = (
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Proof. By Sobolev, for % = % — 5 we have

1Al 2o ey < CUF N s ray-

Here s is like in the statement. Also s = d (% — %) <1l<% % — % < é. Finally, apply
(5.2). O
Remark 5.3. For p =4 and d = 2,3 we have s = d/4 and || f|| p4(re) < C’||f|]17d/4 ||f||d./4 .

) LA(RY) = L2(R4) H1(Rd)

Lemma 5.4 (Gronwall’s inequality). Let T > 0, X and ¢ two functions in L*(0,T), both
>0 a.e., and C1, Cy two non negative constants. Let Ap € Ll(O,T) and let

o(t) < C1 + Cy /Ot A(s) ¢(s)ds for a.e. t € (0,T).

Then we have .
o(t) < C1e@2Jo X&) for e t € (0,T).

Proof. Set .
B(t) = Cy +c2/0 A(s) o(s)ds.
Then (t) is absolutely continuous and so it is differentiable almost everywhere and we have
P (t) = CaA(t) p(t) < Ca(t) 9(t) for a.e. t € (0,T).

Also, the function t)(t)e 2 Jo As)ds g absolutely continuous with

d

7 (w(t)e_c2 Jo Ms)ds) <0 for ae. t € (0,7).

Then we have
p(t) < eC2Jo Mddsy () = CyeC2 o A for all ¢ € (0,T).

Since ¢(t) < ¥(t) a.e., the result follows. O

6 The Calderon—Zygmund theory

We consider Calderon-Zygmund (CZ) kernels. We will use the following definition.

Definition 6.1. In these notes, we well say that a function K : R? x R\A — C with A
the diagonal {(x,z) : z € R}, is CZ if there exists a fixed constant C' s.t. the following
conditions hold:
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(C-Z1) we have

’K(‘T’y)‘ S Ld for any xr 75 Yy and
[z —y| 6.1)
!Vx,yK(%y)l S W for any x 75 Y.
(C-Z2) the operator
Tf(x)= - K(x,y)f(y)dy for x € supp f (6.2)

extends into a bounded operator T : L2(R?) — L?(R?) with norm bounded by C.
There are many examples.

(1) Let us consider the operator R; = \/% which is a well defined bounded operator in
L?*(R%) since

R7(6) =i )
Notice that for K = F* (—i%), we have R;f(x) = (2%)*%1{ * f(x) where for ¢ €

C>®(R%,0,1]) any function with ¢ = 1 in B(0,a) and ¢ = 0 outside B(0,b), for some
0 < a < b, we have

K(z)=—i lim (27)"2 /R d 6759 e IRV e

R—+o00 |€|

It is easy to see that for any x # 0 the above limit converges and that K(z — y)
satisfies the inequalities (6.1) for a fixed C. For example, the 1st inequality follows
splitting

eif'ﬂﬁé T ei&xﬁ B .
/Rd ms@(f\ !)¢(€/R)d§+/Rd ’€|¢(§/R)(1 o(€z]))de

where we bound the absolute value of the 1st integral by

dyvol(S4-1) 1
/ ge = PYUST L
e< Ly d |zl

and the absolute value of the 2nd integral by means of an integration by parts using

) . z-Vge .
Lels® = €7 with [ = T |2§ ¢ and writing it as
il

/ (LN [féw(g/}z)(l — @(Elzl))| d.
R4

26



It is now easy to see that

(L)Y [ Sote/ma - olelol)| | < Oy
‘ €l [ V]E[N
Hence the absolute of the 2nd integral is bounded by
1 / 1 || V= CnCy 1
N T dE < ONCi—— = N Ta
T St e, T Nl ¥ T N af?

The 2nd inequality in (6.1) can be obtained noticing that

O () = i Jim (2m) ¢ [ €6 S (¢ R)de.

R—+o00 |€’

When one considers the above inequalities with an additional factor & inside the
integral, one gets the upper bound of the 2nd inequality in (6.1).

The operators R; are called Riesz transforms.

The above discussion works out similarly with operators 9 _ and —2° ~ with «
Vi-4A (1-A)3
any multi-index with |o| < k.
Let us consider in R the Hilbert transform
1 1 1
Hf(x):=—— lim /W) dy=——(PV—=)xf (6.3)
Te=0t Jig—y|>e T—Y s x

with P.V% the tempered distribution that acts on a ¢ € S(R) as lim de.
=0t Jigj>e X

Notice that using the Residue theorem we have

e—i.f:cdﬁ —

61_1>1(1;1+ e . —imsign(§)
so that
1 1 . O
—F(P.V.—) = —i(2m) zsign(§).
7r x
Then

F(Hf)(€) = —isign(€) F ().

which implies that (C-Z2) is true. Since (C-Z1) is obvious, we conclude that the
Hilbert transform meets the conditions of Definition 6.1.
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Remark 6.2. Consider the operator Tk, f := F* [X]lhﬂ- Then xg, = 27 1i(—isign — i)
implies T, = 27 (I +iH). Analogously Tk = 27'(I —iH). Next,

Tia,400) = 27 1T 4 i€'%® He™%) and T—oop) = 27 1] — i He 07,

Finally
T(a,b) = 271(T(a,+oo) — T(b7+oo)) — 4fli(elaa:H€flam o elb:):He—lb:p).

Next, if in R? we consider the half-plane 21 > 0, then

F* X0 | = 2711 +iH) f where
(Hlf)(l'l,xg, ceeny a;d) = H(f(‘,a}g, ,l'd))((L'l)

In general, any operator of the form F* [X pﬂ with P a polygon in R? can be expressed in
terms of the Hilbert transform.
Remark 6.3. Let p € (1,00) and let LP(R,C) 5 f = lim F(-+ iy) where

y—0t

F:{zx+iy:x €R, y> 0} — C is a holomorphic function with sup/ |F(z+iy)|[Pdz < oco.
y>0 JR

Then, if v = Re f and v = Im f, we have v = Hu (and, by H? = —1, u = —Hv). We give

a brief impressionistic and non—rigorous discussion of how this comes about. Notice that if

f is the boundary value in R of F' by Cauchy integral formula we have

1 1 1 1

F(x_i_iy):M/RH_iyf(t)dt:Qm (-—iy*f)(x)

where here we assume f € S(R,C). Then for y — 0" by the Sokhotski-—Plemelj theorem
we get

. I L. o
ylif(rﬁ i P.V.; +ind(t) in S'(R,C). (6.4)
This implies, assuming here F € C°(R x [0, 0)), that by f(z) = lirél+ F(z +1iy) we have
Yy—

1 : f(z) :
1@ =55 (A%i /,m —y detinf @)) :

that is f = iH f, which is the desired result.
As for (6.4), for f € S(R) we have

f@) . t [y
Rt—iydt_/[Rt2+y2f(t)dt+1/Rt2+y2f(t)dt-

By a change of variables, by dominated convergence and by the continuity of f in 0 we have

Yy o 1 y—0
/RWf(t)dt—/RtQHf(ty)dt =07 £(0).
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Next we write

t t
/ / ftdt—i—/ —— f(t)dt.
/t2+y2 U= fye, O ) T
We have

y—>0

0.

‘/|t<yt2+y ‘ |/t|<yt2+y £ = F(O)at| 3

Next we write

ot _ ot 1 ft)
/|t>y el 0= /|t|>y (lﬁ2 +y7? t> Jdt /|t>y e

and observe that

t 1
|/t|2y (=) st = [ et

by dominated convergence. This proves (6.4).

y—>0

Theorem 6.4. Consider an operator T as in Definition 6.1. Then for any p € (1,00)
the operator T, initially defined in LP(R?) N L2(R?), extends into a bounded operator T :

LP(RY) — LP(R?) with operator norm that depends only on p and C.

Before proving Theorem 6.4 we need the Calderon—Zygmund decomposition lemma.

Theorem 6.5 (C-Z Decomposition). For any f € LY(R?) and any o > 0 there erist
families of balls Bj, disjoint sets Q; with B; C Q; C 3B; with U;Q; = U;3B; (here 3B;

has same center and trice the radius of Bj) functions g and bj s.t.
1. f =g + Z bj.
J
2. lg(z)| < 3% for a.a. z, ||gllprray < (1+32) | £l 11 (ray-

3. supp b; C Q. /Rd bi(x)dz = 0 and 3 |Ibsll 11y < (1 + 3“) 1f 1121 e -
J

4. ZUOZ ) < *||f||L1(JRd

Remark 6.6. Notice that in the Calderon—Zygmund decomposition g is the good part of f

and b; form the bad part of f.
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Proof. Define Q = {x € R?: M f(x) > a}. Here notice that if Q = () then just set g = f.
For any = € Q) there exists a maximal r, s.t.

Ar | fl(z) = |F(y)|dy = a.

e
vol(B(2,72)) JB(ar.)

Let us consider the family of balls { B(z, ;) }zcq. It contains, by a generalization of Vitali’s
Lemma, see Theorem 4.2, a maximal family of pairwise disjoint balls {B;} s.t.

Q C UzeaB(x,72) € U;(3B;).
Notice that this implies

3d
d
vol(UpeqB(z,73)) < ZVOI(SB]-) <3 ZVOI(Bj) < Il ey
J J
It is possible to choose disjoint sets @Q; s.t. B; C Q; € 3B; and U;Q; = U;(3B;). One way
is to choose

Qr=3B,NC (Uj<ij) nc (Uj>kBj) (6.5)
with CX the complement of X. Notice indeed that obviously for & > ¢ we have

QrNQeCC(UjcrQj) NQr = (Nj<cCQ;j) N Qe C CQrN Qe = 1.

Obviously Qp C 3By.

We have By, N (Uj>;Bj) =0 and so By, C C (Uj>;Bj). We have B, N (Uj<xQ;) = 0 because,
by (6.5), we have By, N Q; = 0 for any j < k. Hence we conclude By, C Q.

Finally we show UpQr = Up3Bg. Obviously we have UpQr C Up3Bj. Suppose there exists
x € Up3By, with o & UpQg. The latter implies @ ¢ U, By, and so x € C (UjsB;) for all
k, as well as © € C' (U;j<;Q;) for all k. But then, since x € 3B, for some ¢, it follows that
r € Q. And so we get a contradiction. Hence UpQr = Ug3By.

Now define

bi(@) = (f(w) — averageq, ) xq, (@)
average, . f for x € @,
g(x) := { s,/ ‘ QJ
f(z) for x & U;Q;
Then we claim that the statement of the theorem is satisfied. First of all for any = € R¢
either = ¢ Q; for all j, and so f(z) = g(x) with b;j(z) = 0 for all j, or z € Qj, for exactly
one jo, and so f(x) = g(x) + bj,(x) with bj(x) = 0 for all j # jo. This proves the 1st claim.
For x ¢ U;Q; 2 2 we have M f(x) < . Then, since for a.e. « we have

£ = Tim A )] < M (@)
we get [g(x)| = |f(z)| < « a.e. in the complement of U;Q;. For x € ); we have
1 1 34 d
9(0)| = overaseq 1 < s | WOy < s | 5@y = s [ 1wy <3t

J
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Furthermore we have

ol = [, @+ .l < s + 30 Y vol,

J J

< (14 3%) /1l ey

The fact that supp b; C Qj, / bj(z)dx = 0 follows immediately by the definition of b;.
R4
We have

> sl gray < N Fllprray + D vol(Qg)|averageq  f| < || 1l may + 3% Y | vol(Q;)
J J J

< (1 + 32d) £l o ey

O

Proof of Theorem 6.4. By duality it is enough to consider only p € (1,2]. Further-

more, since by hypothesis (C-Z2) we know that the case p = 2 is true, by Marcinkiewicz

Interpolation the statement of Theorem 6.4 results from proving that T is weak—type (1, 1).
We need to prove that there exists an A > 0 s.t.

A
vol({z : |[Tf(z)| > a}) < EHfHLl(Rd) for any a > 0 and any f € L*(RY). (6.6)

For fixed a > 0 and any f € L'(R?) consider the C~Z decomposition f = g+ Z b;. Notice

J
that |g(z)| < 3% a.e. and gl L1 (ray < (1+ 3%) [ £l (ray imply g € L?(R?) with

/ lg|*dx < Cda/ | f|dz for Cy = 3¢ (1 + 32d)
R4 R4

and so by Hypothesis (C-Z2) we have || Tg|3, Ry < Callfllp may-
Then by Chebyshev’s inequality (4.6) we have

< TNy oI ey

vol({z : [(Tg)(x)| > a/2}) <

a? Q

We next consider b; and consider for x € 3B; and for y; the center of Bj,

i) = | Kby = | (£ G) — KG) by

were we used averageg bj = 0. Then by (6.1) we have
1) < —r [ o= wl Iy(w)ldy
DU e =yl o, Y '

31



Then for r = radius(B;)

C
Tl [ e [ eyl bl
/Rd\?)Bj ’ |z —y;|=3r |z — y; |4+ ly—y;|<3r Y
C
< Cd? ly — 5l 1bj(y)|dy < CdCHbj”Ll(Rd)'
" Jly—y;|<3r

Let now E = U;(3B;). Then for b = Z b; we have
J

Tb| < / Thi| < cyC bi < cgC(1+ 32| f .
L 3 o, 71 0 S sy < OO0+ E 0N e

Hence
vol({z ¢ E : |(Th) ()| > a/2}) < 2HTb\(LL<R> e WHZ(R) |
So since
vol{z & E - [Tf(z)| > a}) < vol({z & E : [Tg(x)| > /2} + vol({x & E - |(Th)(z)| > a/2})
<[40+ cs01 48 ”f”g@Rd)
and

3d
vol(B) < Y- vol(38;) < 3 Y vol(By) < e
J J

we conclude that (6.6) as been proved with A = 39 4 4C + ¢,C(1 + 32%).
O
Now we consider the Proof of Theorem 4.1. We follow [13] from p. 136. Preliminarily,
we state the following lemma.

Lemma 6.7. Suppose 1 < p < oo and s > 1. Then f € WSP(R?) if and only if f €
WLP(RY) and 0,5 f € WLP(RY) for all j = 1,...,d and furthermore the norms || f|lws»
and || fllws-1.0 + Z?:l |02 fllws—1.0 are equivalent.

Proof of Theorem 4.1 assuming Lemma 6.7. Obviously for k = 0 we have WP =
WP = P,
It is obvious that f € W*P(R?) if and only if f € Wk=LP(RY) and 9,; f € WF=1LP(R9) and
that the the norms || f||yyrr, and || fllype-1., + Z;-lzl |05 fllyyx—1,» are equivalent. But then
Lemma (6.7) guarantees that WP = WP with equivalent norms, and so on for all k € N.
O
Proof of Lemma 6.7. Let us start assuming that f € WeP(R?). Then setting g(&) :=
(€)° F(€) we have g € LP(R?) by definition of W*P(R%). Then notice that

(& P = (&9 = 2m) 2T 1% g



where J_, = ((6)71)Y is easily seen to be an L'(R?) function: this can be seen by an
integration by parts argument like in the discussion of the Riesz transforms above. Hence
we have

_d _d
[ fllws—10 < 2m) " 2[[T-1l 1 9]l = @m) "2 | T-1llp | £lwse-
Next we consider

€ LB F(E) = —i €  f(6) = —ifg)a@ = Ry9(6),

where R; is the Riesz transform considered earlier. But then, since the Riesz transforms
are CZ operators, it follows that
10 fllwe—1o < | RjllLo—rrellgllee = [|RjllLo— e l|gll e | fllwsr-

Summing up, we obtained

d
_d
1 lwer + D 100 Fllwero < (@m)E 1Tl + dl Rallzooa ) [ Flbwer,

j=1

where we used the fact, easy to show, that ||R;||rr—r» is constant in j, so that one impli-
cation is proved.

Now we consider the opposite implication, assuming f € WS LP(RY) and 0,;f €

We=LP(RY) for all j =1,...,d. Then §(¢) := (£)*~" f(£) is g € LP(R?) and, from 9;9(8) =
<§>s—1 8/%\]0(6)’ azjg c LP(Rd) for any j. Now we have

d ..
€ F= (7= ~g= 73 2 (~ig;)3.

This means that

d
(& )V =(2m) 2T 1xg— Y Rjdug
j=1
and so

d

_d
1 Iwes < 2m) 21 T-allillgllee + Y N Rsll o 20]10s, 9l o
j=1

d
_d
= @2m) 2| Tl flwe=1e + D IR Lo o 1010, flws-10,
j=1

which obviously roves the opposite implication and completes the proof of Lemma 6.7.
O
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7 Linear heat equation

For Sections 7-8 see [5]. _
Let T € Ry and f : [0,T] — H*"}Y(R%R?), for d = 2,3, be an external force s.t.
f =Pf and consider the following heat equation:

u —vAu = f
V-u=0 (t,z) € [0,T] x R? (7.1)
u(0) = up € PH*(R?, RY)

Definition 7.1. For a fixed s € (—d/2,d/2) let f € L*([0,T], H*~*(R% RY)) with f = Pf.
Then u is a solution of (7.1) if

we L=([0,T], H*(RL,RY)) |, Vu € L2([0,T), H*(RY, RY x RY)), (7.2)
if '
u is weakly continuous from [0, 7] into H*(R% R%) (7.3)

(that is, if for any ¢ € H%(R% R%) the function t — (u(t),1)), which is a well defined
function in L>°([0,T],R), is in fact in C°([0,T],R) )
and if for any ¥ € C°([0,T] x R%, RY) we have

t
(u(®), ¥(t)) > = / (v(u(t), AT(E) 12 + (u(t), 0¥ (E) 12 + (F(), ©({F)) 12) dt’ + (uo, ¥(0)) 2.
0
(7.4)
The following theorem yields existence, uniqueness and energy estimate for (7.1).

Theorem 7.2. Problem (7.1) admits exactly one solution in the sense of the above defini-
tion. For any t the following energy estimate is satisfied:

t t
()% +2V/ IVt dt" = [luol%. + 2/ (f(t),u(t) gadt’ (7.5)
0 0

Furthermore we have ‘

u e C°([0,T], H*(RY, RY)) (7.6)
and the formula

t
a(t,€) = e "Il a(¢) + / e UTWIEEF(H &)dt. (7.7)

0

Proof. (Uniqueness). It is enough to show that the only solution of the case up = 0 and
f=01is u=0. Let u be such a solution. Then

(u(t), U(t)) 2 :/0 (v(u), AU )) 2 + (u(t'), 0,9 (t)) 12) dt’.
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Let U(t,z) = ¢(x) with ¢ € C°(R? R?). Then the above equality reduces to

(u(t), ) 2 = v / (ult'), D) 2. (7.8)

We claim that this identity holds for all ¢y € H—5(R% R%) n H—s+t1(RY R%). First of all, it
can be shown that C2°(R%\ {0}, ]Rd) is dense in L2(R4, R?, |¢|72d¢) N L2(RY, RY, |¢)?~ 2Sd§)
Hence S(RMN\{0},R%) is dense in H—5(R%,R%) N H_S‘H(Rd RY). So it is enough to show
(7.8) for all v € S(RN\{0},R%). For ¢ € S(RY R?), y € CX(R%[0,1]) a cutoff function

n——+0oo

with x = 1 near the origin, it is possible to show that x ( ) Y T 4p in HO(RY,RY) for
any o > —d/2. Indeed

2

I (5) 0ol = [ delel

= [agiep=| [ emiz (3 (- 1) - dte)) an

)tz oo ] -5 )

We split in the right integrating in || < C and in |n| > C. In the integral in |n| < C we get
a sequence that, by dominated convergence, converges to 0. Next, we consider the integral

in |n| > C. We can bound it from above by
[o(e-1 ) v wm) a9

,g 20
(2r) /W dnl%(n) ((/ €
<c+cnl*. (7.10)

2

So

Not we claim that for ¢ independent of 1 we have

[ 1eee /%(&—mQ

We spit the integral into regions |n| < [£|, [n] ~ [£] and |n| > |£|. We have

[ e

In>[¢|

[ e
Inl<¢]

b= s [ s

[nI>[¢]

s [ je=akfi
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Finally, for |n| ~ ||

/ €2 |3 e - s/ €~ |
[n|~1€] R

So we proved (7.10). Inserting this in (7.9) and taking C sufficiently large we obtain that
(7.9) is arbitrarily small.

Hence we can conclude that (7.8) is true for all v € H—*(R% R%) N H—*+t (R4 R?). In
particular we can replace ¢ by P, and get

[ stk [ [P + ik

t t
(Pou(t), ) 2 — / v (u(t'), AP ) 2 < V| AP - / 1Pt ot
0 0
t
<ol | IRttt

where the integral fg IPnu(t))|| godt’ is well defined by P,u € L®([0,T], H*(R?, RY)).
From the above formula

t
IPelt) e < v [ [Pu®)] gt
0
and hence ||P,u(t)| z. = 0 by the Gronwall inequality. This implies u(t) = 0 for ¢ € [0,7].

(Existence). First of all, there exists a sequence (f,) in C°([0,T], H*~*(R% R%)) s.t
fo 22E0 fin L2([0,T], H*~ (R4, R%)). This follows from the density of C°(I,X) in
LP(I,X) for p < oo for I an interval and X a Banach space, see Appendix A.

Applying P, to (7.1) and replacing f by f, we obtain the equation

{(Un)t —vP,Au,, = Pnfn (7‘11)

un(0) = Pprug

Notice that P, f, € C°([0,T], H*(R% R%)). Since (7.11) is a standard linear equation it
admits a solution u, € C*([0,T], H*(R% R%)). Notice furthermore that u, = P,u, and so
in particular u, € C°([0,T], H" (R4 R%)) for all r > s.

Furthermore, applying (-, un) ;. to (7.11) and using

d

(PnAup, up) Z/ 161721 in (£, €)1 dE = =) (Eklin, ExTin) 12(B(0,0),¢[25de)

k=1

d
Z gkunyfkun L2(R4, |£‘23d§) - HvunHHs7
k=1

we obtain

1d

9 dtHunHZ s T VHVURHZ s = <Pnfn>un>Hs
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s.t. after integration we obtain

1 t 1
SO+ [ 190t = JPauelly + [ Poful®) vt (712
The difference uy, — uy,1¢ solves

{(un - Un+é)t - VPn—i—ZA(Un - Un—‘ré) = Pnfn — Pn—l—(fn—l—ﬁ
un(0) — tp10(0) = (Pn — Pryr)uo

Then, like for (7.12) we get

1 v [?
n(®) = s O +25 [ 190 =) (¢t =

1 t
= §||(Pn - PTH-E)UUH?_'IS + /0 <Pnfn(t/) - Pn+€fn+€(tl)7 (un - Un+€)(t/)>H5dt/

1 t
< S I®n — Py o)uolfy. + /0 IPrfu(t) = Prsefrre )l e [V (un — o) ()] grodt!

1 I v [
< §H(Pn — Pryo)uoll?, + 2V/o 1P fu(t)) = Prgefuse) o dt' + 5 | |V ) ()1 dt’

Hence .
un (t) = e (81, + u/ IV (= tnge) ()|, ds

<[Py — Poyp)uol?, + / 1P fu(s) — Prsefure(s)|%, 1ds.

Since f, 2272 f in L2([0,T), H*(R?,RY)) implies also Py, fy, DZH0, ¢ therein, the
last inequality implies that (u,) is Cauchy in C([0,T], H*(R?, R%)) and (Vu,) is Cauchy in
L2([0,T), H*(R4, R%)). Let u be the limit. Notice that u satisfies (7.2) and (7.6), and so
obviously also (7.3).

Taking the limit in (7.12) we see that u satisfies the energy equality (7.5).

Next, we check that u is a weak solution of (7.1) in the sense of Def. 7.1. We apply
(., (t)) 2 to (7.11) with ¥ € ([0, 00) x R? R?). Then we have

d

£<Un, \I’>L2 = 1/<Aun, \I’>L2 + <Pnfn, \I’>L2 + <Un, at\IJ>L2

Integrating we have
t
(tn(£), T (1)) 12 = (Prytig, B(0)) 2 — v / (n ('), AU(E)) 2t
0

+ /O (P fou(£), W) padt + /O (), DT (') ot
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Taking the limit for n — oo we get

(u(t), ¥(t))r2 = (uo, ¥(0)) 2 — V/O <u(t’),A\Il(t’))det’+/O <f(t’),\ll(t’)>L2dt/+/0 (u(t'), 0¥ (') padt’.

which yields (7.4). Hence u is a weak solution of (7.1) in the sense of Def. 7.1.
Next, we prove the Duhamel formula (7.7). Applying the Fourier transform to (7.11)

{&sﬁn(uﬁ) + VX (e <n|EPTn(t, ) = Xjgj<n Fu(t,€) (7.13)

Notice that suppii,(t,-) C {|¢] < n} so that xj¢j<nl&[*Un(t, &) = [£[*TUn(t,€). Then, by the

variation of parameters formula

t
~ —tv|€l? ~ —(t—t"vl€12? -~
Un(t,€) = e "y g <ntio (€) + /0 e TN e n fu(t, )t (7.14)

Now we know
U (t,€) =" A( £) in C([0,T], L*(RY, |¢[**dg))
Xje|<ntio(€) "= o (€) in L*(RY, |¢[*d¢),
Xigj<nn(t,€) "7 F(t,€) in L2(0,T] x RY, |2~ dtde)
Notice that

Ty(t,€) := /0 =R (11 6t

is a bounded operator from L2([0,T] x R%, |€|26~Ddtdg) into L=([0,T], L*(R, [£]>°d€). In-
deed for t € [0, T] and fixed £ € R? and for g € C.([0,T] x (R4\{0}))

t / 2 1 t 1 ]_ t 1
Tt 9)1 < (| 2o o an’ < oo [law oPar?

and so

1 _
[ e epae < 1 [ (g, e Parae
Rd vV Jio, T xRd
This implies
ITgll oo 0,7, L2 (e g 20dg) < V 1/ 20119l 220,y x R e 201 dnae)-

Since C.([0, T] x (R¥\{0})) is dense in L2([0,T] x R?, [¢[2~Ddtde) a well defined bounded
operator remains defined. Taking the limit for n — oo in (7.14) all terms converge in
L>=([0,T], L?(R4, |€]%2d€)) to the corresponding terms of

2 t 2
At €) = e T (e) + / e~ =WER Fy ¢)at

0
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Remark 7.3. Notice that applying the Fourier transform to (7.7) we get

t
u(t) = e"Pug + / WA £ () dt. (7.15)
0

The following theorem yields additional estimates.

Theorem 7.4. Let f be like in Theorem 7.2 and consider the corresponding solution
we C(0,T),H%), Vue L*[0,T],H®).

Then, additionally, we have

l(t)] .3 € PO, TL,R) for any p > 2 (7.16)
Moreover we have
’ : 1
V(t) = /Rd [ (gx;tlﬂ(t’,é)\) dg | < lluollzs + @Hf”LQ([O,t],HS*) 5 (7.17)

_1 _1
el ooz lzoory < v (luoll s + 510 pagomy ey ) -

Proof. From the Duhamel formula (7.7) and the previous computation

. e~ 1 ~
At €)| < e e fag(¢)] + @M‘Hf(uf)!!m(o,t)-
so that )
\ﬁlsoiltl;;t ', &)1 < |€1° o (&)] + \ﬁlsmm £ 20,0)-

Taking the L?(R?, d¢) norm we get

1 .
V(t) < luo() L2 (ma jg[25ae) T+ EHfHL2((o,t),L2(Rd,|g|2<s—1>d§))~

and this yields the 1st line in (7.17).
To get the 2nd line in (7.17), from the energy estimate (7.5) we obtain

t t
1
lu(t)12,, + 2 /0 V()20 < luol%, +2 /0 S F O Tl

t t
1
< lually, + v [ Uwetear + 2 [ 1@, ar.

This yields
t 1 t
)y, + v [ IVt < ol + 5 1At
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and hence .
lll poo oy, 175y < Nwoll s + v 2l L2070, 17)

_1 _1
Mll oo 20y < 7% (ol e + 221 o)) -

So by the interpolation of Sobolev norms Lemma 5.1 for 2 < p < o0

2

P

1—-2 _ 2
Hlull ;s 2 lzpo,r) < HHUIIHS”HVUH Mooy < ull,. o). VUl o llzoo,7)

_2

HUH y HVUH

> ([0,7],H*) L2017, ) = = (HU()HHs + VﬁHfHLz([o,T],Hs)) .

8 The Navier Stokes equation
We will only deal with the Incompressible Navier Stokes (NS) equation:

ur+u-Vu—vAu=—-Vp
V-u=0 (t,z) € [0,00) x R? (8.1)
u(0,z) = up(z)

where u : [0,00) x R? — R? with u = Z?Zl u/e; with e; the standard basis of R?,

P Lo L9
A::Z@,V'u:Z@u],u-Vv:Zujgjv.
J=1 J 7=1 J=1

Here v > 0 is a fixed constant. We could normalize v = 1. p is the pressure and its function
is simply to absorb the divergence part of the Lh.s. of (8.1).

We can write

d
u - Vu = div(u @ u) for div(u @ v)’ := Z O (uFv7) since (8.2)
k=1

sH

div(u ® u)’ = Z O (uFu?) Z uF o + u? dlvu =u- V!
k=1 k=1 0

So we rewrite (8.1) and

u + diviu @ u) — vAu = —Vp
V-u=0 (t,z) € [0,00) x RY (8.3)
u(0,2) = uo(x)
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Definition 8.1 (Weak solutions). Let ug be in L2(R%). A vector field u € L2 ([0, 00) x R%)

loc
which is weakly continuous as a function from [0, 00) to (L2(R%))? and s.t. divu(t) = 0 for

every t, is a weak solution of (8.3) if for ¥ € C°([0,00) x R% R%) with divll = 0 we have

(u(t), U(t)) :/0 (w(u(t), ATE)) 2 + (u(t), 0 (1)) 12
—(div(u @ u)(t"), (")) 2) dt’ + (ug, ¥(0)) z2.
Notice that formally (8.4) is obtained from (8.3) writing

t t t
u+divu®u—1/Au-\Il:—/ Vp~\I/://pV'\I/.
/O/Rd(t ( ) ) 0 JRra 0 JRE YT

So integrating by parts (which is formal if u is not sufficiently regular) we have

t t t t
O:/ u-v // u~8t\11+/ 6k(u]uk)\1’31/// u- AU
R4 0 0 JRd 0 JRd 0 JRd
t t t . . t
:/ u- W —// u-@t\Il—// u]ukak\lfj—u// u- AW
R4 0 0 JRd 0 JRd 0 JRd

which gives the desired result. In particular, (8.3) implies (8.4) when u is regular.
But the opposite is also true, and when w is regular (8.4) implies (8.3). Indeed, suppose
that u is regular and that it satisfies (8.4) for all the ¥ as in Def. 8.1. Then

(8.4)

t
/ u(t,z) - Y(t,z)de — / uo(x) - ¥(0,z)dr = / / (vu- AV +u@u: VU +udp V) (¢, z)dzdt’
R4 R4 0 Jrd

= /Ot /Rd (vAu —div(u ® u) — dgu) - U + /Rd u(t,z) - U(t,z)dr — /Rd u(0,2) - ¥(0, z)dz.

Hence we get

/Rduo(x)-\ll(o,x)dx:/ot/w (8tu—VAu—|—div(u®u)).\p_i_/Rdu(O’x),\I,(oﬂj)dx'

Taking ¥ = ()1 (x) with ¢ € C2°((0,T),R) and ¢ € C°(R?, R?) and divergence free, we
conclude that

t
/ 4t (1) / (O — v+ div(u ® u)) - (x)] da
0 R
This implies that for all ¢
(vAu — div(u ® u) — Opu, ¥) p2(ray = 0

for any t and for any divergence free vector field ¢ € C°(R?% R?). Formally, this implies
that the above holds for 1) = PO for any vector field © € C°(R? R?). Then, by P* = P,
we conclude that

(P(vLAu — div(u ® u) — Oyu), ) 2 (gay = 0 for all © € C*(R%, RY).
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This implies
PvAu—div(iu®@u) — ) =0= us + v - Vu—vAu=—Vp

for some p, see Lemma 3.6.
Then we get

/Rd uo(z) - ¥(0,z)dr = /Rd u(0,2) - U(0, z)dx

and so u(0,x) = ug(z).

Let us now formally take the inner product of the first line of (8.1) with u and integrate
in RY
1d
2dt
We have, summing on repeated indexes,

HUH%Q + <u ’ VU,U>L2 - V<AU7U>L2 = _<Vp7 U>L2

(u-Vu,u)e2 —/

wuFojufde = 21/ w9 (uPuP)rde = —271 lu|*divu dz = 0 and
Ra

R4 R4

(Vp,u)r2 = / ujajpdx = —/ pdivu dr = 0.
Rd Rd

So, formally (rigorously if u is regular and we can integrate by parts), we get

1d

5 aellullf + VI Val3 = 0

This in particular yields the following energy equality

t
() e gy + 20 /0 IV a(t) 2y = lluoll3e g (8.5)

Theorem 8.2 (Leray). Let ug € L?(R?%) for d = 2,3 be divergence free. Then (8.3) admits
a weak solution with u(t) € L>®(Ry,L?*) N L7 (Ry, HY) such that the following energy
inequality holds:

t
()1 gty + 20 /0 IV a) 22 gy < ol 2 g (8.6)
We will also see the following.

Theorem 8.3 (Case d = 2). When d = 2 the solution in Theorem 8.2 is unique, it satisfies
(8.5) and u(t) € C°(]0,00), L?).
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Notice that if we apply formally the operator P to equation (8.3) we obtain formally

{“t ‘u”(éi)::%g(sé;"“) (t,2) € [0, 00) x RY (8.7)
where we set ) .
Ons(u,v) := —?P’(div(u ®v)) — EIP’(div(v ®u)). (8.8)
Here notice that
R 1 &
P(div(u®v)) =) 9 ((ulv]) SN > ajak(ulvk)> . (8.9)
=1 k=1

Before starting the proof of Theorem 8.2 we need some preliminary results on 1st order
ODE’s in Banach spaces.

Definition 8.4. Given a Banach space X a function F': X — X is locally Lipschitz if for
any M > 03 L(M) € (0,+00) s.t.

|P(z) - F(y)| < L(M) & — y]| for all 2,y with |}zl < M and ly| <M. (8.10)

Now consider the system
u=F(u), u(0)=x (8.11)

t
u(t) == —I—/ F(u(s))ds. (8.12)
0
Proposition 8.5. Let F' be as in Definition 8.4. Then for any M > 0, for Ty defined by

Ty := 1
M oL@M + |[FO)|) +2°

(8.13)

and for any x € X with ||z|| < M there is a unique solution u € C°([0,Ty], X) of (8.12).

Proof. Set K =2M + ||F(0)|| and
E={ueC0,Ty],X) : ||ut)| < K for all t € [0, Tx]}

with distance dg(u,v) := supg<;<7,, [[u(t) —v(t)||. (£, dE) is a complete metric space. Next
consider the map u € F — &,

O,(t) =z + /Ot F(u(s))ds for all t € [0,Th].
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By Ty = m for all t € [0, Tys] we have

IF®)] < [FO)] + 1F(u(t) — FO)] < [FO)] + KL(K)
_ M| FO)]

= [[FO)] + 2M + [[FO)N LK) < (M +[[F(0)]]) 2 (L(K) +1) o

So for t € [0, Th] we have

@ ()] < M+

M+ ||F
M < 2M + |F(0)|| = K
T

and so ¢, € E.
For u,v € E we have

[Pu(t) — @y (8)] < /0 [ (u(s)) = F(v(s))llds < Tar L(K)[|u = ]| oo po,17,x) = T LK) d g (u, v).

So by Ty L(K) < Ty (L(K) +1) =271
dp(®,, ®,) < 27 Ydg(u,v)

Hence u — ®,, is a contraction in E and so it has exactly one fixed point.

O
We have the following application of Gronwall’s inequality.
Lemma 8.6. Let T >0, x € X and let u,v € C°([0,T], X) solve (8.12) then u = v.
Proof. Let M = maxo<i<7{||u(t)|],||v(t)||}. Then
t t
[u(t) —v(®)]| < /O [1F(u(s)) — F(v(s))llds < L(M)/O [u(s) — v(s)|ds
and apply Gronwall’s inequality. O

It remains defined a function 7' : X — (0, co] where for any z € X
T(x) =sup{T > 0: 3u € C°([0,T), X) solution of (8.12) }

and the interval [0,7(x)) is the largest (positive) half open interval of existence of the
(unique, by Lemma 15.6) solution of (8.12).

Theorem 8.7. We have, for u(t) the corresponding solution in C([0,T(x)), X),

2L([F O + 2[lu@®)]) = T(x;—t —2 (8.14)

for allt € [0,T(x)). We have the alternatives

(1) either T(xz) = +o00;
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2) orif T(x) < 400 then lim ||u(t)|| = +o0.
(2) or if T(x) lim )]

Proof. First of all it is obvious that if T'(z) < 400 then by (15.10)

lim L(||F0)]] + 2||lu(t)|]) = oo = lim |[|u(t)| = +o0
lim LOIFO)] +2]u(t)]) lim (o)
where the implication follows from the fact that M — L(M) is an increasing function.

We are left with the proof of (15.10), which is clearly true if T'(z) = co. Now suppose
that T'(z) < oo and that (15.10) is false. This means that there exists a t € [0,T(z)) with

1 1
— —2=2L(||F 2 — —2=T(z) — T
- (IF O+ 21u(®l) < 7727 ~ 2= T@) ~ ¢ < Tig
for M = |lu(t)|, where we recall Ty := 2L(2M+\|1F(0)H)+2 in (8.13). Consider now v €

C°([0, Tn], X) the solution of
v(s) = u(t) +/ F(v(s"))ds' for all s € [0, Ty
0

which exists by the previous Proposition 8.5. Then define

{ u(s) for s € [0, 1]
v(

W)=\ (s — t) for 5 € [t, 1+ Toy].

We claim that w € C°([0,t + Th], X) is a solution of (8.12). In [0,] this is obvious since
in w=win [0,#] and u € CY([0,], X) is a solution of (8.12). Let now s € (¢,t + Tys]. We
have

w(s) = v(s — 1) = u(t) + /05_ Flo(s'))ds'
t s—t

=z + /0 F(u(s'))ds" + /0 F(v(s"))ds
t s

=x+ /0 F(u(s")ds' + /t F(v(s' —t))ds

——

w(s’) w(s’)

=z+ /Os F(w(s'))ds.

8.1 Proof of Theorem 8.2
We will need the following elementary lemma.

Lemma 8.8. Let d = 2,3. Then the trilinear form

(u,0,0) € (CZ(RT)? x (CZ(R)? x (CZ(RY)? = (div(u ®v),¢) 2 € R (8.15)
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extends into a unique bounded trilinear form (H'(R)? x (HY(R®))? x (HY(R?))¢ which
satisfies for a fived C
, d d 1-d 1. d
(div(u @ v), )2 < Cl[Vull 1 [Voll g2 llull 2 * 0]l 2 * Vel L2 (8.16)

If furthermore div u = 0 then
(div(u ® v),v)r2 = 0. (8.17)

Proof. Recall that from (8.2) we have div(u ® v)? := Zzzl Ok (uFv7). Then for fields like in
(8.15) we have

d d d d
(div(u ® v), ¢ Zdlvu@)v j)pzZZ@;cuvj N2 = ZZUW Oh”) 2.

j=1 j=1 k=1 j=1k=1
Now the r.h.s. can be bounded by
(P07, 87) 2] < (| 2| Vel e < [lu® pallo? || sl Vol a-

Finally, we apply Gagliardo-Nirenberg inequality writing

d d
k ks, knl—%
[u*][za < ClIVU®| f2 w2 *

The same equality holds for ©/. Then we obtain (8.16), obviously with a different C. This
implies that that the form in (8.15) is continuous, and by density of C>°(R%) in H'(R?) it
extends in a unique way.
Next, we write for ¢ = v

d d
(div(u ® v) Z Z Kol opd)

Jj=1k=1

d d d
:_2_122u O(v))}) 2 =27 IZ ((divu)v?,v7) 2 = 0.
j=1

7j=1k=1

Notice that this formal computation (the Leibnitz rule used for the 2nd equality requires
some explaining) is certainly rigorous for v € (C°(R%))?. On the other hand inequality
(8.16) yields (8.17) by a density argument also for v € (H'(R%))%. O

Remark 8.9. Notice that u,v € (H'(R9))? implies div(u ® v) € (L'(R?))¢. Indeed we have

QL

d
div(u @ v) = Z (uFo?) Z (v Ok + uFap0) (8.18)
k=1 k=1
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where the above product rule can be proved by taking sequences (C°(R))? 3 u,, "= u

in (H'(R%))4 and (C(RY))? 3 v, "= v in (H'(R))%. Then clearly for ¢ € (S (R%))¢

summing on double indexes
(O (u*07), 97) = —(u*o?, Oy?) = — lim (upo,, O

= lim (o0l v + ukped, 7)) = (010 + uhOe? )

n—oo

and this yields (8.18).
Hence § := F(div(u ® v)) € (L®°(R%)4 c (L} (R%))? Furthermore, (8.16) implies that
F € (L2(R4,|€]72d€))¢. Indeed the bilinear map

(1) p2(ra ge) « LP(RY, €]72d€) x LA(RY, [¢°d¢) — R

can be used to define an embedding

L2(RY,1¢]72d€) — (L*(RY, [¢]2dg))’

by f = (f,")2(ra q¢)- Furthermore we have the commutative diagram

f_)<f7> 2(pd
L2(RY, [¢]2d¢) LN (LARY, [¢de))

F=le7 1 (8.19)

h—=(h;) 2 R 4
? ,d€
( )

L*(R, d¢)

where the 1 is the map (L*(R?, d€))" — (L*(R?, |€]°d€))’ given by (g, ) r2(ma.ae) — (€179, ) 12 (re ¢ 24e)
where the latter map is an isomorphism since it closes the diagram

(L*(RY, dg))’

2R, dg) L2(RY, |¢de)
f= i) r2maae) 4 V=) 2me jepag)
(L*(RY, dg)) --» (L*(RY, [¢]2d¢))’

Since the other maps in (8.19) are isomorphisms, also the 1st line in (8.19) is an isomorphism.
Hence we conclude that § € (L2(R?,|¢|~2d¢))? since (S, ) L2 ae) € (L2(RY, |€]2d€)) by
(8.16).

So we conclude div(u®v) € (H~1(R%))%. Now applying Lemma 3.6 we have in (H ' (R%))?

div(u ® u) = Pdiv(u ® u) — Vp

for a function p € L?(R?) which is what we get in the r.h.s. in (8.1).

We consider now the following truncation of the NS equation.

{(un)t + P, Pdiv(P,u, @ Pyuy) — v(PpN)u, =0 (t,2) € 0, 00) RA (8.20)

un (0, ) = Ppug(x).
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Lemma 8.10. For any n the system (8.3) admits exactly one solution
Uy € C°°([0,00), (HN(RY))?) for any N € NU{0}.
Furthermore we have Pu,, = u,, and Ppu, = u,.
Proof. First of all, we consider for any n local existence. Set
E,(v) :=v(P,A)v — P,Pdiv(P,v ® P,v).
Then we have
[ Fn (W)l v ®aye < [vPrd)vll gy @ayya + [[PrPdiv(Prv @ Pro)|| gy may)a

with
[V (Pr)oll (v @ayye < vV ol 2 (ay)a
and
[PRPdiv(P v @ Puo) || v ayye S 0™ T Pro @ Proll 2 S oV [Puo|7a
d d 1—4 1—4
S oV VPL| Ll VP Lo Pl 2 [Paol
S TR )3,

So for some constant C,, y we have

1 (0) | v (ayya < G ([0l 2 rayya + 101722 gayya)-

Furthermore, as a sum of a bounded linear operator and a bounded quadratic form each Fj,
is a locally Lipchitz function. Then for any n and N we know that (8.3) admits a solution
uy, € CH([0, T, N), (HN (R9))9)) for some maximal T}, y > 0. Furthermore we must have

t/l‘iil“il,N Hun(t)H(HN(Rd))d = +oo if T), v < 00. (8.21)

Next we have u,, = Pu,, since applying 1 — P to (8.20)

{((1 —P)up)e — v(PrA)(1 —P)u, =0

and u, = P,u, since applying 1 — P,, to (8.20)

((1 - Pn)un)t =0

Now we show that the finite time blow up in (8.21) cannot occur for any (n, N) (in fact, the
following argument proves that also infinite time blow up, that is (8.21) but with 7,, y = oo,
cannot occur).
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Let us consider (8.21) first in the case N = 0. When we apply (-, u,)r2 to the 1st line in
(8.3) and get

1d )
i%HunH%Q + (P Pdiv(upn, ® up), un)r2 — v{Aup, uy)2 =0.

Notice that summing on repeated indexes (A, ¢) 12 = —(0juy, 9;¢) 12 for all p € (C§(R?))<
and since this is dense in (H*(R%))¢ and both sides define bounded functionals in (H*(R%))?,
we conclude

V(DA un) 2 = —v|| Vg3

Next, using P* =P, P} = P,, and (8.17), we have
(PrPdiv(u, @ up), upn) 2 = (div(un ® up), un) 2 = 0.

Hence we conclude 1d
5%\\%“&2(@))4 + VHVUnH?Lz(Rd))ﬂ =0

and we obtain

t
() 2 geyye + 2”/0 Hvun(t,)H?LQ(Rd))d2 dt' = [|Pouollty2 maya- (8.22)

In particular this yields the bound ||uy(t)|| 2 < ||Ppuol/z2 for all t € [0,T},0) and by (8.21)
we conclude that the lifespan is 7,0 = oo for all n € N. This proves the case N = 0 in
Lemma 8.10.

Consider now the case N € N. If u,, € C([0, Ty, ), (HY (R))?) with T}, y < oo is a maxi-
mal solution, obviously it is the restriction in [0, 7}, x) of a solution u,, € C([0, o0), (L*(R%))9).
On the other hand, the blow up (8.21) is impossible because otherwise we would have

. N N
00 = t/hTYEN [tn ()] (5 Rayye < n tthfﬁN [un ()l (L2(rays < 1 [[Pruollrz < oo

which is absurd. Hence the lifespan is T}, y = oo for all n € N and N € NU {0}.

8.1.1 Compactness properties of {u,}nen

Now we consider the sequence of solutions {uy }nen of solutions of (8.3). We will prove the
following result.

Proposition 8.11. There ezists au € L™ (R, (L*(RY))NLE (R4, HY(RY))Y) with divu =

0 and a subsequence of {un nen such that for any T > 0 and any compact subset K C R?
we have (after extracting this subsequence)

lim lup (t, 2) — u(t, z)|*dtdz = 0. (8.23)
=00 J10,T|x K
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Moreover, for all vector fields W € L2([0,T], (H*(R%)4) and all ® € L?([0,T] x R% R?) we
have

lim (un(t,x) —u(t,x)) - ©(¢,x)dtde = 0, (8.24)
n—=00 J[0,T]x R4

lm 3 / O (il (1, ) — 1 (1, 2))0p U (¢, 2)dtd = 0. (8.25)
n—roeo 0,T]xRd

Finally, for any ¢ € C°([0,00), (H*(R%))9) we have (Uns ) (r2mayya — (U, V) (2rayye in
L ([0,00)), that is

loc

lim |[(un(t) — w(t), ()l Lo,y = 0 for any T (8.26)

n—o0

Proof. Fix an arbitrary T > 0 and an arbitrary compact subset K of R,

Claim 8.12. The set formed by the elements of the sequence {uy, },en is relatively compact
in L2([0,T] x K,R%).

Proof of Claim 8.12. Notice that (8.22) implies that u,, € L?([0,T] x R? R?) for all n.
We will show the following statement, which is equivalent to Claim 8.12.

Claim 8.13. For any € > 0 there exists a finite family of balls of the space L?([0, T] x K, R%)
which have radius e and whose union covers the set {uy, }nen.

Proof of Claim 8.13. First of all, if we want to approximate {uy }neny With {P s fnen
for a fixed ng, we can use the fact that for any ng and any n we have

T
l|tn — PnounH%2([07T]XRd7Rd) = /0 l|n — Pnoun”QLz Rd))ddt

T
) — —2
<ng /0 1Vun, — VPnounH (L2(Rd )d2dt <ng / [V |2 (L2(R4)) 2 dt < ng HUOH?m(}Rd))d-

Hence we can choose ng large enough s.t.
€
[ — Prgun | L2 (jo,11 xR R4y < B for all n € N. (8.27)

Now consider {P,,up tnen. Then Claim 8.13 is a consequence of
Claim 8.14. {P, u,}nen is relatively compact in L2([0,7] x K,R%).

Indeed Claim 8.14 implies that for any e > 0 there is a finite number of balls B2 (o 71x k,r) (f;; 5)
which cover {Py,un}nen. Hence by (8.27) we conclude that for any ¢ > 0 the balls
Bra(jo,r1x k k) (fj: €) cover {uy }nen and so we get Claim 8.13.

Proof of Claim 8.14. It will be a consequence of the following stronger claim.

Claim 8.15. {P,,,u, }nen is relatively compact in C°([0, T], (L2(K))%)  L*(]0,T], (L*(K))9).
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Proof of Claim 8.15. To get this result we want to apply the Ascoli-Arzela Theorem
(for which a sufficient condition for a sequence of continuous functions f, : K — X, with K
compact and separable metric space and X a complete metric space, to admit a subsequence
that converges uniformly to a continuous function f : K — X is that it is equicontinuous and
{fn(k)}n is relatively compact for any k € K !). So it is enough to show that {P,,un }nen
is a sequence of equicontinuous functions in C°([0, T, (L?(K))?) and that for any ¢ € [0, 7]
the sequence {P,,,u,(t) }nen is relatively compact in (L?(K))<.
First of all we want to show that {Py,un}nen is a sequence of equicontinuous functions in
C°([0,T), (L*(K))%). This will follow from Hélder inequality (since § > 1 if d = 2,3) and
from the following claim.

Claim 8.16. There exists a fixed constant C' s.t.

1Proun)ell 3 7 (12gayyey < © for all n.

Proof of Claim 8.16. We apply P, to (8.3) and we obtain
(Prytn)t = =P PpPdiv(uy, @ uy) + vPy Auy,.

We have
[VP o At [| r2ayys < vngllunll(r2maya < vnglluoll 2 ay)a

and, by the Gagliardo-Nirenberg inequality,

||Pn0PnPle(un & un)H(LQ(Rd))d < HPnodiv(un X un) ”(LZ(Rd))d

d d d
k j k, j
= Pne > On(ubd) | 2ray < no Y ubtud || 2 ra)
j=1 k=1 4, k=1

2
d 1—4
< CnOHUnH?L‘*(Rd))d < C'ng <”VUn||E2||Un||L2 4> :

Then we have
d
< VTL(Q)T4 HUOH(LQ(Rd))‘i

-4)

2(1 d
+ C,no||un‘|Loo([07T]7(L2(Rd))d) ||Vun||[2/2([0’T]’L2) < C

1notn)ell 3 oy 22wy

for some constant C' independent of n by the energy equality (8.22) and the fact that
HPnuOH(LQ(Rd))d < HUOH(LQ(Rd))d for all n.

Hence we have concluded the proof that {P,,un nen is a sequence of equicontinuous func-
tions in C°([0, T, (L2(R%))4).

The proof goes as follows. One first considers a dense countable subset N of K. Then by a diagonal
argument, one considers a subsequence {fn,,} s.t. {fn,,(k)} converges for any k € N to a limit that we
denote by f(k). Using equicontinuity and the completeness of X it is easy to see that {fn,, (k)} converges for
any k € K. We denote again by f(k) the limit. Finally, using equicontinuity we conclude that f : K — X
is continuous
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To complete the proof of Claim 8.15 we need to show that for any ¢ € [0,7] the sequence
{P o un(t)}nen is relatively compact in (L2(K))?. Tt is here that we will exploit the fact
that K is a compact subspace of R,

We know that {P,,,un(t)}nen is a bounded sequence in (H'(R%))? for any ¢ € [0,T]. This
follows immediately from [P, un(t)|| g1 < nollun(t)||r2 < nolluol|z2, which follows from the
energy inequality (8.22) which guarantees ||uy(t)|| ;2 < ||uol|r2. We recall now that

Claim 8.17. The restriction map H'(R%) — L?(K) is compact for any compact K .
Sketch of proof Indeed this is equivalent at showing that

Tf:=xgF* (<£f>> is compact as L*(R?) — L?(R%).
We have Tf = [K(z,£)f(£)d¢ with integral kernel K(z,€) = xx(z){€) te ¢, Tt is
casy to see that 7, "=° T in the operator norm where the 7, has kernel Kn(z,§) =
XK (x)(f)fle*i‘”'ng(oyn) (€). Since IC,, € L?(RY x Rg), it follows that 7, is a Hilbert—Schmidt
operator, with [Tollis = [Kallpz(esrs. 1 is casy to show that [T, < [Tollns.

IC,, is the limit in L?(RY x Rg) of elements in L?(R%) ® LQ(Rg). The latter ones are integral
kernels of finite rank operators and their operators converge in the Hilbert—Schmidt norm,
and so also in the || - || 22 norm, to 7,. We conclude that there is a sequence of finite
rank operators which converges in the operator norm to 7, which then is compact. ]
It follows that {P,,,un(t)}nen is relatively compact in (L2(K))¢ for any t € [0, T).

Hence the hypotheses of the Ascoli-Arzela Theorem have been checked and we can conclude
that Claim 8.15, that is the claim that {P,,,uy }nen is relatively compact in C°([0, T, (L?(K))%),
is true.

Hence there exists a subsequence of {u,}nen (and it is not restrictive to assume this is
true for the whole sequence) which converges to an u € L%([0,T] x K,R%). By a diagonal
argument, we can assume that this is true for any compact K C R% and any 7 > 0. This
yields (8.23). Notice that this implies

U, = u in D'((0,T) x R, RY). (8.28)
We claim now that u € L2([0,7] x R?, R?) and that
u, — uin L2([0, 7] x R%, RY) (8.29)

(convergence in the weak topology). Indeed, since from (8.22) we have that {u,}nen is
uniformly bounded in L?([0,T] x R% R%), it follows that up to a subsequence we have
tp, — v for some v € L2([0,T] x R? R?). Then (8.28) implies that v = u as distributions in
D'((0,T) x RY RY). This implies that v € L2([0,T] x R% RY) with u = v.

In particular this implies

lim (un(t,z) — u(t,z)) - ®(t,z)dtdz = 0 for all ® € L2([0,T] x R% RY),

=0 J[0,T|x R4
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that is (8.24). Notice that, for ®(¢,2) = x(t)V(z) we have from the above limit
/ dtx(t)/ divyu(t, )¢ (z)dz = 0 for all ¢ € C°(R?%, R) and any x € C*°([0,T],R),
[0,7] R4
This implies that

, divyu(t, x)(x)dx = 0 for a.e. t.
R
In fact, for the argument below, which proves (8.26) and is independent of what we are
discussing right here, the integral on the lL.h.s. is continuous in ¢. This integral equals 0 for
all t, and not just for a.a. t. Since this is true for all ¢ and for all ¢» € C°(R? R) , it follows
that div,u(t,z) = 0 for all ¢.

We now turn to the proof of (8.25).
By (8.22) we know that {Vu,},en is bounded in L2((0,T) x R% R? x R?). This implies
that up to a subsequence there exists V' € L2((0,7) x R R? x RY) s.t. Vu, — V. On
the other hand (8.29) implies u, — u in D’((0,T) x RY). This in turn implies d;u, — dju
in D'((0,T) x RY,RY) for any j = 1,...,d. Hence Vu = V in D'((0,T) x R4, R? x RY),
Vu € L2((0,T) x RY, R x R?) and Vu = V in L2((0,T) x R%, R? x RY). This proves (8.25).
Notice also that, up to a subsequence, u,(t,x) Lima kN u(t,x) for almost any (t,z) and
Vu, — Vu as n — +oo in L2((0,T) x R R? x R?). In particular, this implies that, up
to a subsequence, for almost any ¢ we have the above limits for a.e. . Then the energy
inequalities (8.22) imply by Fathou

t
()12 gy + 20 / I9u(t) 22 a0t < [ 22 gy (8.6)

We turn now to the proof of (8.26).
Fix a function v € C°([0,00), H' (R4, R%)). For a given ng consider

gn(t) = <un(t),¢(t)>(L2(Rd))d and g,(lno)(t) = <Pn0un(t),¢(t>>(L2(Rd))d.
Then for any € > 0 and any fixed T' > 0 there exists ng s.t.
[Py = D))l oo 0,17, (L2(Re))2) < €
This and [|un ()| Lo (jo,17,(L2(ReY)ay < loll(£2(ray)e imply
llgn — 95" Nl oo 0,17 < Iluoll (22 @ayac-
Furthermore, for any fixed T > 0 there exists a compact K s.t.

||¢(t)HLOO([O,T],(B(REI\K)W) <€

Then, if we set g™ (£) = (Ppyun(t), ¥(£)) (12 (scy))a We have
1955 — g8 || oo 0,7y < Iluoll (22 @ayae:
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We claim that
Py tn — Poou in CO([0, T, (L3(K))%). (8.30)

Indeed, by Claim 8.15, and by a diagonal argument, we know that there exists a v s.t.
P, un, — v in C°([0,7T], (L*(K))?) for any T and K. It is easy to conclude that v €
L%([0,T] x R%,RY) and that P, u, — v therein. On the other hand, we know that u, — u
in L2([0,T] x K,R%), and that u, — u in L2([0, T] x R% R?). In turn. this implies P, u, —
P, u in L2([0,7] x R?,R?). But then this implies v = P, u, and so we get (8.30).

In turn, (8.30) implies

{90} = (Prgun (£), V() (120500 = (Protlt), $(£))2(xeyyye in CO([0,T7).
But then also
[{un(t), () (2(rayya — (u(t), (1)) (L2 (ray)yall Lo (0,17
< [(Proun(t), ¥ (1)) (L2 (ryys — (Proul)s (1)) (n2xy)ya I (0,17 + 2llwoll (22may)ee
+ (u(t), (1 = Purg) () (p2ayall Lo o,y + (u(®), (1 = X&) () (2@ayyll o (0,1 <
< [[(Proun(t), V(1)) (2 (ryys — (Prou(t) ¥(8)) (n2 k)l o,17 + 4lluoll (22 (rayyae.

Since e is arbitrarily small, it follows that we obtain that g,, converges to (u(t), ¥ (t)) L2 (ra
in L ([0, T)), and hence in C°([0, T]). In particular we have shown that u € C°([0, c0), L
The proof of Proposition 8.11 is completed.

2
w

)
(RT, R7)).
0

8.1.2 End of the proof of Leray’s Theorem 8.2

Proposition 8.11 has provided us with a function

u e L*®([0,00), L2(RY,RY)) N L2 ([0, 00), HY(RY, RY)) N CY(]0, 00), L2 (RY, RY))

loc

which satisfies the energy inequality

t
”U(t)H%?(Rd) + 2’//0 HVu(t’)H%Q(Rd)dt’ < ||U0H%2(Rd)- (8.6)

Our aim in this section is to prove that u is a weak solution in the sense of Definition 8.1.
Let us consider ¥ € C'([0,00),P(H'(R%))9) and let us apply to (8.3) the inner product
(-,U)r2. Then we get

((un)¢, \I/>(L2(Rd))d + (P,Pdiv(u, ® uy), \If>(L2(Rd))d — v(QAuy, ‘P>(L2(Rd))d =0.

Hence

d .
%@Ln, @)(Lz(Rd))d — (un, \I/t>(L2(Rd))d -+ (le(un X un), Pn\I/>(L2(Rd))d + Z/<A’U,n, W)(LQ(Rd))d =0.

54



So, integrating in t we get
/ un(t,x) - U(t, x)dx—/ P,uo(x) - ¥(0,z dx—/ ds/ Un(s,2) @ up(s,z) : VP, ¥ (s, x)dx
R4 R4
/ds/ Un (8, ) \Iftsacdx—yZ/ ds/ opul (s, )0,V (s, z)dx. (8.31)
R4

By (8.26) for any t

lim up(t,x) - U(t,x)de = /Rd u(t,z) - U(t,z)dx. (8.32)

n—oo Rd

By the definition of P,, we have

lim PLug(x) - ¥(0,z)dr = /]Rd up(x) - ¥(0,x)dx. (8.33)

n—oo Rd

By (8.24) we have

t t
lim ds/ Un(s,x) - Wy(s,z)dr = / ds/ u(s, z) - (s, x)dx. (8.34)
R4 0 Rd

n—oo 0

By (8.25) we have

t t
lim V/ ds [ Opul (s,2)0,V (s, x)dx = 1// ds [ O (s,2)0, W (s, x)dx. (8.35)
0 R4 0

n—00 R4

The above limits (8.32)—(8.35) are straightforward consequences of Proposition 8.11. By
taking the limit in (8.31), Leray’s Theorem will be a consequence of the following claim,
which is the delicate point of this part of the proof.

Claim 8.18. We have

t t
lim / ds/ Un (8, 7) @ up(s,x) : VP, ¥(s,z)dx = / ds/ u(s, ) @u(s,x): VU(s,z)dz.
n=oo Jo R 0 Rd
(8.36)
Proof of Claim 8.18. The 1st step, algebraic, is to write

t t
/ ds/ U (5,2) @ up(s,z) : VP, ¥(s, x)dxr = / ds/ U (5,2) @ up(s,z) : V¥(s,z)dx
0 R4 0 Rd

t
+/0 ds /Rd U (5,2) @ up(s,z) : V(P¥(s,z) — ¥(s,x))dx.

Claim 8.18 will be a consequence of

¢ t
lim / ds/ Un (8, T) @ up(s,x) : V\Il(s,x)dac:/ ds/ u(s, ) @u(s,x): VU(s,z)dz.
n—ee Jo Rd 0 R4

(8.37)
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and of

lim ds /]Rd Un(8,2) @ up(s,z) : V(P,¥(s,x) — ¥(s,x))dx = 0. (8.38)

n—oo 0

In order to prove (8.37)—(8.38) we observe that since ¥ € C([0, 00), (H!(R%))?) for any
€ > 0 there is a compact set K C R? s.t.

sup HV‘I’(S, ’)HLQ(RUZ\K) <e. (839)
s€[0,7T

(8.39) is elementary to prove and it is assumed in the sequel. Now we show (8.37).
By Hoélder, (8.39), Gagliardo—Nirenberg and the energy equality (8.22) we have

t T
y/w/ n(52) © (5 0) s Vs, 2)dol < [l gy [ U)o
RA\ K 0

<TF Hun ® UnHLd (.11, Lz(Rd))HV‘I’HLm [0,77],L2 (R4 K))

1d4 d/2
e SeT T ||[[unl?S ot [ Van | e || 5

ST T ||||Un||L4 Rd)” 4 2(R) L2RY) L a(0,T)

4(0,1)
< €T HunHLoo(oT] L2(Rd)) HVU’HHL2 [0,T],L2(R%)) < ET%HUOHLQ(Rd)‘

Hence, to prove (8.37) it is enough to show for any compact set K C R?

lim /t ds/Kun(s,x) ® up(s,x) : VU (s, z)dr = /Ot ds/Ku(s,:):) ®u(s,x): VU (s, x)dz.

n—o0 0
(8.40)
The limit (8.40) is a consequence of
lim u, ® u, = u®u in LY([0,T], L*(K))
n—oo
which in turn is a consequence of
lim u, = v in L*([0,T], L*(K)). (8.41)

n—oo

Let us consider y € C°(R%,[0,1]) s.t. x = 1 in K, Q := suppy and with Vx|l poe (ray < 1.
Then by Gagliardo Nirenberg we have
1—d/4 1—d/4 pd/4
£y < CUENESEEA N ey + 1PV X 2o < CILILE N
4—d d

1
Using this inequality and Holder (using 3= "5 + §)

d
lw = wnll 20,77, 08 (1)) S Illlw — UnHLz yllu — unHHl(Rd z2(0,1)
o 1_1 o 4
< |l un||Lz(Q)||L434d(07T)H||U “””Hl(Rd)”L%(o,T)

= |lu - [ =

1—4 d
nll r2(jo.19,22(0)) unll 22 o7, 11 (R

d
n—-+4oo
< 20+ V) uoll z2gayys) Tl — nll 2o gy 20y e O
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where the limit holds because u, ~=+=% v in L2([0,T], (L?(R2))4), by Proposition 8.11.

This yields (8.41) and so also (8.40).
The proof of (8.38) will follow from the fact that for any € > 0 there is N s.t. n > N implies

sup [|[V(Pn¥(s) = U(s))| p2(rae) <€
s€[0,7

In turn this, like (8.39), is a simple consequence of the fact that ¥ € C1([0, 00), (H'(R%))%).
To prove (8.38) observe that

]r.h.s. of (8.38)| < Hun & u”||L1([O,T],(L2(Rd))d2)HV(P"\D - \P)”LQ([O,T],(LQ(Rd))d)
1-d/4 d/4
< 5||Un||%2([07T},(L4(Rd))d) = 5||”Un||L4(Rd)H%2(0,T) < 5”Hun”LQ(Iéd)HvunHLé(Rd)H%Q(O,T)
da
)

214 -~
S ellwnll e o.71,22 e

4 _d
||Vun\|22( <7 45Hu0||%L2(Rd))d —0

[0,T1,L2(R?))

This completes the proof of Leray’s Theorem 8.2.
O
In the next section we prove the 2nd Leray’s theorem, that is Theorem 8.3. Uniqueness
in this case will follow from the fact that we will frame the problem as a fixed point argument
using a contraction.

9 Well posedness in Sobolev spaces

For this section see [1].
Consider the equation (8.7). If Qng(u,u) is a force like the f in (7.1), we can interpret
the solutions of (8.7) as solutions of a linear heat equation (7.1). We denote by B(u,v) the

weak solution of
{@B(u, v) — vAB(u,v) = Qng(u,v)

B(u,v)|i=0 = 0. (9.1)

Then, when we are within the scope of the theory of Sect. 7, the solutions of (8.7) can be

rewritten as
u = e""“ug + B(u,u). (9.2)

In the sequel we will use repeatedly the following abstract lemma.

Lemma 9.1. Let X be a Banach space and B : X?> — X a continuous bilinear map. Let
a < m where || Bl| = sup|g|=|y|=1 | B(z,y)||. Then for any xo € X in Dx(0,a) (the open
ball of center 0 and radius o in X ) there exists a unique x € Dx(0,2a) s.t. x = xo+B(x,z).

Proof. We consider the map
xr — xo + B(x, ). (9.3)

We will frame this as a fixed point problem in Dx (0, 2a).
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First of all, we claim that the map (9.3) leaves Dx (0, 2a) invariant. Indeed

<2
——~—
lzo + B, 2)|| < lzoll + | B(z, 2)| < lzoll + | Bllll[* < a (1 + 4] Blla) < 2.
——

<1

Next, we check that the map (9.3) is a contraction. Indeed
[1B(z,2) = B(y,y)ll < [|B(z —y,2)| + [[B(y,z — y)|| < 4e|Blllz -y

where 4a||B|| < 1. So the map (9.3) has a unique fixed point in D x (0, 2a).
O
Using the above lemma we will prove the following well posedness result.

Theorem 9.2. For any ug € H%_l(Rd,Rd) there exists a T and a solution of (9.2) with
u € L*([0, 77, H%(Rd,Rd)). This solution is unique. Furthermore we have

we C([0,T), He 1 (RE RY), Vu € L2([0,T), H2 (R?, R? x RY)). (9.4)
Let T, be the lifespan of the solution. Then:

(1) there exists a ¢ s.t.

Hu0|’H%*1(Rd,Rd) S crv = TUO = 00;

(2) if Ty, < oo then

Tug
4 _
[ 0l s = (9.5)
(3) if Ty, < oo then
Ty
2 j—
/0 IV 41 g ey = (9.6)

Moreover, if u and v are solutions, then

J0) = 0O, g gy ¥ [, 170 =0

L ds
H2™ H2 (R4 R xRY)

t (9.7)
9 Cv—3 fO <I|u(t’)”4 d—1 dod +||1)(t/)H4 d—1 Vo >dt/
< Juo — UO”H a7 (R4R4) A2 (Rd,Rd)

e
§-1(RY,RY)
where C is a fixed constant.

Remark 9.3. Notice that the following transformation preserves the solutions of the Navier
Stokes equation:
u(t,z) = uy (t,z) == Au (N, Az), (9.8)
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Furthermore, notice that the norms of u in the spaces in (9.4) coincide with the analogous
norms of uy in the interval [0,7/)2]. Notice also that the norm of ug(z) in Hgfl(Rd, R9)
coincides with the norm of ug(z/\) in the same space. So the space H :=lis an example
of space critical for the Navier Stokes equation. One obvious consequence of this is the
following: there exists no function 7'(+) : [0, +00) — (0, +0o0] s.t. Ty, > T(||u0HH%_1) for all

up € H 5=1. This is different from what we will see in a later chapter, where we will treat
energy subcritical semilinear Schrédinger equations.

Remark 9.4. While for d = 2 the solut1ons provided by Theorem 9.2 are exactly Leray’s
solutions, for d = 3 we could have ug € (H 2 (R3))3 with ug ¢ (L?(R?))3. The corresponding
solutions of the Navier Stokes equations provided by Theorem 9.2 are not Leray’s solutions.

Remark 9.5. Notice that the finite lifespan (9.5) is relevant only for d = 3. Furthermore, if
Ty, < 00, it has been shown that

el oo (0131, (2 R )2) = 00

but the proof is a much harder.
There is no blow up at T' = oo, at least when ug € H?2 (R3 R3). Indeed, we will see in Sect.

10.1 that for such wug if T,,, = oo we have t£+moo | (t )HHi(R?’) =

We will assume for the moment Theorem 9.2 and prove the following.

10 Proof of Theorem 9.2

This section is devoted to the proof of this theorem. First we have the following lemma.

Lemma 10.1. Let d = 2,3. There exists a constant C > 0 s.t.

1Qns (u, )]l < Cllull 4 o]l , a (10.1)

. d
H27?(R4,R4) — HT(Rd R4) g7 (Rd,R4)’

Proof. If d = 2 we have
2
IQws(u o)l < 3 (106 (o) s + [96(M) 1)
7,k=1

2
<2) uflge < Cllullallolpa < Cllull 1ol 3

jk
. 1
by the Sobolev embedding H%(RQ) C L*(R?), since + = 2 — 2. This yields (10.1) for d = 2.
For d =3
|Qns(u,v) bgs) S Z <||8k uFo?)| i} ao) + Hak(vkuj)HH—%(Rg))
< ||<Vu>v||H_%(R3) " ||qu||H_%(R3) ST, gy + V0, g
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: 1
where we are using the Sobolev embedding H %(R?’) C L3(R3) (since % = 3 — 2) which in
turn by duality implies Lg(RS) C Hfé(Rg).
Hence, by 2 $=3 Ly 3 L and Holder,

19ns(w, V)l - (gay S IVUllz@s) [Vl zome) + llull o) Vol L2 < 2wl o gy 101l 71 ge)-

This yields (10.1) for d = 3. O
A straightforward consequence of Lemma 10.1 is the following for C' the constant in
Lemma 10.1.

Lemma 10.2. Let d = 2,3. Then for u,v € L*([0,T], (H%(Rd,Rd)) we have

19w (s ) o011, 182 gy < CNUl o 19 %52 o ey 1P s o1y 27252 ey (10-2)
O
Proof of Theorem 9.2. By Theorem 7.4 we have for s = % —landp=14
B B <1 0 .
| (u,v)H LA(OT] H = [ B(u, U)”H5+2HLP(0,T) ~ ;7%” NS(%'[))”L?([O,T},HS*l) (10.3)
_3 _3 '
— v ¥l ns(u, >||L2 omt—s <OVl ol e

So in the Banach space X = L4([O,T],H%) we have ||B|| < Cyi. Obviously this is the

3
vi 1 :
same as 77 < R Our strategy is to prove

3

1
thAu vi < (104)
1™ ol o my sy < 36 = T
where e”t2 plays the role of xg in the abstract Lemma 9.1.

If (10.4) happens, that is if the Lh.s.of (10.4) is less than an o < m, then by Lemma 9.1

we can conclude that problem (9.2) admits a unique solution in L*([0, T, H %) with norm
3

less than 2o < ;—Z

We consider two distinct proofs of (10.4). The 1st, simpler, is valid only if HUO”H% _, s

sufficiently small and shows that (10.4) holds for all 7. In the second proof, which is general,

we drop the assumption that HuoHH ¢_, is small, and we prove (10.4) for T' sufficiently small.

Step 1: small initial data. By Theorem 7.4 we have for s = %l —landp=14

||6VtAu || vt/

_1 _1
= "™ uoll osz ey < v 7 lluollgs = vt lluoll yg o (10.5)

d—
LA(0.1].H72)

So, if HuoHH% , < 45 then (10.4) is true for any 7" > 0. In particular T, = oo and we have
just proved (1) in Theorem 9.2.
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Step 2: possibly large initial data. Now we consider the case when ug € H gfl(]Rd)
is possibly large. We consider a low—high energy decomposition: ug = P,up + X /=x> pU0
where we pick p = p,, large enough so that

v

Ixy=zspuoll ;g1 < 30"

Then by (10.5) we get

”eytAu ” Lot -L) < ||ez/tAX\/7>p 0||L4(0T]H + ||thAPpu0|| a((o,T,H d— 1)
3 (10.6)
lltA
80+H€ puOH [UT] HT)

where we made the high energy contribution small by the choice of p large.
We now exploit the fact that we have the freedom to choose T small, in order to make the
contribution to (10.6) small too. Indeed we have

Ppuo|| Ldo1 = ||€VtAX[0,p](\/ A)uo|

(0,157 )

1
TR Z 74N / (_A)Z

||thA

LA(o,7), )

NI

L VAN 1 1
< (P°T)7le” PpUOHLOO (orLaty S < (PT)1|Pyuoll g < (P°T) 1 |luoll g, < 3C

if we choose T small enough so that the last inequality holds, that is if we choose T' such

that
4

: (10.7)

NI

14

1
8p2Cluoll

then all terms in the r.h.s. of (10.6) have been made small enough s.t.

3
AN v 1

B R N T

that is we obtained (10.4).
We have proved the 1st sentence in the statement of Theorem 9.2.

Now we turn to the proof that a solution u € L*([0, 7], H%) satisfies (9.4).

By (10.1) we have Qng(u,u) € Lz([O,T],H%_2). Then it must be remarked that by its
definition B(u,u) is a solution in the sense of Definition 7.1 of the Heat Equation written
above (9.2). Similarly, by Theorem 7.2 also e’*“uq is a solution of the homogeneous Heat
Equation with initial value ug. Hence, since u satisfies (9.2), then w is the solution of the
Heat Equation (8.7), where the latter can be framed in terms of the theory in Sect. 7 for
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d
2

s =2 — 1. Then by Theorem 7.2 we have u € CO([O,T],H%%) and Vu € L*([0,T), H
This yields (9.4).

We turn now to the proof of (9.7). We consider two solutions u and v, and set w = u — v.
Then

).

wy — vAw = Qng(w,u + v)
w(0) = up — vo

where we used the symmetry Ong(u,v) = Qng(v,u) and

Ons(u—v,u+v) = Qng(u,u) — Ong(v,v) + Ong(u,v) — Ans(v,u) .
0

By the energy estimate (7.5) for s = % — 1 we have

t t
. 2 2 _ 2
JAVIRRE Hw(t)HH%* + 21//0 va(t,)HH%’ldt, = HwOHH%” + 2/0 <QN5(w,u—|—v),w>H%71(7§’)dt/.
Claim 10.3. We have
(Qus(a,b). ) g < Cllall as Bl asllel - (10.8)

Proof. Indeed, trading derivatives we have
<QNS(a7 b): C>H%71 < H QNS((% b) HH%’2 HCHH%
and by (10.1) we have
19ns(a; )l ;4o < Cllafl Lazi bl Jass

This proves Claim 10.3.
Now for N(t) := ||u(t)HH% + Hv(t)HH% by Claim 10.3 we have

t
2 / / ! /
B < ol +2 [t NOIV)] g 1.

By the interpolation estimate in Lemma 5.1 we have

lw (@)l IVw(t)

1
2
HH%*l'

1
.
e Gl

H

This implies

t 1 3
9 1 3
Aw < Jwoll g, + 2/0 lw ()2 %,IN(t')IIVW(t')H;Id dt’.

g1

T

Using the inequality ab < %a‘l + %b%, which follows by
1 1
log(ab) = 1 log(a) + Zlog(b%) <log (4@4 + zb§> ,

62



we get

1
the integrand = (Hw(t’)“? . Nt v~
H2™!

N[y
7 N
=~ w
'
|
~—
7N\
W >

=

<

g

~—~

=

e
N~

33
< T I 4 N + V()

Then

t
2 2 4 / / 12 /
Bu oy, + g5 [ @y V@ 4 [ IR, it

In other words, by the definition of A,

t
w24, + zu/ VO

t
<oy, g [ g N0t 5 [Tt ar

so that, if we set
2 2
X(t) = w2, +y/ Vw2, dt

we have

X(t) < ||w0||2 ||w ||2 4(t/)dt/

- H 44 3
2 INATA (0N 3!
< HwOHH%_1 + 44]/3/0 X(t)N=(tat'.

So by Gronwall’s inequality

¢ 3 ot
3
2 N2 ' < 2 Lnat )
Hw(t)HHgl—i—y/o HVw(t)\|H%71dt < Hw0||H%71 exp (44V3/0 N*(t")dt

This proves the stability inequality (9.7)
We now consider the blow up criterion (9.5). Suppose that u(t) is a solution in [0,7")

with
’ 4
[ 1o, < o
Notice that then u € L*([0, 77, H 21) and

1Qns (u, u)

2
Lg([07T]7H% 2, = ” H 10,11, HT (10.9)
We claim that we can extend u(t) beyond T.

Claim 10.4. There exists a7 > 0 s.t. u extends in a solution in L*([0, T+7), o (]Rd R9)).
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First of all we set

Claim 10.5. We have |§\%*1g € L%(RY).
Proof of Claim 10.5. By (7.17) for s = % — 1 and by (10.1) we have

2 2
d_ _ I
1112 gll 2 = J/ [{. ( sup IU(5,5)> dé
R4 o<t'<t

J@mH

< HUOHHj— ( ) L2(0T] H§72)

lul® 1 <00

< +— |
ol g (2u) LA T

This proves Claim 10.5.
Proof of Claim 10.4. Claim 10.5 implies

p—r+00

[ ie2laoae 2=
1€1=p
Thus there exists p > 0 s.t for any preassigned ¢ > 0
/ €42t €)[2dE < (cv)? for all ¢ € [0, T).
l€1>p

Now, recalling the splitting in high and low energies in the proof of the 1st sentence in the
statement of Theorem 9.2, there exists a fixed 7 > 0 s.t. the lifespan of the solution with
initial datum wu(t) is bounded below by 7 independently of ¢ € [0,T). Indeed there exists a
¢1 > 0 independent from t € [0,7) s.t.

4

W

14

1
803 Cllu®] ;-

>c1; > 0.

This follows from the fact that

M@HL“WH Y2 < o0

So we can take 7 = ¢;. Then T}, > T+ 7 and this yields Claim 10.4.
Let us now discuss the blow up criterion (9.6). Suppose that T, < co and that

Ty
Cia ::/ "IV, dt < . (10.10)
0 Hz
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Since we have (9.5) and

d
2

40, 7], HZ (R%, RY)) € L=([0, 7], B2~ Y(RY, RY)) N L2([0, T), H 2 (RY, RY))

it follows that since we must have (9.5), then (10.10) implies that

lim [u(t)]

TSTy, LOO([O,TLH%—l) = 00 (1011)

For 0 <t <T <T,, we have, by (10.8) and interpolation,
t
@I 4 +2V/ Va7, gy dt" = llult)ll%o, + /O<Q(U(t')7u(t’)),u(t')> Jgadt!
2 2
SO g+ Cl [ O s 17017

t
<O, g, +Ca [l 2 IV,

(10.12)
and so ) )
Il g sy < O,y + CaCralel
But this means that
2012 2

el e 0.y, 178-1) < 2Cd0L2 + = \/c Cho + 4O 4, < oo,
contradicting (10.11). This contradiction proves the blow up criterion (9.6).
The proof of Theorem 9.2 is completed. 0

Corollary 10.6. In the case d =2, Theorem 9.2 implies Leray’s Theorem 8.8 for d = 2

Proof. By the Leray’s Theorem 8.2 we know that given a divergence free uy € L?(R?,R?)
there are weak solutions in the sense of Leray with u € L>([0,00), L?(R?,R?)) and Vu €
L%(]0,00), L?*(R?,R%)). Interpolating, for each such a solution we have

1 1 1 1
lull g < el 221Vl Mg < el Lo ol Vel £

and so we obtain also u € L*([0, oo),H%(RQ,RQ)).
By Lemma 10.2 we know that this implies

Ons(u,u) € L2([0,00), H_I(R2,R2)).

Notice that the right hand side of (8.7) satisfies the hypothesis of the force term in the
linear heat equation (7.1). As a weak solution of the Navier Stokes equation in the sense
of Definition 8.1, u is then also a solution of the linear heat equation (7.1) in the sense of
Definition 7.1. This means that it is also a solution of (9.2). Since by Theorem 9.2 such
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solution is a unique, we conclude that the solution of Leray’s Theorem 8.2 in the case d = 2
is unique. Furthermore by Theorem 9.2 we know also that u € C°([0, c0), L?(R?, R?)).
We now turn to the energy identity. By Leray’s Theorem 8.2 we know that

t
()2 e + 20 / IVt |22 gy @t < o2 gy

We want now to prove that < can be replaced by = in this formula. As we have mentioned
above, u solves in the sense of Definition 7.1 the problem

Ou — vAu = Qng(u,u) with Qng(u,u) € L*(R,, H_I(RQ,RQ)),
Then, by Theorem 7.2 for s = 0 the identity (7.5) yields
t t
lu()l72 + 21//0 IVu()I72dt" = lluol72 + 2/0 (Qus(u(t), u(t)), u(t)) r2dt’.
By Lemma 8.8 we have the cancelation
(Qns(u ), u) = (P(div(u @ u),u) = (div(u® u),u) = 0.

This completes the proof, by giving the energy identity. O

10.1  Global solutions.
Proposition 10.7. Let d =3 and let up € H%(R?’,R?’) be s.t. T,,, = 00. Then

lm ||u(t)] .

t—+o00 F3(R3R3)) 0- (10.13)

Proof. Since ug € H> (R3,R3)) we have also ug € L?>(R3,R?)), and u is also a weak solution
in the sense of Leray. Hence it satisfies the energy inequality

t
o) + 20 [ IV gt < ol ey

which implies in particular

1
IVl 2w, 2 r3)) < EHuoHLQ(Rg) and

[ull oo (m . 22®3)) < lluollL2(rs)-

So by Hélder inequality and the interpolation of Lemma 5.1, we have

1
Il 1 sy < T 0l 2o

This implies that for 1 > e > 0 arbitrarily small, there exists t. > 0 s.t. Hu(te)HH b9 <
€. Then, by the part of the proof for small initial data in Theorem 9.2, we know that
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lu(te)ll La, ooyt (R3)) < Cse for a fixed constant C > 0. In turn, from inequality (9.7),
for t > t. we get

t
Cv=3 [F lu@)||%, , dt’
lu(®I? y +v / [Vus)|2 yds < u(to)|? y e Jee i,

So, in the half-line [te,00) we get Hu(t)||H%(R3) < 2||u(t€)||H% < 2¢ and, since € > 0 is

arbitrary, we have the limit in (10.13). O

Notice that in the previous proposition, in fact ||u(t) HH b ws) from a certain moment on
is decreasing. In fact, we have the following result.
Lemma 10.8. There exists e1 > 0 s.t. for ||u0HH%71 < &1 the function t — Hu(t)||H%71 is
decreasing.

Proof. From Theorem 9.2 we know that for &1 € (0,g0] then we have, arguing like in

Proposition 10.7, ||u(t)||H%71 < HUOHH%” < g1 for all t. Now, given any pair 0 < 1 < to

we have like in (10.12)

to to
2 N2 /< 2 / N /
It g, +20 [ IV g e < )l g+ C [ O] g IO
to
2 12 /
<) Py Car [ ITuO)IR g,
where C' is a fixed constant. Choosing 1 s.t. Ce; < v, it follows
2 " 2 2
/ /
< . .
Juto) g+ IV < ) (10.14)
Hence t — ||u(t)HH%71 is decreasing. O

11 The case of initial data in L3(R?)

It is possible to prove the following theorem.
Theorem 11.1. For any divergence free ug € L3(R3,R3) there is a T > 0 and a unique
solution u € C°([0,T), L3(R3,R3)) of

u = e""“ug + B(u,u). (9.2)
Furthermore there exists a €3, > 0 s.t. for |luollps < €3, we have T = co. Furthermore, if
ug € H1/2(]R3,R3), the life span is the same of Theorem 9.2.
Exercise 11.2. Prove that the mapping H'/2(R3 R?) — L3(R3,R?) is not surjective.

Exercise 11.3. Prove that the subspace of divergence free vector fields in HY2(R3, R3) is
closed in H'/2(R3,R?). Prove the same for with H'/2(R3, R?) replaced by L3(R?, R?).
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Exercise 11.4. Prove that the Sobolev embedding from the subspace of divergence free
vector fields in H/2(R3 R?) to the subspace of divergence free vector fields in L3(R?, R?)
is not surjective.

Exercise 11.5. Pick a divergence free ug belonging to L3(R3,R3) but not to H/2(R3, R?).

Show that there exists a sequence of divergence free vector fields {uén)} in HY2(R3 R3)

with u(()n) — ug in L3(R3,R3). Show also that ||u(()n)||H1/2 — 00.

Exercise 11.6. Show that it is possible to define divergence free sequences {v((]n)} in
HY2(R3,R3) with [[o{" || 172 — oo and [v{”]| 2 — 0.

Remark 11.7. For a sequence such as in Exercise 11.6, for n > 1 the corresponding solutions
of the NS equation are globally defined in time by Theorem 11.14, while Theorem 9.2 is
able to guarantee only on short intervals of time.

To prove Theorem 11.14 we will apply the abstract Lemma 9.1 in an appropriate
Banach space X. The striking fact though, is that the space X will not be of the form
CY([0,T], L3(R3,R3)). This because if X where this space, then the bilinear form B defined
by (9.1) is known not to be continuous. It turns out that to get the right Banach space X,
has required a certain degree of imagination and insight.

Definition 11.8. For p € [3,00] and T € (0, 00) we set

|

G5 @) < o0

(11.1)

KP(T) = {u € CO(<O7T]7LP(R37R3)) : HUHKP(T) = S(lé%](l/t)
te (0,

and for p € [1,3)

[SII9Y

(-

) fut) v < o).

B =

Kp(T) = {u € C°[0, T], L (R*, R?)) : |Jul| g, (r) == sup (vt)
te(0,T7]
(11.2)
We denote by K,(oco) the spaces defined as above, with (0,7 replaced by (0, c0).
We recall that the solution of the heat equation u; — vAu = 0 is e’>f = K; * f
- 2
where Ki(z) := (47wt)_%e_%. Notice that Ki(z) = (Vt)_%K«I/t)_%x), where K(z) :=

2
||

(47‘(‘)_%6_T and where K (&) = e~ lé”,
Notice that for up € L3(R3) and p > 3 we have from (1.15),

3(1_1
e Sunlzpges < ()68 ol for all 2 3 )

it can be proved that e®?uy € C(R,, LP), and so e?ug € Kp(oo).

Lemma 11.9. Let ug € L3*(R3 ,R3) and p > 3. Then

. tvA _
%131()“6 U(]”KP(T) = 0. (11.4)
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Proof. For any € > 0 there exists ¢ € L3(R3 R3) N LP(R3,R3) s.t. ||u — ¢||;s < e. Then by
(11.3) we have

v — bk, (1) (47ryT)%<7 %>e.

Since [|e"2¢||» < ||B]|Lr, it follows

3(1 3(1_1
HewA¢HKp(T) = sup (Vt)z(s p)HetuA(bHL (I/T)2(3 p>”¢”LP ﬂo

te(0,17]
O
Lemma 11.10. Let p, q and r satisfy

1 1
0<-4+-<1

P q
1 1 1 1 1 (11.5)
- < -+-<z + -
r p q 3

Then the bilinear map B defined in (9.1) maps Kp(T) x Ko(T) — K.(T) and there is a
constant C independent from T s.t.

1 B(u, V)|l k(1) < Cllullg, vl g, () (11.6)
To prove Lemma 11.10 we consider for any m = 1,2, 3 the problem

(L f)t —vALy f =Pon f
L f(0,2) =0

(L f is by definition the solution of the above heat equation). Then by (7.7) and (8.9) for
appropriate constants c;i we have

(11.7)

Pt -3 o / P g e e[ €t (1L8)

j,k=1
This means, for I'ji, (¢, ) the inverse Fourier transform of e‘“’|§|2§j§k§m|§\_2,

3 : R
= i / D (t — ') % f(t))dt'. (11.9)

7,k=1
We claim the following.
Claim 11.11. We have for a fixed C > 0

Tk (t,2)] < OVt + |z|) ™% (11.10)
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Proof. Tt is elementary that T'j,, (t,2) = (V) 72T jgm ((vt) ~/22) with f]km(aﬂ) = e*|5|2§j§k§m|§]*2.
Then (11.10) is a consequence of

T jkm ()] < C(1 + |z]) ™™ (11.11)

It is straightforward that I, € C®(R?%) N L>®(R*), because of the rapid decay to 0 at
infinity of e*‘5|2§j§k§m\§]*2. Hence, to prove (11.11) it suffices to consider |z| > 1. For xo
a smooth cutoff of compact support equal to 1 near 0 and with x; := 1 — xg, we set

L jin () = (2m) "2 /R e o (|al€) e ¢ €utmle] 2de
+(2m) > /R e (jal6) Kl g bEmle] “dg
The 1st term in the r.h.s. is
S [ leden ol
§]<|=|~1
We next consider the other term, which we split as
(2m)" /]R e (J16) xo (€) e g gml | (11.12)
+ (27r)§/ ey (€) e ¢ g8 |€| 2 d (11.13)
R3

Let us consider the term in (11.12). Set L := i# - V¢ and notice that Le 6% = =16,
Then, the the term in (11.12) is

_3 _if-x —1£]2 _
em)E [ e (xa (ol e P i6lel ) e
The absolute value of the integrand is for fixed C
|LO(--)| < Clz| ¢l ®.

Here we used that in the support of V¢ (x1 (|z[€)) we have |z| ~ |£|71. So the last integral
is bounded

< Ja] ¢ / €]75dE ~ || O)af? = ||
1>[¢|> x|t

where the 2nd term is ~ |2|7% < |z|~* and the 1st term is ~ |z|76|z|? = |z|~%.
Finally, for (11.13) we consider

(2m)~2 /]R LN (31 (&) g 6nnlel ) de,
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where we can use
LV ()] < Cla|Ne P jg|N.
So the last integral is bounded

_ _ 1|2 _
2|~ /|s e e

which, taking N arbitrarily large, is shown to be much smaller than |z|~*. This completes
the proof of Claim 11.11.
O
Completion of proof of Lemma 11.10. By (11.10) we have by Young’s inequality for
convolutions and Holder’s inequality for the tensor product of u and v the bound (here
ézl—i—%—%amd%:%ﬂL%)

t
|Bu v <C1 Y /0 ("

u(t') @ v(t")|| 5 dt’

La
7,m,k
t
< Cl Z / Hrj,m,k(t - t/)} La u(tl)HLp Hv(t/)HLq dt/
7,m.k 0

t _1.3(1,1_1 _3(2_1_1
< [a-oy 0o 10D g ol 119
0

where in the 3rd line we used

751t = )]

g S |(VE=E 1)Y= —1)7

La(R3)

2] )4
1
( VT
()R )3 (|1 fol) gy ~ (¢ ) 20T D)

— -y ),

We then conclude
_3(1_1
I1B(u, )|l < Ct~2(577) lull ) VIl i, ) (11.15)

where we used the fact that V a, 8 € (—00,1) we have

t 1
/ (t—t"Y ") Pdt’ = C(a, B)t'=27 for all t > 0 and for C(a, f) := / (1—t")~ (") Par'.
0 0

(11.16)
and
L3/ 1 1y 372 1 1y _1 3/ 1y _ 1 . 3
2 2\p ¢ r) 2\3 p ¢/ 2 2\3 r) 2 2r
2 2r 2 2\3 r

Notice that in the inequalities in (11.5) we need:
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1 1 1
° 3 =~ 4 = < 1 in order for u ® v to belong to the Lebesgue space L?(R3);
p q
1 1. . N1 . .
e 0 < — + — is needed because otherwise in (11.15) we get (¢')~" and the integral is
p q
undefined;
1 1 1
e — < — + — is needed for a > 1;
r P q
1 1 1 1 1 3/1 1 1
e —+— < —-+—isneeded toget —— — - ( =+ — — — ] > —1 in the exponent of (¢t —t')
p q 3 r 2 2\p q¢ r
in (11.14).

O]

Exercise 11.12. Prove (11.16). Hint, split the integral into sum of integrals in [0,¢/2] and
[t/2,1].
We have the following fact.

Proposition 11.13. For any p € (3, 00] there exists a constant €y, > 0 s.t. if
”etA’LLOHKp(T) < Epv (11.17)

then there exists and is unique u in the ball of center 0 and radius 2e,, in K,(T) which
satisfies (9.2).

Proof. Setting r = ¢ = p, we see that for p > 3 we have B : K,(T) x Ky(T) — K,(T) is
bounded and with norm that admits a finite upper bound independent from 7. The proof
follows then from the abstract Lemma 9.1. O

Theorem 11.14. For anyuy € L3(R3,R3) thereis a T > 0 and solution u € C°([0,T), L3(R3,R?))
of (9.2) which is unique. Furthermore there exists a €3 > 0 s.t. for ||ugl|zs < €3, we have
T = oo.

Proof. We have e'“uq € K,(T) for any p > 3, see (11.3). Furthermore, HemuoHKp(T) =00

for p > 3 by Lemma 11.9. Then we can apply Proposition 11.13 concluding that there exists
a solution u of (9.2) in K¢(T") for T' > 0 small enough. Applying Lemma 11.10 forp = ¢ =6
and 7 = 3 we get B(u,u) € C°([0,T], L?), and so u € C°([0, T], L?).
We assume now that there are two solutions w; and wug. Setting ug; = us — uy and w; =
B(uj,u;) we have
Orugy — vAugy = for .
{ uz1(0) = 0 with

fo1 = 2Q(e"Pug, ug1) + Q(wa, ug ) + Q(wr, ug).
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By L%(R3) — H_%(RB), which is the dual of Sobolev’s Embedding H%(R:S) — L3(R3), we

have
Qv -

Then, by (7.5) and entering the definition of fo;

$gey S Nu@ vl oy Sllu@vl g oo < llullzallvlze.

dt'

Nl

t t
e 12,y +2 [ 1Fun @)1yt <4 [ (@),

-t V(@)

t
<2 / 1Q(e* 2o, uzt) |
0
t
1+ / 1Qws, uzn) + Qs ua)l,_y [Vuz ()], . (11.18)
0

We bound the last line with, for j = 1,2,

t t
2/0 1Q(ws, uan)ll 5 IVuar ()] -yt S Hwy'\m(t)/o luar ()| 2l Vuar ()], -y dt'

.
t
Sl [ Ve @,y (1119

where in the last line we used Sobolev’s Embedding H %(Rg) — L3(R?).
So, the last line of (11.18) is

t
S (”leKS(t)+Hw2HK3(t))/O [Vuar (£)]1% _y dt'. (11.20)

We split now

(1) (2)

ug =ugy +uy - with ||u(()1)HL3 < € and u(()Q) eLlSnL?

and we bound similarly to (11.19)

t
1
/ Qe ua) - IV (O], -y < ol s [ IV (O,

Finally, we bound

H

t
/ JQ( 0 u)l [ Vu ()], _y ¥

< [ S @l IV Oy S [ 1602 @ 3 s (0]

3
2

1
S/O e 2| o fuonll 2| Vs |,y dt’ < |lug’ HL6/O luze [ _ 4 Va2l

l
H?2
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So we get

t t
1
e (1, + 20 [ 190 @)1yt < (laonlao + el + 106”s) [ 19012y

3
AC3:

¢ N2 / c? (2) 14 ¢ 2 /
b2 1wy s St [l o

Taking C large, and ¢ small, so that [[w1 | g, + [[wall g, e) + Huél) |l3 < 3e with € sufficiently
small, we obtain

t 4 t
C 2 4
lus (B2, +v /0 [Vuan(#)2 gt S =l |4 /0 st

H

Gronwall’s Inequality implies that ug;(t') = 0 for ¢ € [0,¢] with ¢ > 0 sufficiently small.
The above argument shows that the set

{t S [O,T) tugp =0 in [O,t]}

is open (and, obviously, non empty) in [0, T'). On the other hand, since ug; € CY([0,T), L3(R3,R?)),
it is also closed in [0,7"). Hence it coincides with [0, T").
O

Remark 11.15. Let ug € H%(R?’,R?)). Then it can be proved that if 75 > 0 is the lifespan
of the corresponding solution u € CY([0, T3), L*(R?, R?)) provided by Theorem 11.14 and if
T, > 0 is the lifespan of the solution provided by Theorem 9.2, we have T3 = T,,,. We will
prove the simpler result in Proposition 11.16.

Proposition 11.16. Let ug € H%(RS,R?’). There there exists €3, > 0 s.t. for |[uol|1sws) <
€3, and if Ty, > 0 is the lifespan of the solution provided by Theorem 9.2, we have T, = 0.

Proof. Taking ez, > 0 sufficiently small we can assume by Theorem 11.14 that u € C°([0, >0), L?).
In fact, if it is sufficiently small we can prove |[u| Lo (j0,00),23) < Cvlluol| s for a fixed C,, > 0.
Suppose that T3, < co. Then by Theorem 9.2 we have the blow up

T
lim / [Vu(t)|? 1 dt = co. (11.21)
T/ 'Tuy Jo H2
By Theorem 9.2 and by (7.5), for 0 < t < T < T,, we have
2 ! 2 2 ¢
! !/ N / ! !
o)y +20 [ IV e = uoly +2 [ lt) - Fule) @)yt (112
By Sobolev’s Embedding H%(R?’, R3) — L3(R3,R3) we obtain

[(u Vi u) | = [ Vi, V) pa] < JJull o[ Vul|7s < Cllullga| Vull? 4
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Then
2 K 2 2 ! 2
/ / !/ !/
It +20 [ IV, < ol g+l ogensy [ 1Tl
t
<ol + CuClluals [ IVu)IE, .

So, for C,Cluo||rs < v, we get

t
2 2 2
Iy + v [ I9uE)I2at < ol

which contradicts (11.21).

12 Schrodinger equations

For uy € S'(R?, C) the linear homogeneous Schrédinger equation is
iug + Au =0, u(0,z)=up(z).

By applying F we transform the above problem into
a + g =0, 1(0,6) = To(6).

d ix|?

This yields a(t, &) = e € To(¢). We have e EI* = G(t, &) with G(t,z) = (2ti) 2e 1t .
This follows from the following generalization of (1.2) for Rez > 0

| 2

_le? _d Citep o
e * 2 = (2mz) 2/ e e 2 .
Rd

This formula follows from the fact that both sides are holomorphic in Re z > 0 and coincide
for z € Ry. Then taking the limit z — 2i for Rez > 0 and using the continuity of F in
S'(RY,C) we get

. . i|lz 2
e e = (47ri)_g / L
Rd
Then u(t,z) = (2%)_%6’(1&, ) * ug(x). In particular, for ug € LP(R%, C) for p € [1,2] and by
Reisz’s interpolation defines for any ¢ > 0 an operator which we denote by

ilz—y[2

ePlug(z) = (471.175)*% /Rde 1 up(y)dy (12.1)

which is s.t. €t : LP(R% C) — LP (R4, C) for p € [1,2] and p' = S with |e8tugl| <

11
(47rt)_d(2 P’)||u0||Lp by Riesz interpolation.
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Remark 12.1. Notice that for no p # 2 and ¢ > 0 we have that e'! defines a bounded
operator LP(R? C) — LP(R?,C), see [9].

Remark 12.2. Notice that e®! : LP(RY) — L9(R%) is a bounded operator for all 1 < p < ¢ <
00.

In the sequel, given v,w € L?(R%,C) we will use the notation

(v,w) = Re /Rd v(z)w(x)dx. (12.2)

In the sequel we will reinterpret the equation

iug + Au=f, u(0)=uge H(R?) (12.3)
in the integral form
t
u(t) = e Puy — i/ e =2 p (i dt. (12.4)
0

To understand this formula we will need Strichartz’s inequalities.
We say that a pair (g,r) is admissible when

2,d_d
T 22d (12.5)
2§T§ﬁ(2§r§ooifd:1,2§7“<ooifd:2).

d
) is admissible for d > 3. We

The pair (00,2) is always admissible. The endpoint (2, 13

have the following important result.

Theorem 12.3 (Strichartz’s estimates). The following facts hold.

(1) For every ug € L*(R?) we have ¢®tuy € LI(R,L"(R%)) N CO(R, L2(R%)) for every
admissible (q,r). Furthermore, there exists a C' s.t.

HeiAtUOHLq(R,LT(Rd)) < Clluol| 2 (12.6)

(2) Let I be an interval and letty € 1. If (v, p) is an admissible pair and f € L (I, L” (R%))
then for any admissible pair (q,r) the function

Tf(t) = /t t B3 £(5)ds (12.7)

belongs to LI(I, L™ (R%))NCO(I, L*(R?)) and there exists a constant C independent of
I and f s.t.

1T fLaqr,rmayy < CUFll v 1 Lo may) - (12.8)
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13 Keel and Tao’s proof of Strichartz estimates

We will follow the argument by Keel and Tao [8]. We will assume that (X,dx) is a
measurable space and that H is a Hilbert space. We consider a family of operators
U(t): H— L*(X). We assume the following two hypotheses.

(1) There exists a C' > 0 s.t.

[U@) flle2 < Cllf|lz for all f € H;

(2) there exist a 0 >0 and a C' > 0 s.t. for all ¢ # s and all g € L'(X) we have

U@ U (s)) gllLee < Clt = 5[ |gll -

We say that a pair (q,r) is o—admissible when

2 20
4+ =0
q T (13.1)
r,q > 2 and (q,r,0) # (2,00, 1).
. . . . 20
Particularly important, for ¢ > 1 , is the point P = ( 2, 1)
O' —_—

Notice that (1) implies ||[U*(¢)F||z2 < C||F||z2 by duality.

Theorem 13.1 (Keel and Tao’s Strichartz estimates). If U(t) satisfies (1) and (2), and if
furthermore there exists an appropriate scaling operator in X and H, then we have

(3)
|U () uoll Lar,zr(x)) < Coprlluolla-
)
H /R (U()* F()dsllir < CIF g i x0)-
(5)

U@)(U(s))" F(s)ds|La,Lr(x)) < Cq,r,a,FHF”L?i’(R,LF’(X))~

|
t>s

for all admissible pairs (q,r) and (q,7).

(3) is called the homogeneous estimate and (5) the non-homogeneous estimate or also
the retarded estimate. (3) and (4) are equivalent by duality. The scaling operators are used
only in Sect. 13.2.
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13.1  Proof of the nonendpoint homogeneous estimate

We consider the case (¢,7) # P. The proof of this case predates the paper by Keel and
Tao.
It is immediate that (4) is equivalent to

[ WO P00 60 5 s

< CHF”Lq’(R,LT'(X))”GHLq’(R,L’“'(X))‘

So we have to prove the above estimate. Furthermore, it is enough to prove the above
bound for

T(F,G) = / (U(s))*F(s), (U())*G()); dtds. (13.2)

t>s
By (1) we know that (3) holds for ¢ = oo and r = 2. So pointwise

((U(s))"F(s), (U1))*G@)) | = KU()(U(s))"F (s), G(2)) 2]
<UD () F(s)l2x)IGO 12 (x) < CPIF ()2 |G @) 2(x)-

Furthermore

(U ()" F(s), (U#)* G#) | = (U @)U(s))"F(s), G(t) | < NUE)U ()" F(8)l| oo ) [GE) 11 x)
<Ot = s[77NE ()1 x) 1G] prx)-

From the Riesz—Thorin Interpolation Theorem, see Theorem 1.6, we have (omitting the
constant) for any r € 2, o0

* —o(1-2 —1=p(rr
UMW) F ()l rx) S N = 817 DIES) | oy = 1= 810D ()]
g g

h —g-1-2-2
where B(r,7) == 0o -

Then we conclude
((U()"F(s), U)W | S 1t — 81PN ooy IGO o -

Then for % — % = —f(r,r), using the Hardy,Littlewood Sobolev inequality, see Theorem
4.4 , which requires ¢ > ¢,

TGS /R [t = s| PO $) e oy dslla@) |Gl e g, (x0) S IE o vt ep 1G | o g, )y

Notice that % — = = —f(r,r) means

1
q
2 2 2
1—7:—U+1+2g<:>7+—0:0
q r q T
and —S(r,r) > 0 means
20

c—1"
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13.2 Proof of the endpoint homogeneous estimate

Here we consider the endpoint case (¢,r7) = P = (2, %), when o > 1.

The introduction of a scaling operator will simplify considerably the discussion. We
will denote it by D) for A > 0. We assume the following:
1. there exist operators Dy : H — H s.t. (Daf,Dxg)y =A"7(f,9)y
2. there exist operators Dy : L"(X) = L"(X) s.t | DxF|lprx) = A7 [|F| o x)

3. in all cases D;l =D)-1.

Notice that for o = ¢, H = L?(R?) and X = R? with L"(X) the standard Lebesgue spaces,
then D) f(x) := f()\%x) satisfies the desired requirements.

Lemma 13.2. Let the function t — U(t) satisfy (1) and (2) in Sect. 13. Then t —
D)\U(Mt)Dy-1 satisfies (1) and (2) in Sect. 13 with exactly the same constants C.

Proof. Indeed
IDAUA) Dy fll 2 = A2 U Dy fll 2 < CA™ 2 [ Dy flla = ClIf |
and from (D \U(As)Dy-1)* = D\(U(As))*Dy-1,

IDAUA) Dy-1(DAU (As) Dy=1)" f || oo [ DAU (M) (U (As))" Dx-1 f | o
= [[UA)(UAs))" Dy-1 fllee < CAft = s[77|[Dy-1 fllr = Clt = [~ fl| 1

O
After the above preliminary on scaling operators, expand
T(F,G) = ZT](F, G) where T;(F,G) = / ((U(s))"F(s), (U(t))"G(t))y dtds.
jez t—2I>s>t—27+1
(13.3)
We will prove
Z ‘Tj(Fa G) < HFHL2LT’HGHL2LT“ (13.4)

JEL
We will prove the following.

Lemma 13.3. For a fized constant C' dependent only on the constants in (1) —(2) Sect.
13. we have ‘
IT3(F, G)| < C279 D F|| o |G 2 (13.5)

with (1/a,1/b) in a sufficiently small, but fized neighborhood of (1/r,1/r), dependent only
on o.
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Proof. Notice that
Ti(F,G) = / | ~ {(U())"F(s), (U(t)"G(t))  dtds
t—27>s>t—27+1
= 221919 / (Dy; (U(275))* Dy Do; F(275), Dy (U(271))* Dy—3 Doy G(27t) ) ,, dtds.
t—1>s5>t—-2
Suppose now that we have (13.4) in the particular case j = 0. But then we have

IT;(F, G)| < C2%2 || Dy F(25)|| o o [| Doy G(270) | 2y = C25297 2790+ TFT) | F|| Lt |Gl o o
= Czj(2+a_1_20+5+3> ”F||L2La’ HGHL2Lb’ = CQj(l_U+E+3)||FHL2La’ HG||L2Lb’ = szjﬁ(a’b)HFHL%u’ ”GHL2Lb’

where we recall 8(a,b) =0 —1—-2 — 7.
So we have reduced to the case j = 0. Next we do another reduction. We claim that to
prove the case j = 0 it is enough to assume that F' and G are supported in time intervals

of length 1. Indeed, assuming this case, then we have

e[ w [ () FE)L O 0) G0y ds

nel

1
2
< C E HFHLQ( n,n+1),Le HGHLQ( (n—2,n),L%) < C <: :HF”LQ((n n+1),L ) (Z ”GHL2 (n—2,n), e )

neL neZ neZ

[N

‘”(Z”F” ) (ZHGllmlm) = OVl o [

neZ nez

Hence, in the rest of the proof we will assume that F' and G are supported in time intervals
of length 1. To prove (13.5) for j = 0 we consider three cases:

(i) a=b=ox;
(ii) 2<a<rand b=2
(ili) a=2and 2 < b < 7.

Then the desired result follows by interpolation.
Let us start with (i). The proof is elementary and straightforward, because we have

IRWGNS/MZD»tJW@W@WW&G®MMS

sc/ﬁ/ u—wﬂW@mwmmU§0/ﬁ/ 1 ()0 |G (0|5
t—1>s>t—2 t—1>s>t—2
< C|F|\pipGllpipr £ C\Flp2pi |Gl p2pr-

80



Let us now consider (ii). Here we will use the Strichartz estimates in Sect. 13.1. We have

|To(F,G)| < / | </t_1> >t_2(U(s))*F(s)ds, (U(t))*G(t)> |dt

9l H

<o)

U @) G )| dt
H

[ 1w®)y 6@ ud
H

/ (U(s))" F(s)ds
t—1>s>t—2

t

/ (U(s))" F(s)ds
t—1>s>t—2

)

< ClGllpse sup‘
t H

/ (U ()" F(s)ds
t—1>s>t—2

where we used (1) in Sect. 13. Now, using the Strichartz estimates in Sect. 13.1 we have,
for (¢(a),a) admissible,

/ (U(s))" F(s)ds
t—1>s>t—2

This proves (ii) and by symmetry yields also (iii). O

Now we need to show that (13.5) implies (13.4). Obviously, we cannot just take a =
b = r and sum up, since B(r,r) = 0. To get the idea on how to overcome this problem, Keel
and Tao consider functions of the form

< CHFHLq(a)’La’ < CHFHL?La"

sup ’

t H

B

k

F(t) =277 f(t)xpw(z) and G(s) =27~

Q(S)XE(S)<37)7 (13-6)

with scalar functions f(t), g(s) and E(t) resp. E(s) sets of size 2¥ resp. 2k, Applying (13.5)
we obtain

i1 _ _ k _k _k
IT3(F,G)| < C279 (o 1=2=8) 2772277 257 || £ 12 lg] 2

N_k_k
JOA=E=E | ) 2l 2

= 0271 E= GG | £ 12l 2
= I R el g e (13.7)

Il
Q
[\
.
—
x‘q“
|
2
|
SIS}
N—
[\
L
Ed
+
=
N
/\
\T\
S =

— Cg(k—ja)(
Notice now that we can adjust (a,b) s.t. for a fixed small £ > 0 the last term equals
Ol 2 g (13.8)

whose sum for j € Z is finite.
To convert the above intuition in a proof we consider the following preliminary lemma.

Lemma 13.4. Let p € (0,00). Then any f € LL can be written as

F=> cx

keZ

k 1
where meas(suppxr) < 2 2%, |xx| <27° and |kl < 27 || f]|Lr-
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Proof. Consider the distribution function A(«) = meas({|f(z)] > «}). Then for each k
consider

1

k
o= inf «, c¢:=2rqy, — .
g Aa) <2k k k Xk Ck X(ak+1aak}(‘f|)f

We show the desired properties. We have
suppxk € {2 s an1 < |f(2)] < ar} S {2 [f(@)] > apqa}-

Then we get the 1st inequality:

meas(suppxx) < meas({z : |f(x)] > ag11}) = hm AMa) = sup{A(a) : a > ajpq}) < 28FL
aﬁaki’l
Next, by |f(z)| < ax in suppxk, we have
@) <2 50 <o
Qg

Let now lim o« = inf ap = o and lim «p = sup o = @. Then we claim that o« = 0 and
k——+oo kEZ k——o0 keZ

that |f(x)] < @ a.e. Indeed, suppose that |f(x)| > @ on a set of positive measure. There
there is o > @ with A(a) > 2% for some k € Z. Then o, > a > @, which is a contradiction.
On the other hand, suppose we have 0 < a < . Then \(a) = oo, since otherwise A(a) < 2¥
for a k, and then a > a > a > «a, getting a contradiction. But by Chebyshev’s inequality,

00 > || fllLy = aPAa),

hence getting a contradiction. The above claim and the obvious fact that for any x we

have |f(z)| € (ag+1, 0] for at most one k, prove f = ZCka (the claim guarantees the

keZ
existence of one such k).

1
We have || f|lzr < 27 ||cg|lee by

1712, / FPde = / S fexl P = 3 Jel? / elPdz < 3 [exlP2 Fmeas(suppx)

hez. hez hez
<2 el
kez.

Next we have
Z e P = Z 2kak = / oP (Z 2k5(a — ozk)> do = / of (—F'(a))da
keZ kEZ R+

where

=Y PH@a-o) =Y 2"< Y 2F <axa).

kEZ ap>a 2k <\ ()
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Then, integrating by parts and using (4.12),

Slal = [

o Fla)da < 2p [ o’ Na)da =2 f[f,
keZ R+

Ry

1
so that |[cgllee < 27| f||Lr-
O

Furthermore we have the following.

Lemma 13.5. Let 1 < q,r < oo and let f € Li(I,L}) with I an interval. Then we can
write the expansion of Lemma 13.4

F=3 () (13.9)

keZ
with t — {cx(t)} a map in LI(I1, 7).
Proof. Formally this follows immediately from
1
I{er®)Hlparery = N er@®MHlerllLary < 22 ([ f 12y [l Lacry-

However one needs to argue that the function t — {ci(t)} is measurable. By a density
argument it is enough to consider the case of simple functions f = Z X, (t)gj(x) with

Jj=1,..,n
E; mutually disjoints sets. Then A(t,«) = meas({|f(t,z)| > a}) = Z XE; (t)Aj(a) with
Jj=1,...n

Aj the distribution function of g;. Then ay(t) =32,  , XE (t)ag) with a,(f) defined like
in Lemma 13.4 for each g;. Then

{a®y= Y xg O} for ¢ff) = 2r 0.

7j=1,...,n
This is measurable in ¢.
O
Consider now the
F(t) =Y flt)xx(t), G(s)=_ gr(s)Xu(s). (13.10)
keZ keZ

By (13.6)—(13.8) e have

=~ —elk—jo|—e|k—jo
M ITHF. G <D 1T (fuxe gixz)| < €Y 27k=7e] il |”fchL§HgEHLf
J gokok gk

—celk—q0|— E—'U
=N [ ST aeteselelarl )y a1z -

kk J

83



We claim that for a fixed C = C(o,¢)
Y gelhedol—eli—iol < comelbR(1 4 |k — R (13.11)
J

To prove this inequality, it is not restrictive to assume k < k. Then the summation on the
left can be rewritten as

Z 92ejo—e(k+k) + Z o—e(k—Fk) n Z e (k+k)—2ejo

jo<k k:<ja§7§' E<ja

Then (here [t] € Z is the integer part of ¢ € R, defined by [t] <t < [t] + 1)

Z 225]‘0—5(19-&-%) _ 2—5(k+E) Z 92ejo _ 2—€(k+E) 22280([5]*]') =C.y 27€(k+’15)+2€cr[§]
j 7=0

o=t <[4]
_ % ok (e T 1

< O, 2 s ktR)+2e0l _ o o—e(k—k) — o o—elk—kl where O, = —
We have
Z 2&‘(k‘+E)_26j0' < 2€(k+E) Z 2—25ja — 26(1@—}—%) Z 2—250([%]4—14—]’) _ 0502£(k+E)—250([§]+1)
k<jo > [E]+1 i=0

I k ~ ~
< Cea2s(k+k)*25t7; _ Caazfs(kfk) _ 080275|k7k\.
Finally
- - o pu S

k<jo<k [§]+1§ja§[§]

Hence (13.11) is proved. From this we conclude that for a fixed C

SITEG) < €3 27 R 4 [k — R el 2 llgz 22
J kk

< CI{Ifell 2 Hleezy [ 27 M1 + [k - EI)Hg;IILg}
k ©(2)

<C <Z 27 (1 + |k|)> 1%l 2 Hiez @y [Nl gwell 22 Hle2 2
k

where we used Lemma 1.9. So, using v’ < 2,

Y ITEG) < Oz e gl 2 e = ClIHe@ 2 o Hle e
j

< OISl iz 19 H ey lz < C My 2 NG e D
which completes the proof of (13.4).
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13.3 Proof of the non homogeneous estimate

We need to prove that for all admissible pairs (¢,7) and (g,7) we have
T(F,G)| < Cq,r,t?,FHFHLq’(R,LT’(X))HG||L§/(R7LF/(X))' (13.12)

We have already proved that this is true for (¢, ) = (¢, 7). Furthermore, proceeding like in
Lemma 13.3

1(r.6) < [ \< | weyFes <U<t>>*G<t>>H
< [1 [ @@ Fastul @) collude < sl [ @) Fedsln [ 10060t

t>

K

< CliGlzsupll |- (U(s))"F(s)ds|ln,

t>s

Then, by (4) in Theorem 13.1 (that is the dual homogenous estimates, which are already
proved) for any admissible pair (g, r)

supl| | (U()F(s)dsllm = sup | /R (U(5))" F($)X(—oety (8)dsll 1t < CIFX (o)l .1y < CIF N o -
>s

So (13.12) holds for (g,7) = (00, 2) and any admissible pair (g, ). Obviously, symmetrically
(13.12) holds for (q,r) = (00, 2) and any admissible pair (g, 7). Finally, let us consider (g, )
and (g,7) not in one of the cases already covered. Then it is not restrictive to assume that
(¢, 7) = (agy, by,) for to € (0,1) where

() =) reo (%)

In the cases ¢ = 0,1 the inequality holds, because these are cases considered above. By a
generalization of Riesz—Thorin, Theorem 1.6, the inequality holds also for the intermediate
t’s. O

14 The semilinear Schrodinger equation

There is a vast literature on semilinear Schrédinger equations. For a survey, with a concise
discussion of some physical motivations, we refer to [15]. Here though, we consider only the
mathematical formalism and only the pure power semilinear Schrédinger equations

{iut —Au + MulP~lu for (t,z) € [0,00) x R?
u(0, ) = uo(x

for A € R\{0} and p > 1. Here p < d* with d* = oo for d = 1,2 and d* = 42 for d > 3.
We collect here a number of facts needed later.

(14.1)
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Lemma 14.1. We have the following facts.
(1) For 1 < p < d* we have the Gagliardo—Nirenberg inequality:

. 1 1

(e —Q «
o) < CollVullfaallulisen for —5 =5-5.  (142)

(2) The map u — |u|lP~'u is a locally Lipschitz from H'(RY) to H~(R?).

2
(8) For u € WHPHH(R C) we have V(|ulP u) = plulP~'Vu + (p — 1)|ulP~? (u) \%7
pt1 Ful
and belonging to L' » (R4, C).

Proof. For (1) see Theorem 5.2.
We turn (2). By (14.2) we know that v — |u[P~'u maps H'(RY) — LPH(RY) —
+1

L' (Rd). Furthermore this map is locally Lipschitz:

lulP ™ — o=l e < Cfl([ulP™ + [0~ (u = o)|| e

L L
-1 -1
< C'(ullfpes + v 7e) lu = vl o

where we have used, for w = v — u,

1
|u|p_1u—|v|p_lv:/ jt(|u+tw|p_1(u+tw)) it —
0

1 1 1 1
/ |u+tw|1’—1dtw+/ (u+tw)% ((u1 +tw1)2 + (u2 +tw2)2)pT dt = / ‘u+tw|1’—1dtw+
0 0 0

: ! p—1 2 2\ 52
Z/o (u+tw)? ((u1 + twy)” + (ug + twa)?) 2 2(uj + tw;)dtw,
j=1

which from |u + tw| < |u| + |v] for t € [0,1] and

_ 1 p—3

(u+ tw)L ((u1 + tw1)2 + (ug + tw2)2) 2 2(uj + twj)w;

3 < (p— Dfu+ twp ol

yields
[Pt — o~ o] < p(ful + )P Hu — o] < p2PH(JulP T+ (0P |u — o),
where in the last step we used, for |u| > |v|,
(Jul + Jo))P~ < 227 HuP =t < 227 (JufP~ + o).

+1
Next, we show that we have an embedding L (RY) — H~Y(R?). Indeed, this is equivalent
to H'(R?) — LPT1(R?) with in turn is a consequence of (14.2).
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We turn (3). First of all we claim that if G € C'(C,C) with G(0) = 0 and |VG| <
M < 00, then V(G(u)) = 0,G(u)Vu + 0zG(u)Vu in the sense of distributions. This claim
can be proved like Proposition 9.5 in [2] and we skip the proof here.
Let us now consider an increasing function g € C*° (R, R) s.t.
p—1
sz for0<s<1

g(s) =4 .,
272 for s > 2

m

C>®(R4,C) and all u € WIPTL(R? C) we have

and let us define G,,(u) = mP~1g (%) u for m € N. Then, by the claim, for all ¢y €

- / G (1) D0 = / (0uGon ()51 + DG (1)057T) 5. (14.3)
Let us take now the limit for m — co. We have

/ Gon(u) B0 = / Pt B0 — / Pt By + / Gon(u) B0,
|u|>m

[u|>m

Now we have

/ ulP~ ;e 2% 0 by Dominated Convergence
lu|>m
since X{ju|>m} () 7% 0 ae. by Chebyshev’s inequality. Similarly

‘/Mzm Gm(u) 0;

_ —
< o 1/|> ul?]0;0] 25 0
u|>m

< / Gn(1) Byp] < 271 / m?ul O]
lu|>m

|u|=m

Next, we consider the limit of the r.h.s. of (14.3). For G(u) = |u[P~1u we have
/ (G ()51 + DG (1)057) 9 / (0,G (w)su + DG (u);7)

- /| N (0uG (u)Oju + 0gG(u)0;u) ¢ + / (0uGm (w)0ju + OzGn (u)050) .

[u|zm

Then, like before, the terms of the 2nd line converge to 0 as m — oo and so we conclude
that all ¢ € C®(R%,C) and all u € WPH(R?, C) we have

2
_ _ _ u _
- [uuae= [ <p|u|f’ Wju+ (p— 1)fuf? (W @u) .
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The fact of belonging to L% v (]Rd C) follows immediately from Holder inequality.

O
Important are the following quantities:
1 +1
E(u) = 3 |Vu| dx —|— — |u]p dx
1 _
Pj(u)=-Im [ Ojuudz (14.4)
2 Rd

Q) = [ fuPda,

Here E(u) is the energy, P;(u) for j =1,...,d are the linear momenta and Q(u) is the mass
or charge.

Remark 14.2. Notice, passingly, that Q, P; € C*°(H*(R%),R) while E € C'(H*(R%),R).
We will show that the above quantities are conserved for solutions in H'(R? C). Here E
is the hamiltonian. The system is invariant under the transformation u — Vv for ¥ € R
and the transformations u(z1, .01, 2j, j41, ..., g) = w(X1,..Tj—1, L — T, Tj41, ..., Tq) for
7 € R. The related Noether invariants are ) and P;.

14.1 The local existence

We will consider the following integral formulation of (14.1):

t
u(t) = e*®ug — i / =8 ()P Tu(s)ds. (14.5)
0

Proposition 14.3 (Local well posedness in L?(R%)). For any p € (1,14 4/d) and any
ug € L*(R?) there exists T > 0 and a unique solution of (14.5) with

we C([-T,T), L*(RY)) N LY([-T, T, LPTH(RY)) wzth + 4 g. (14.6)

Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in L*(R?) s.t. the map
vo — v(t), associating to each initial value its corresponding solution, sends

V = C([-T', T, L*(RY)) N LY([-T",T'], L1 (RY)) (14.7)

and is Lipschitz.
Finally, we have u € L*([-T,T], L*(R%)) for all admissible pairs (a,b).

Remark 14.4. We will prove later that for p € (1,1 + 2/d) that we can take T' = oo always.
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Proof. The proof is a fixed point argument. We set
E(T,a) = {v € C(-T,T), L*(R") N LA(-T,T], ¥ (RY)) :

vl == vl poo (e, L2Rey) + 0Nl Lagmr, ), Lot (RAY) < a}

and we denote by ®(u) the r.h.s. of (14.5). Our first aim is to show that for 7' = T'(|luo||z2)
sufficiently small, then ® : E(T,a) — E(T,a) and it is a contraction.
By Strichartz’s estimates

o < APt
[@()lir < colluollzz + colA Ml ull e

= colluollze + ol iy iy
We will see in a moment that
pe(1,1+4/d) < pq <q. (14.8)
Assuming this for a moment, by Holder we conclude that for a 6§ > 0
1@ (w)ll < colluollzz + coT) Ml o g7 Lr+1y < colluoll 2 + co(2T)°|Aa”.
So for c(2T)?|\|aP~! < 1/2, which can be obtained by picking T small enough, we have

a
12(w)llr < colluollze + 5 < a

if @ > 2co||luo||r2. Hence ® (E(T,a)) C E(T,a). Let us fix here a = 2¢q||uo|| 2.
Now let us show that @ is a contraction for 7' small enough. We have

_ < p—1, p—l
I90) = () < ol [l u—foP ol

< coCII([ull s + ol llw = vll o | o
< COC|)‘|(||U||Lq( —T,T),Lr+1 + HU||L;([_T’TLLP+1)HU - UHLP([fT,T],LP“)

1

where 2=t + 1 = %. Since we are still assuming (14.8), we must have p < ¢, for p > ¢ would

imply pq’ > ¢, contrary to (14.8). Then by Holder and for an appropriate 6 > 0
1@ (u) — ®(v)||l7 < coCIA2aP T |u — v|| a7y, 1041y < c0CIAN 202 Tl — vl

So, for cgC|\[2aP~1T% < 1, where a = 2¢q||ug|| 2, we obtain that ® is a contraction and we
obtain the existence and uniqueness of the solution.

Next, let us prove (14.8). Obviously pq’ < ¢ is equivalent to p/q < 1 —1/q, in turn to
(p+1)/qg <1, thatisto1l/q <1/(p+1). But 1/q¢=d/4—d/(2p+2), so the last inequality
is equivalent to
2d+4 4

—924 =
d +d

d/a < <§+1>/(p+1)<:>p+1<
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and this yields the desired result.

We have proved the existence of a T = T'(||ug||r2) with the desired properties. Fix
T' € (0,T). Then there exists a neighborhood V of ug in L?(R?) such that for any vy € V
the corresponding solution w(t) is in C([-T",T'], L*(R%)) N L4([-T",T'], LP**(R?)) with
llvllzr < 2¢ollvol| 2. This is clear because with vy sufficiently close to ug, by T/ < T we can
assume

co(2T) I\|(2¢co|vo | 12)P~ < 1/2¢0(2T)°| M| (2¢0]|uo]|2)P~t < 1/2 and
COC\AB(QCOHUOHLz)p‘l(T’)g < COC|)\|2(2CO||u0HL2)p_1T9.

Using the equation and proceeding like above,

Ju = vl < colluo = voll 2 + coCIAIRT) (Nfully + ol ) = vl

< colluo — voll 2 + coCIAI(2T")*2 ((2collvoll 12)P " + (2col|uoll2)P ™) [lu — o]l
Adjusting T', we can assume that, in addition to the previous inequalities, T satisfies also

4coCIN(2T)? (2¢o]|uol| 2)P~T < 1/2.
Adjusting V', we can assume that,
(2T")°(2¢olfvoll £2)P " < (2T)°(2co||uol| z2)P -
Then from the above we get
lu —v||7 < 2¢ollug — vol| 12

and this give the desired Lipschitz continuity.
Finally, the last statement follows from (14.5) and the Strichartz Estimates.
O

Proposition 14.5 (Local well posedness in H'(RY)). For any p € (1,d*) and any ug €
HY(R?) there exists T > 0 and a unique solution of (14.5) with

uwe C([-T,T], HY(RY) N LY([-T, T], W PHL(RY)) with z + pjl—l = g (14.9)

Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in H'(RY) s.t. the map
vo — v(t), associating to each initial value its corresponding solution, sends

V = C([-T', T, L*(RY) N LY([-T", T"), WP (RY))

and is Lipschitz.
Finally, we have u € L([~T,T], WY (R%)) for all admissible pairs (a,b).
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Proof. The proof is similar to that of Proposition 14.3. The proof is a fixed point argu-
ment. This time we set

EY(T,a) ={v € C(=T,T], H'(RY) N L4([~T, T], W+ (RY)) :
o]l & = [Vl Loo (=, 1 () + [V Loy, w1 (Ray) < a}

and, as before, use ®(u) for the r.h.s. of (14.5). We need to show that by taking T
sufficiently small then ® : EY(T,a) — E'(T,a) and is a contraction. The argument is
similar to the one in Proposition 14.3 and is based on the Strichartz estimates. We will
only consider some of the estimates. By Lemma 14.1 and Strichartz’s estimates, we have

< p—1
V@ (u)llr < colluoll g + col All[|Jul’™" Vul Tt

= colluollz2 + colMlulls g7y o) I Vel Ly, Lov1)-

where % + % = %. Notice that if 5 < ¢, we can proceed exactly like in Proposition 14.3.
However this works only for p € (1,1 +4/d), which is not necessarily true here. Instead,
using the Sobolev Embedding we bound

_ p—1 _
[l gy S 2T)F < (20)"F (Jul )

||“”LB ([=T,T),Lp+1) ~ S e H“”Loo ([-T,T],HY)

So, inserting this in the previous inequality we get

IV (w)llz < colluollm + col N 2T) 7 ([Jull ). (14.10)

Here it is important to remark that the admissible pair (¢,p + 1) is s.t. ¢ > 2. Indeed, for
d = 1,2 it is always true that, if p + 1 < oo, then the ¢ in (14.6) is ¢ > 2. On the other
hand, for d > 3 recall that

d+2 2d
l<d*"+1=——-+1= ——.
p+1l1<d + d—2 + D
L . . . . 2d
And so again, since (q,p + 1) differs from the endpoint admissible pair (2, ﬂ)’ we nec-

essarily have ¢ > 2 also if d > 3.
In turn, the fact that ¢ > 2 implies that the § in the above formulas is 8 < oco. This
implies that we can pick T small enough s.t. (27)P"'aP~! < 1/2, which from (14.10)
yields ||<I>(u)||g}) < allwl|lg + a/2 < a for a > 2¢q||ug||gr. From these arguments, it
is easy to conclude that there exists a T'(||ug|/z1) s.t. for T € (0,T(|luol g1)) we have
) (El(T, a)) C EY(T,a). Proceeding similarly and like in Proposition 14.3, it can be shown
that there exists a T1(||uo| 1) s.t. for T € (0, T1(||uol| 1)) and a > 2¢1||ugl| g1 the map P is
a contraction inside E'(7T,a). The Lipschitz continuity in terms of the initial data can be
shown like in Proposition 14.3 and the last statement follows from the Strichartz estimates.
0
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Proposition 14.6 (Conservation laws). Let u(t) be a solution (14.5) as in Proposition
14.5. Then all the three quantities in (14.4) are constant in t.

Proof. For u € O((—T3,Ty), H(R?)) a maximal solution of (14.5) we will show that there
exists [=T,T) C (=T»,T1) where E(u(t)) = E(u(0)), Q(u(t)) = Q(u(0)) and P;(u(t)) =
P;(u(0)). In fact this shows that E(u(t)), Q(u(t)) and P;(u(t)) are locally constant in ¢.
Since these functions are continuous in ¢, the set of ¢t € (—T1%,77) where E(u(t)) = E(u(0))
is closed in (—7%,71); on the other hand, it is also open in (—T%,T}) since E(u(t)) is
locally constant, and hence we have E(u(t)) = E(u(0)) for all t € (=T1%,71). Similarly
Q(u(t)) = Q(u(0)) and Pj(u(t)) = P;(u(0)) for all t € (=T, T1).

Step 1: truncations of the NLS. For ¢ € C*°(R,[0,1]) a function with ¢ = 1
near 0 and with support contained in the ball Bga(0,7q), consider ? the operators Q,, =
©(v/=A/n). The truncations Q,, (|u[P~'u) are locally Lipschitz functions from H'(R%) into

JulP 1

itself as they are compositions H!(R%) = “ H~1(R9) %w H'(RY)) of a locally Lipschitz
function, Lemma 14.1, and of bounded linear maps.
We consider the following truncations of the NLS

{ium = —Pur Aty + AQ0 (| Qrun P71 Quuy) for (t,7) € R x R4
Un(o) = Qpuo.

By the theory of ODE’s, there exists a maximal solution u, (t) € C*(=T1(n), Ta(n)), H' (R%))
of (14.11) . Furthermore, if T5(n) < oo then we must have blow up

(14.11)

lim  ||w,(t = 400 if TH(n) < 0o 14.12
i (1) »(n) (14.12)

with a similar blow up phenomenon if T (n) < oco.
To get bounds on this sequence of functions we consider invariants of motion. The following
will be proved later.

Claim 14.7. The following functions are invariants of motion of (14.11):

1 A
En(’l)) = §||anv1)”%2 + p—’—]./]Rd |an|P+1de
Pj(v) with j =1, ..., d,
Q(v).

We assume Claim 14.7 and proceed. It is easy to check that u, = Py, u,. We claim
that T7(n) = Ta(n) = co. Indeed by Q(un(t)) = Q(Qnuo) < Q(up) we have

(14.13)

lun@ gt = [Prrgun ()| g < nrollua(t) L2 = ol Quuol| 2 < nroffucllr2. (14.14)

2Notice that using everywhere the projections P,, = X[0,n](v/—A) would be a bad choice for this proof.
Difficulties would arise from the fact proved by C.Feffermann [6] that P, for d > 2 is bounded from LP(R%)
into itself only if p = 2. On the other hand it is elementary that the Q,, are of the form p1 * for a p € S(R?)

and so are uniformly bounded from LP(R?) into itself for all p and form a sequence converging strongly to
the identity operator.
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Let us now fix M such that ||ug||z: < M and let us set
Oy, :=sup{7T > 0 : [|un,(t)|| ;1 <2M for |t| < 7.} (14.15)

Our main focus is now to prove that there exists a fixed T'(M) > 0 s.t. 6, > T (M) for all
n.

First of all we prove that u, € Coé((—ﬁn, 0,,), L?) with a fixed Holder constant C(M). By
an interpolation similar to Lemma 5.1

1 1
[un(t) = un(s)ll L2 S llun(t) = un(s)l g llun(t) = un($)ll -
<fHunHLw( 60,00, HY) ||um||Lw Conoma-nVIE— sl (14.16)

M) /|t — s| for t,s € (—0,,60,)

Now we want to prove
un ()21 < |luo|3: + C(M)t® for some fixed b > 0 and for ¢ € (—6,,6,). (14.17)

From E,(u,(t)) = En(Qpuo) and Q(un,(t)) = Q(Qnuo) we get

2)\
o+ =27 [ 1Qual e = Qo+ = [ 1QRwl
Hence using Holder and Gagliardo—Nirenberg
2 2 2‘)\‘ )P 2, ptl
[un ()71 < Nluollz o \ O —1Quuo["*! | da

< [luollF +C/Rd(|Qnun(t)!p+ Qo l”)|Quun(t) — Qpuolda
< luoll 1 + ClllQuun ()P + Qi uo || L | Quun(t) — Qnuol| o1
< JluollF + C1 (|Quun(t) [ p4r + HQQUOHLP+1) ot () = Quttol| lun(t) — Quutol 2

Then by (14.16) with s = 0, the Sobolev Embedding Theorem and (14.15) we get (14.17).
Now for T(M) defined s.t. C(M)T(M)? = 2M? (for the C(M) in (14.17)) from (14.17) we
get

[n ()| Lo a0y, 11y < VM. (14.18)

Since v/3M < 2M this obviously means that T'(M) < 6, since, if we had 6, < T(M) then,
by the fact that u,, € C1(R, H'), the definition of 6, in (14.15) would be contradicted.
Hence we have
lwnll Loo (=10, (ary), EY) < 2M (14.19)
This completes step 1, up to Claim 14.7.
The proof of Claim 14.7 is rather elementary and involves applying to (14.11) ( , upns),
(,iu,) and < ,8xjun> and integration by parts. We will do this now, but then we will
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discuss also the fact that Claim 14.7 is just a consequence of the fact that (14.11) is a

hamiltonian system with hamiltonian E,, and that the invariance of ) resp. P; just due to

Néther principle and the invariance with respect to multiplication by e resp. translation.
Indeed, applying (-, un) to (14.11)

0= _<PnroAUm unt> + )\<Qn(|Qnun|p_1Qnun)7 Unt)
d

= —(Dup, tng) + )\<|Qnun’p_1QnUm Qnunt> = %En(un)

Notice furthermore that, by u,, = Py, uy,, we have

1 A

Similarly when we apply (-, iu,) to (14.11) we get

1d

§$Hun(t)||L2 = —(Prry Atn, iuy) + )‘<Qn(|Qnun|p71Qnun)u iun ). (14.20)

We have to show that r.h.s. are equal to 0. We observe that the the 1st term is 0 because
the bounded operator iP,,,, A of L?(R%) into itself is antisymmetric: (iPpro A)* = —iPpp, A
For the 2nd term we use

<Qn(|Qnun|p_1Qnun)a iun> = <|Qnun’p_1Qnuna 1Qn“n> = )\Rei/Rd |Qnun|p+1d$ = 0.

This yields %Q(un(t)) = 0. In a similar fashion we can prove %Pj(un(t)) =0.

These computations obscure somewhat the following simple facts. First of all, (14.11)
and, in a somewhat formal sense also (14.1), is a hamiltonian system. First of all, the
symplectic form is

QX,Y) = (iX,Y) (14.21)

where
(f,9) =Re /Rd f(@)g(zx)dw. (14.22)
Notice that  satisfies the following definition for X = L2(R?%, C) or X = H'(R?,C).

Definition 14.8. Let X be a Banach space on R and let X’ be its dual. A strong symplectic
form is a 2-form w on X s.t. dw = 0 (i.e. w is closed) and s.t. the map X 3 z — w(x,-) € X’
is an isomorphism.

Definition 14.9 (Gradient). Let F' € C'(L?(R%, C),R). Then the gradient VF € C°(L?(R%,C), L2(R%,C))
is defined by

(VF(u),Y) =dF(u)Y for all u,Y € L*(R% C).
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Notice that

= i 1 2 L p+1
E0.¥) = 5 (§1Pm Tt o)1+ 2 [ Quu+ )P

= (~Pury A+ AQu(|Quul 7' Quu), V) .

(14.23)

t=0

We are interested in hamiltonian vector fields.

Definition 14.10 (Hamiltonian vector field). Let w be a strong symplectic form on the
Banach space X and F' € C!(X,R). We define the Hamiltonian vector field X with respect
to w by

w(Xp(u),Y) :=dF(w)Y for all u,Y € X.

From Q(Xp,Y) = (iXp,Y) = (VF,Y) we conclude Xp = —iVF. Then from (14.23)
it is straightforward to conclude that (14.11) is a hamiltonian system with hamiltonian E,,.

Definition 14.11 (Poisson bracket). Let w be a strong symplectic form in a Banach space
X and let F,G € C*(X,R). Then the Poisson bracket {F,G} is given by

{F,G}(u) := w(u)(Xr(u), Xg(u) = dF(u) Xa(u).

So, for Q we have {F,G} = (VF,—-iVG) = (iVF,VG). Now notice that if F €
CY(X,R) then

d

S (F(un(t)) = (VF(un (), i (8)) = (VF(n(8)), =V Bulun(0)) = {F, Ea}l, oy (14.24)

Notice now that the map u € e’u leaves E,, invariant. In particular the last assertion
implies that

d d

0= —FE,(u) En ()

¥=0 B @ ¥=0
= (VEu(u),1u) = (VEL(u),iVQ(u)) = (iVQ(u), VE.(u)) = {Q, En}l,

But then, since {Q, E,,} = 0, by (14.24) we obviously have % (Q(un(t))) =0.

Let us consider now, for { € }?:1 the standard basis of R?, the transformation (e, F)(@) ==
F(z — \€;). Obviously E, is invariant by this transformation and

A a0 A =0
= = (VEn(u),0ju) = (VEu(u),iVP;(u)) = (iVF;(u), VEn(v)) = {F}, En}|,

But then, since {P;, E,} = 0, by (14.24) we obviously have % (Pj(un(t))) = 0.
The above argument gives a link between group actions and invariants.
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Step 2: Convergence u, — u. Let us consider I := [-T,T] C [-T(M),T(M)] N
(—=T3,T1). Obviously we have

t
un (1) = €2 Qg — i\ / A-92Q . (|Quitn(5) P~ Quitn(5))ds.
0

Taking the difference with (14.5) we obtain
t
u(®) — un0) = 50 = Quluo —iA [ IA = Qulus) u(s)ds
0
t
—ix [ 92, (ju(s) P u(s) [ Quu(s) P Qua(s)) ds
0

t .
- i)\/ 61(t_s)AQn (|Qnu(5)|p_1Qnu(5) - ’Qnun(sﬂp_lQnun(s)) ds.
0
Then we have
Jw = wn |l Lacrwrmry + [lu = unl| Lo 1,51y < coll (1 — Qu)uol[ g1 + col All[(1 — Qn)|u|p_1u\|m,
+ oAl [ulP~ u — [QuulP~ ' Quull

! 1 ptl
L (I wh )
+CD|)‘HHQnU|p71QnU_ |Qnun|p71QnunHLq,(I ==

and so, for a fixed ¥ > 0
[ = unll Lo wrwry + [[u = unll Lo 1,11y < coll(1 = Qu)uoll a1 + colAll[(1 - Qn)IUIp_IUHLq,

—1
oI (Il gy + 1Quully g gy ) 101 = Qu)ul o sy

+ eoC AT (IQuull= gy + 1 Quttall =g 1)) 1@ = ) Lar ey

< coll(L = Qu)uollzs + colA (L = Qulul ™Ml e
+ eoC A2 ulF g gy | (1 = Qu)ullarwrmsy

+ coCNIRTP (Il oy + (DY flw = | o wives,
Then, taking T small so that coC|\||27T[? (HuH oy T (C’(M))p*1> < 1/2 we conclude

lw = un || pagrwietry + [|u = unllpoo (1, m71) < 2¢0l|(1 — Qn)uoll g1+
e ML= Qe ull s+ 200 N2l gy L = Qoo
But now we have r.h.s."=° 0. Hence we have proved that there exist T > 0 s.t.

hmoo ||U - un”LOO([fT,T},Hl) =0. (1425)

n—-+
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Now, taking the limit for n — 400 in Q(un(t)) = Q(Qnuo) and Pj(un(t)) = P;(Qnuo)
we obtain Q(u(t)) = Q(ug) and Pj(u(t)) = Pj(ug) for all t € [-T,T]. Similarly, taking
the limit for n — +o0 in E,(u,) = E,(Qpup) and with a little bit of work, we obtain
E(u(t)) = E(up) for all t € [-T,T].

O

Corollary 14.12. Let u(t) be a solution (14.5) as in Proposition 14.3. Then Q(u(t)) =
Q(ug). In particular, the solutions in in Proposition 14.8 are globally defined.

Proof. As above it is enough to show that Q(u(t)) = Q(uo) for t € [-T,T] for some T" > 0.
So let us take the T in the statement of Proposition 14.3 and let us take 7" € (0,7).
There exists a sequence uén) € H'(R?,C) with uén) "2 g in L2(R?,C). So for n > 1 we

have uén) € V, the V in (14.7). In particular, for the corresponding solutions u, we have

u™ "%y in C([-T",T'), LA(R%)). Then, since Q(u™ (1)) = Q(u{") for t € ([-T",T",
taking the limit we obtain Q(u(t)) = Q(ug) for t € ([-T1",T"]. Since T' € (0,T) is arbitrary
and t — Q(u(t)) is continuous, we have Q(u(t)) = Q(ug) for t € ([=T,T]. This implies that
t — Q(u(t)) is locally constant, and hence it is constant.

O

14.2 The global existence
We start with the following observation.

Lemma 14.13. Letu € C°((—S,T), H'(R?%)) be a maximal solution as of Proposition 14.5.
Then if T' < oo we have
thfrr% [Vu(t)| 2 (ray = +o0. (14.26)

Analogously, lim,—s [[Vu(t)|| p2(ray = +00 if S < o0.

Remark 14.14. Notice that it is very important for this lemma that p < d*. Indeed, in the
energy critical case p = d*, the above statement is false.

Proof. Suppose by contradiction that there exists a solution with 7" < oo for which there is
a sequence t; T s.t. |lu(t))|| g1 ray < M < co. Then by Proposition 14.5 one can extend
u(t) beyond t; + T'(M) > T and get a contradiction.

O

Corollary 14.15. If A > 0 the solutions of Proposition 14.5 are globally defined.

Proof. Indeed if a solution has maximal interval of existence (—S,T) with T" < co, we must
have (14.26). But for A > 0 we have ||Vu(t)| 2 < 2E(u(t)) = 2E(up).
O

Corollary 14.16. If A\ <0 andl <p<1 —l—% the solutions of Proposition 14.5 are globally
defined.

97



Proof. We have

2]/\| 1 1 «
2 +1 a(p+1) @) (p+1) —
2B(u(t)) > V(03 zs) — = O IV U 5D ol el for —— =5 =,
Notice that
d 4 4
a(p+1):§(p+1)—d<2<:>(p+1)—2<E<:>p<1+8.
But then, if (14.26) happens, we have
: 2|\ 1) (1—a) (p+1)
26 (o) = lig 2B (u(t)) = lim V()] 72(z) (1 S Or V)~ Toll e )
= Jim [V u(t) 32 g = +o0.
which is absurd. O

Corollary 14.17. If A\ <0 and1 <p<1 —i—% the solutions of Proposition 14.5 are globally
defined.

15 Fujita’s Blow Up Theorem for Semilinear Heat Equations

We will consider now a particular formulation of Fujita’s classical blow up result. We
consider the heat equation

ug = Au + [ulP~tu with (t,2) € (0,T) x R?
u(0, ) = uo(z) where ug € Co(R%, R).

Here we recall that, like in (1.5),
Co(RL,R) := {g € CO(RL,R) : lim g(z) = 0}.
T—00

We formulate this problem in the following integral form:

t
u(t) = e f + / =98 u(s) P~ u(s)ds. (15.1)
0
It turns out that there exists a unique maximal solution of (15.13) with maximal lifespan

Tf in CO([Oa Tf7 CO(Rd))
We will prove the following result.

Theorem 15.1. Let ug € Co(Rd) with ug > 0 and ug # 0 and suppose 1 < p < 1+ %
Consider the solution of

t
u(t) = eSug —I—/ =98P (5)ds (15.2)
0
in C°([0, Ty, ), Co(RY)). Then T, < oc.
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Remark 15.2. The original paper by Fujita [7] deals with the case 1 < p < 1+ %. The proof
we give is due to Weissler [16].

Somewhat related to Fujita’s Theorem are theorems for dispersive equations originating
from work by Fritz John, like the following, which is only a prototype of much more general
results, and which we state only (for the proof see [12, p. 92]).

Theorem 15.3. Let u; € C2(R3,R) with u1 > 0 and uy #Z 0 and consider

{ (02 — N)u—|ulP =0
(u(0), 0u(0)) = (0,u1).

Then, if 1 < p < 14++/2 the solution blows up in finite time, in the sense that there exists a
unique mazimal solution u € C?([0, Ty, ) x R3, R) with T,,, < co where u & L°([0, Ty, ) x R3).

O]

15.1 Preliminaries on abstract dissipative semilinear equations

Definition 15.4 (Contraction semigroup). Let X be a Banach space. A family (S(t)):>0 €
L(X) is a contraction semigroup if the following happens.

1

(1) |IS@#)|| <1 for all t > 0.
(2) S(0) =
(3)
(4)

3) S(t)S(s) =S(t+s) for all t,s > 0.

4) For any z € X we have S(t)z € C°(]0, 00), X).

Ezample 15.5. S(t) := e'® is a contraction semigroup in Co(R?% R) (thought as a subspace

|2
of L*(R? R) ). Indeed recall that for K;(x) := (47rt)7gef‘TL we have e!®f = K = f

for all f € Co(R% R). Then ||S(t)]| < [|S(t)1]lc = 1. We have S(0) = I. We have also
S(t+s)f = S(t)S(s)f for any f € C.(R% R), from

F(Erps# f) = ¢ e = 2m) 72 F | Fr(e ) w(K # )
2

d _ |zl
(2t)"Ze~ AL

=F(Ki* (Ksgx f)) = Kypsx f = Ky (Kg % f),

and this extends to f € Co(R? R) by density. Finally, by Theorem 1.10 we have the
continuity in ¢t = 0 of S(t)f, and hence by (3) the continuity for all ¢.
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Lemma 15.6. Let S(t) be a contraction semigroup, F : X — X a locally Lipschitz map,
let € X and let u,v € C°([0,t], X) for tg € Ry solve

w(t) = S(t)x + /0 S(t— s)F(w(s))ds. (15.3)

Then u = wv.

Let M = maxo<i<s {[[u(@)], [lv(t)[[}. Then

[u(t) — (@) </O [ (u(s)) = F(v(s))llds < L(M)/0 [u(s) —v(s)l|ds

and apply Gronwall’s inequality. O

Proposition 15.7. Let © € X with ||z|| < M. Then there is a unique solution u €
CY([0, Tr], X) of (15.3) with

1
T -

LM+ [FO)) 2 (15:4)

Proof. Set K =2M + ||F(0)| and
E = {uc C%0,Ta), X) : |u(t)| < K for all t € [0, Tas]}

with the distance of L>(]0,Tys], X). E is a complete metric space. Next consider the map
uelE — o,

t
Q,(t) = S(t)x +/ S(t — s)F(u(s))ds for all t € [0, Th].
0
By Ty = m for all t € [0, Tys] we have

IF)] < [FO) +IF(u(t)) = FO)] < |F(O0)]| + KL(K)
15.5
:’F(0)||+(2M+HF(0)!)L(K)§2(M+HF(O)||)(L(K)+1):]\“T’L\f(o)” (15-5)

and
[S(t)z]l <zl < M. (15.6)

So from (15.5)—(15.6) for ¢ € [0, Ts] we have

[Py ()] < M +1t

M+ ||FO) < oM+ |F(0)| = K
T

and so ¢, € F.
For u,v € E we have

1®u(t) — @u (@) < /0 1 (u(s)) = F(v(s))llds < Tar LK) [[u = vl Lo (0,11, )
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So by Ty L(K) < 27!

[P0 — Poll oo (0,01, x) < 27w — vl Loo (0, 701,3)

Hence u — ®,, is a contraction in F and so it has exactly one fixed point.
O
Notice that if F(0) = 0 if and lim+ L(M) = 0, something which happens in many
M—0
important cases, we can improve the above result and get a T, s.t. hm+ Ty = 00, as we
M—0
will see now.

Proposition 15.8. Let x € X with ||z|| < M. Assume F(0) = 0 Then there is a unique
solution u € C°([0, Ty], X) of (15.3) with

Ty := 2L(12]\4) (15.7)

Proof. The argument is the same. Here we set K = 2M and define E as above by
E = {u e C%0,Ty], X) : Ju(t)| < 2M for all t € [0, Tw]}

Consider the map u € E — ®,, defined as above by
t
By(t) = S(t)a + / S(t — 5)F(u(s))ds for all £ € [0, Ta].
0
By Ty = m for all ¢ € [0, Ths] we have

IF(®)] < 2MLEM) = (15.)

and
1T < [lz| < M. (15.9)

So from (15.5)—(15.6) for t € [0, Th;] we have
M
[Bu(t)] < M+ 2L < o0r
Th

and so ¢, € E.
For u,v € E we have

[Pu(t) = @y (1) < /0 1 (u(s)) = F(v(s))llds < Tar L(2M)|[u = ]| Lo 0,10, %)
So by Ty L(2M) = 271

@y — (I)UHLOO([O,TM],X) < 2_1”“ - U”LDO([O,TM],X)

Hence u — &, is a contraction in E and so it has exactly one fixed point. O
We now turn to an abstract form of the mazimum principle.
Recall that in an ordered Banach space the ordering is characterized by a convex closed
cone C s.t.
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1.C+CCC,
2. A\CCCforall A>0and
3. Cn(=C)={0}.
Then given z,y € X we write y > z if (y — z) € C.

Lemma 15.9. Suppose that in X there is a relation of order and that F(u) > 0 if u > 0.
Suppose furthermore that S(t) is positivity preserving, that is x > 0 = S(t)x > 0 for all t.
Then if x > 0 the solution u € C°([0,Tn], X) of Prop. 15.7 is u(t) > 0 for all t.

Proof. We just rephrase the fixed point argument of Prop. 15.7 in a different set up. Indeed,
if we redefine the set E writing

E = {ucC%0,Tyl, X) : |u(®)| < K and u(t) >0 for all t € [0, Tas]},

then E' is a complete metric space. Furthermore the map v — &, with

f+/St—s (s))ds for all t € [0, Ths].

is such that u(t) > 0 for all ¢ € [0, Th/] implies ®,(t) > 0 for all ¢ € [0, Ths]. Then the proof
of Proposition 15.7 works out in the same way as before under this slightly more restrictive

definition of F.
O

Lemma 15.10. Assume the hypotheses of Lemma 15.9 and furthermore that F(v) >
F(u) > 0idfv>wu>0. Let x < y. Let u(t),v(t) € C°[0,T:),X) be solutions with
u(0) =z and v(0) =y. Then u(t) < wv(t) in [0,T}).

Proof. If M = max{||z||, ||y||}, then using the setup of Prop. 15.7 we consider the set
E={feC%0,Ty], X) : f(t) >0 and ||f(t)|| < K for all t € [0, Tns]}

and the maps f € E — ®,(f) and f € E — ®,(f)

D, (1)) w—l—/St—s (s))ds for all t € [0, Ths].

Let v(t) be the solution with initial datum y. Then we have ®,(v) < ®,(v) = v. This can
be iterated and if 0 < ®L(v) < @41 (v), then 0 < ¥4 (v) < ®L(v). But we know that

®J(v) 725 u, with u the solution with initial datum . Hence u < v.
So we have proved u(t) < v(t) in [0, Ths]. Let now

Ty := sup{T € [0, T%) such that u(t) < v(t) in [0,T]}.
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If Ty = T the theorem is finished. If T} < T, we have by continuity u(7}) < v(71). But
then there exists a 0 < T < Ty, — T} with s.t. u(t) := u(t + 71) and resp. v(t) := v(t + 11)
solve in [0, 7] the equation with initial data z < y with  := u(T1) and resp. y := v(T1).
But for T" small enough we have u(t) < v(¢) in [0,7] by the 1st part of the proof. But
this implies than u(t) < v(¢) in [0,77 4+ T]. This is absurd by the definition of 77, and so
T =1T,.
O
We will consider now the function 7' : X — (0, 00] where for any € X the interval
[0,T(x)) is the maximal (positive) interval of existence of the unique solution of (15.3).

Theorem 15.11. We have, for u(t) the corresponding solution in C([0,T(z)), X),

2L(| F(O) | + 2[ut)]) = T(§_t 2 (15.10)

for allt € [0,T(z)). We have the alternatives
(1) T(x) = +oo;

2) if T(z) < +oo then lim ||u(t)|| = +oo.
(2) i T@) Jim (o)

Proof. First of all it is obvious that if T'(x) < +o0o then by (15.10)

lim L(||F(0)| + 2[|u(t)]) = 400 = lim |u(t)| = +o0
Jlim L(LFO)] + 2t i ()]
where the implication follows from the fact that M — L(M) is an increasing function.

Let z € X. Set T(z) = sup{T > 0: 3u € C°([0,T), X) solution of (15.3) }. We are left
with the proof of (15.10), which is clearly true if 7'(z) = co. Now suppose that T'(z) < oo
and that (15.10) is false. This means that there exists a ¢ € [0,7(z)) with

1 1
— —2=2L(|F 2)|u(t — —2=T(z) -t <1
- (PO +2ut)]) < 7777 ~2 = T@) —t < Ty
for M = |lu(t)|, where we recall Ty := 2L(2M+\|1F(0)H)+2 in (15.4). Consider now v €

C°([0, Tw], X) the solution of
v(s) = S(s)u(t) + /08 S(s — s YF(v(s")ds' for all s € [0, Th].

which exists by the previous Proposition 15.7. Then define

- u(s) for s € [0, 1]
w(s) = {v(s —t) for s € [t, Th].
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We claim that w € C°([0,T)], X) is a solution of (15.3). In [0,¢] this is obvious since in
w = v in [0,t] and u € C°([0,¢], X) is a solution of (15.3). Let now s € (¢, T)s]. We have

w(s) = v(s — ) = S(s — t)u / S(s—t — &) F(u(s)))ds'
— S(s—1) [ :U+/St—s ds} / S(s—t — &Y F(u(s))ds’
s):v—l—/o S(s—s)F(u(s) ds +/ S(s—s) ( —t))ds’

s)r + /0S S(s— sl)F(w(s/))ds.

O
Remark 15.12. Notice that if F'(0) = 0, then we can prove the improved estimate
1
2L(||F 21lu(t)|]) > —-. 15.11
(IFO]+2(®)) = 75— (15.11)

The proof is exactly the same of Theorem 15.11 using the altered definitions of T, Ty =
(2L(2M))?

Proposition 15.13. (1) T: X — (0,00] is lower semicontinuous;

(2) if &, — x in X and if t < T(z) we have u, — u in C°([0,%], X) with u, the solution
of (15.3) with initial datum x,,.

Proof. Let u € C°([0,T(x)),X) be the solution of (15.3) and consider ¥ < T(x). Set
M = 2[[ul| L (0.7, x) and let

Tn = sup{t € [0, T(zn)) : [|[unllpo(o,,x) < K} where K = 2M + [|[F(0)]|.

For n > 1 we have ||z,|| < M. Then u, € C°([0, Ty, X) with [Jun || ze(j0.7,],x) < K by
Prop. 15.7. This implies 7,, > Ts. For 0 < ¢ < min{¢, 7,,} we have

u(t) = un(t) = S(t)(z — 2n) + /Ot S(s = )(F(u(s)) = Flun(s)))ds
and so
[u(t) = un @] < [l = 2| + LK) /Ot [u(s) = un(s)||ds =
lu(t) = un(®)]| < " e =zl = Ju(t) = un(B)]] < "l — . (15.12)

So flun@®)| < Ju@®)| + Xz — 2| < M/2 + 2|z — z,|| < M for n > 1 and
0 <t < min{¢, 7, }. This and continuity imply 7, > min{¢, 7,,} and so 7,, > ¢. Then we have
T(xy) > t. This implies the lower semi—continuity in claim (1). Furthermore by (15.12) we
have also u,, — u in C°([0,7], X). O
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15.2 Proof of Fujita’s Theorem

We know that S(t) := e!® is a contraction semigroup in Co(R?,R). Notice that in Co(R%,R)
there is a natural partial order, and that this is preserved by ¢t2. In fact, if f € Co(R%,R) is
f(z) >0 for all z € R?, and is not identically 0, then e!® f > 0 everywhere (e!® is positivity
enhancing).

By the abstract theory presented above, we can prove the following maximum principle

property.
Lemma 15.14. Let u € C([0,T), Co(R% R)) be the unique mazimal solution of

u(t) = e!> f + / t et =98 u(s) [P~ Lu(s)ds (15.13)
0

and let f > 0. Then u(t,z) >0 for all (t,z) € [0,T) x R™.

O
We prove now the following version of Fujita’s Theorem (compared to Theorem 15.1,
we add the hypothesis ug € L*(R?)).

Theorem 15.15. Let ug € L'(R?) N Co(R?) with ug > 0 and suppose 1 < p < 1+ 2.
Suppose that u(t) € CY([0, Ty, ), Co(R?)) is a positive solution of

t
u(t) = e®ug + / =95y (s)ds. (15.14)
0

Then T, < co.

Proof. We claim, and for the moment assume, the following inequality due to Weissler:

tPlTletAuo(:L') < C for a fixed C' = C(p) > 0, for any z € R%, t € [0,T,,) and any ug > 0.
(15.15)
Here, crucially, C' depends only on p.
Suppose we have T;,, = oo and assume (15.15).
By dominated convergence we have for any = € R¢

4 : _lz—yp?
t2e®ug(z) = lim e~ a ug(y)dy :/ uo(y)dy = [Juol 1 mny-  (15.16)
R

t oo t,/'o0 JRd

In the particular case p < 1+ %, equivalent to ]ﬁ — %l > 0, we see immediately that (15.16)
is incompatible with (15.15) since

lim triletAug(x) = lim tp%l_gt%emuo(:z:) = lim tril_%(47r)_g||u0||L1(Rn) = +00.
t oo t Soo t oo
Inthecasep =1 +% this argument does not provide a contradiction for all ug (although

this argument shows that if [lugl| 1 (ray > (47r)gC for C = C(1+ 2) then there is blow up).
We complete the argument below, but first we prove claim (15.15).
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Proof of (15.15) We turn now to the proof of (15.15). We have u(t) > e'®ug(z) and

t t
u(t) 2/ =9 uP(5)ds 2/ =98 (e5Bug)Pds
0 0 (15.17)

¢ ¢
> / (et e5Bu)Pds = / (e"®ug)Pds = t(ePug)P,
0 0

|z—

12 o . .
= dy which gives a probability measure in R,

LS pua= [ roa)
> (Lawan) = (@t [ 5 s0m) = ()"

which follows from Jensen’s inequality ([ fdp) < [ ¢ o fdu for a convex function ¢ and a
probability measure pu.
By a substitution inside (15.17) and by repeating the same argument we get

where we used, for du(y) = (47['7')_%6_

A (f V(@) = (4nT)”

vl

tp—i— 1

t t
u(t)z/ e(t_S)Asp(eSAuo)p2d32/ sp(etAuo)des: (emug)pZ.
0

0 p+ 1
This is the case k = 2 of the following inequality which for any &k € N with k£ > 2 we will
obtain by induction:

pk

- -1
$Lpt APk 1(€tAuO)pk $ 1 (etAuo)p

(14+p)P" 2L +p+p2)P 2 (14+p+ ..+ pk1l) B 0 <pe1>12’“" (15.18)
(=2 \ p—-1

u(t) > :

Indeed, assuming (15.18) for k£ and repeating (15.17) we have

k

t t A t 81;%1117 (t )A A k+1
u(t) > [ e* 0P (s)ds > e Vo (e u)P ds
0 0 11k, (2= P
=2\ p=1
k_q k_1
¢ E—ip ST ptl
s p—1 k1 t -1 k+1
> /0 . " PRt ds(e UO) = . " Pt , . (6 UO)
pt— P — Y L
IT—, <p—1 ) || <p—1 ) ( 1Pt 1)
PRt pFtl_1
t p-1 k41 t »1 k+1
_ tA p _ tA\ p
= pRT1—C e"“up) = pEHi—t (e"“uo) .
Hk pt—1 phtl—1 k+1 (pt—1
=2\ p—1 p—1 =2 \ p-1

So (15.18) holds also for k£ + 1 and hence for any k € N with £ > 2. Then

L ak e N L o 01\t

(=2

(4
pp p*élog(p :1> - 01 N ,
o2 PT) X2 plos(S501p) < (X flos(t') 4o
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This proves (15.15).

Proof of the case p =1+ % We return to the proof of Theorem 15.15 when p =1 + %.
If instead of looking at solutions in Co(R?) we look at solutions in X := Co(R?) N L} (R%)
then our u € C°([0,T,), Co(RY)) is also u € C°([0,T,,), X). Indeed, if the lifespan in X
was shorter, then for some ¢ty < 7T, we would have

lim [|u(t = oo while su u(t)|| 700 < 0.
Jim ()] 5 )

But this is impossible because from (15.14) for ¢t < ty we get

t
[l 1 ey < lluollzrre) +/O ()17 gy l(5) | 2 ety ds

implies by the Gronwall inequality

to(supo<s<ty 1u(®)]l oo may)? "

[u() |21 (may < lluollzr raye < 0

and so

-1
00 = lim [[u(t)| sz < g | 1 (ay " P00 1O oo )™ 4o,
0

which is absurd.

Hence we conclude that ty = Ty, and we have u € C°([0, T,), L*(R%)), and so u(t) € L' (R%)
forallt € [0,T,,). Since any such ¢ can be taken as an initial value at time ¢ for our solution,
it follows that

d
2

72 (e™u(t))(z) < C for a fixed C >0, any z € R? and 0 < 7 < Ty, — ¢t

and for all ¢t € [0,T,,). In particular if T, = oo, by the argument in (15.16), we have

u(t) | 1 ety < (47)5C for all £ > 0. (15.19)

. 2
Initially we assume that uy > kK,, for K,(x) := (47ra)_ge_%. Notice that K, = e*2 4.
Then we have (a bit formally, but can be checked)

u(t) > e Puy > ke'® K, = ket® e85y = kel@ 2§, = kKoot
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Now we have

t t
la®)lzr gy > | / =242 (5) | 1 gty = / du / =950 (5) () ds
0 Rd 0

t t
= / ds/ dze=5)2uP (s)(z) = / ||e(t_$)Aup(s)||L1(Rd)ds (by commuting the order of integration)
R4 0

t
> / 12 (2 ug)P | 1 gy ds

/ds/ daz/ dyK;_s(x — y) (S ug)P( /ds/ dy(e*“u y)/ dzKi—s(x —y)
Rd n Rd

1

t t t
- /0 (€2 0Pl 1 ayds > kP /O (€2 Ko)Pds]| 1 oy = A7 /0 1K Lo e ds

Now notice that

plz|? B

Kj(z) = (4nB)~2Pe” e = (47B) 2P Vp=2 (4B /p)~ Se i = (47B) 2PV~
= (47 B) " 'p 2 K5 (x) by p=1+2/d.

This implies that, if by contradiction we suppose T;,, = +o00, then we have
Oy 2142 [ () e ey
= p*%kp(zhr)*l /Ot(oz +5)"tds — +oo as t S oco.

This contradicts (15.19).

Suppose now we don’t have ug > kK,. Let us set v(t) = u(t+¢) for some € > 0. Then v(t)
is a solution of (15.14) with initial value u(c). We have u(g) > e*®ug

A _d _le—y? _d _l=? lzty? _ Jul?
v(0) =u(e) > eTug = (dme)"2 | e E= f(y)dy = (4me)"2e” 2= [ e 2= e 2 f(y)dy
R4 Rd

n|m

_d Lz _ P
> (dme) " ze 2 e 2 f(y)dy = kK
R4
where we used the parallelogram formula
&+ g + |z — y|* = 22 + 2Jy ).

But then v(t) blows up in finite time, and so u(t) does too. This completes the proof of
Theorem 15.15 also in the case p =1+ %.
O
So far we have proved the blow up when 1 <p <1+ % for positive initial data with
ug € CY(RY)NLYRY). But in fact the result holds for ug € C§(R?) because of the maximum
principle.
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Lemma 15.16. Suppose that 0 < vg < ug are in CJ(RY) and let u(t),v(t) € C°([0,T], CJ(R?))
be corresponding solutions of (15.14). Then u(t) > v(t).

This follows by Lemma 15.10 and means that if ug € CJ(RY) but vy ¢ L'(R%), the
solution u blows up, because we can find a 0 < vy < ug with vg € CJ(RY) N LY(RY) and
v non zero whose corresponding v(¢) blows up. Then by the maximum principle also u(t)
blows up. ]

This completes the proof of Theorem 15.1. O

Remark 15.17. The coefficient p =1 + % is critical. In fact, for any p > 1 + % there exists
€p > 0s.t. ifug € X := CY(RY) N L (RY) satisfies |Jup||x < €, then equation (15.14) admits
a global solution in CP([0,00), CO(R?) N L1(RY)).

A Appendix. On the Bochner integral

For this part see [3]. Let X be a Banach space.

Definition A.1 (Strong measurability). Let I be an interval. A function f : I — X is
strongly measurable if there exists a set £ of measure 0 and a sequence (f,(¢)) in C.(1, X)

sit. fu(t) = f(t) for any t € I\ E.

Remark A.2. Notice that when dim X < oo a function is measurable (in the sense that
f~1(B) is measurable for any Borel set B) if an only if it is strongly measurable in the
above sense. Indeed if f is strongly measurable in the above sense then as a point wise limit
of measurable functions f is measurable, see Theorem 1.14 p. 14 Rudin [11]. Viceversa
if f is measurable, then f is strongly measurable in the above sense, see the Corollary to
Lusin’s Theorem in Rudin [11] p. 54.

Ezample A.3. Consider {z;}7_; in X and {A4;}}]_; measurable sets in I with |A4;] < oo and
with A; N A, =0 for j # k. Then we claim that the simple function

Z%XA T X (A1)

is measurable. Indeed, see Rudin [11] p. 54, there are sequences {®;  }ken in CCU (I,R) with
k—o0
@jk(t) =" xa;(t) a.e. and hence

k—00

COI,R) > fi(t) Zx]%k = f(t) ae. in I.

Proposition A.4. If (f,) is a sequence of strongly measurable functions from I to X
convergent a.e. to a f: 1 — X, then f is strongly measurable.
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n—oo

Proof. There is an E with |E| = 0 s.t. fu(t) — f(t) for any ¢t € I\E. Consider for any

k—o00

n a sequence Ce(1,X) > for — fn a.e. We will suppose first that |I| < co. By applying

Egorov Theorem to {|| fix — full}ken there is E,, C I with |Ey,| < 27" s.t. || for— faull "2
uniformly in I'\E,, Let k(n) be s.t. ||fnrm) — full < 1/nin I\E, and set g, = fy, x(n)- Set
F = EUJ(N,, Upsm En). Then [F| = 0. Indeed for any m

(o] o
[F|<|E|+ ) |Ea| <|EI+ ) 27370
n=m n=m

n—oo

Let t € I\F'. Since t ¢ E we have f,,(t) — f(t). Furthermore, for n large enough we have
t € I\E,. Indeed

t%ﬂ UEn:>Eims.t.t€ UEn:> tZ B,V n>m.

m n>m n>m
Then ||gn(t) — fn(t)|| < 1/n and g, (t) "= f(t). So f(t) is measurable in the case |I| < co.
Now we consider the case |I| = co. We express I = U,I, for an increasing sequence of

intervals with |I,,| < oo. Consider for any n a sequence C.(Ip, X) > fni hpe f ae. in I,.
k—o00

Then by Egorov Theorem to || f, 1 — fnll there is E, C I,, with |E,| <27 st. for — fo

uniformly in I,,\ B, Let k(n) be s.t. || f xn)— fall < 1/nin I,\E, and set g, = f,, j(n)- Then

defining F' like above, the remainder of the proof works exactly like for the case |I| < oc.
O

Example A.5. Consider a sequence {z;}jen in X and a sequence {4;};en of measurable
sets in I with |A;| < oo and with A; N Ay = 0 for j # k. Then we claim

F&) = wixa,(t) (A.2)
j=1

n

is measurable. Indeed if we set f,(t) := ijXAj (t), then we have lim f,(t) = f(t)
At n—o00
‘]_

for any ¢, since if t ¢ U2, A; both sides are 0, and if t € Ay, then for n > ny we have

fn(t) = xn, = f(t). Hence by Proposition A.4 the function f is measurable.
When the sum in (A.2) is finite then the function f is called simple.

Example A.6. Consider a sequence {z;} en in X and a sequence {4;};en of measurable
sets in I where again A; N Ay = ) for j # k but we allow |A;| = co. Then

F) = wixa,(t) (A3)
j=1
is measurable. To see this consider f,,(t) = X[—nn(t)f(t). Then

fu(t) = Z LiXA;N[—n,n] (t)
j=1
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and by Example A.5 we know that each f,(t) is strongly measurable. Since f,(t) — f(t)
for any t € I we conclude by Proposition A.4 that f is strongly measurable.

Another natural definition of measurability is the following one.

Definition A.7 (Weak measurability). Let I be an interval. A function f : I — X is weakly
measurable if for any ' € X’ the function t — (2/, f(¢)) x'x is a measurable function I — R.

Obviously, strongly measurable implies weakly measurable. Let us explore the vicev-
ersa.

Definition A.8. Let I be an interval. A function f : I — X is almost separably valuable
if there exists a 0 measure set N C I s.t. f(I\N) is separable.

The following lemma shows that strongly measurable functions are almost separably
valuable.

Lemma A.9. If f : [ — X is strongly measurable with (f,(t)) a sequence in C.(I,X) s.t.
fu(t) = f(t) for any t € I\E for a 0 measure set E C I then f(I\FE) is separable and there
exists a separable Banach subspace Y C X with f(I\E) C Y.

Proof. First of all f,(I N Q) is a countable dense set in f,,(I). So f,(I) is separable. In a
separable metric space any subspace is separable. So f,,(I'\E) is separable. The closed vector
space Y generated by U, f,(I\E) is separable. Indeed let C' C U, f,,(I\E) be a countable
set dense in Uy, f,(I\E). Let Spang(C) be the vector space on Q generated by C. Then
Spang(C) is dense in Y. For C' = {z1, ¥, ...} we have Spang(C) = UpZ;Spang ({1, ..., T }).
This proves that Spang(C) is countable and that Y is separable. O
Ezample A.10. Let X be a Hilbert space with an orthonormal basis {e; };cg. Then the map
f:R — X given by f(t) = e; is not strongly measurable. This follows from the fact that it
is not almost separably valuable.

On the other hand if x € X then ¢t — (f(¢), z) is different from 0 only on a countable subset
of R, and as such it is measurable. Hence f is weakly measurable.

Notice however that if C' C [0,1] is the standard Cantor set (which has 0 measure and has
same cardinality of R) and if {€;};cc is another basis of X, then the map

() = e for t € C and
g\ = 0 otherwise

is weakly measurable (like f and for the same reasons) and is almost separably valuable.
Pettis Theorem, which we prove below, implies that ¢ : R — X is strongly measurable.

The following lemma will be used for Pettis Theorem.
Lemma A.11. Let X be a separable Banach space and let S be the unit ball of the dual
X'. Then X' is separable for the weak topology (X', X), see Brezis [2] p.62, that is there

exists a sequence {xy,} in S" s.t. for any x' € S’ there erists a subsequence {x,, } s.t. for
any © € X we have lim (z, ,x)x/x = (', ) x1x.
k—o0
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Proof. Let {z,} be dense in X. For any n consider
F,: S/ — R” defined by Fn(x’) = (<$I,IL’1>X/X, . <$/,.an>X/X).

Since R™ is separable, and so is F,(S’), there exists a sequence {xz!, , }i s.t. {Fy(x] )}k is
dense in F,(S"). Obviously {z;, ;}nk can be put into a sequence. For any 2’ € S’ for any n
there is a ky, s.t. [(z' — ], ;. ,x;) x7x| < 1/n for all i < n. This implies that for any fixed i

we have lim (z), . ,2:)x'x = (', ;) x'x. By density this holds for any = € X. O
n—r00 e

Proposition A.12 (Pettis’s Theorem). Consider f : I — X. Then f is strongly measurable
if and only if it is weakly measurable and almost separable valuable.

Proof. The necessity has been already proved, so we focus on the sufficiency only. By
modifying f we can assume that f(I) is separable. By replacing X by a smaller space, we
can assume that X is separable.

Fix now x € X. Then we claim that ¢ — || f(¢) — z|| is measurable. Indeed for any a > 0

ftel:|f(t)—al <a} = Nwes{t € I: @/, f() — 2)xx] < a}.}

Using the fact that S’ is separable in the weak topology o(X’, X) and the notation in
Lemma A.11, we have

{tel:|f(t) =l <a} = Nendt € 1+ |(x, £() — 2)xox] < a}.

Since the set in the r.h.s. is measurable, we conclude that ¢ — || f(¢) — z|| is measurable and
so our claim is correct.

Consider now n > 1. Since f(I) is separable there is a sequence of balls {B(z;, 2)};>0
whose union contains f(I). Set now

W = {t: f(t) € B(zo, 1)},
w](‘n) = {t: f(t) € Bxj, 1)\ Upej wi)”

and

Fa(t) = mix o (8)-
=0 !

Notice that szow](.n) = I and they are pairwise disjoint and measurable. By Example A.6

we know that f, : I — X is strongly measurable. Furthermore, for any ¢ € I there is a j

s.t. te wjn) and this implies

% > || £(¢) —a:jH = [|f(t) = fa(®O)|

In other words, || f(t) — fn(t)|| < 1/n for any ¢ € I. Then f,(t) — f(t) for any ¢, and so by
Proposition A.4 the function f: I — X is strongly measurable. O
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Ezample A.13. Consider the map f : (0,1) — L°°(0, 1) defined by ¢t EN X(0,1)- This map is
not almost separable valued. Indeed t # s implies ||f(t) — f(5)|loo = 1. If f was almost
separable valued then there would exist a 0 measure subset £ in (0,1) and a countable set
N = {tp}n in (0,1)\E such that for any ¢ € (0,1)\(EUN) there would exist a subsequence
ng with f(t,,) koo f(t) in L*°(0,1). But this is impossible since || f(t) — f(tn,)]|oc = 1.
On the other hand f : (0,1) — L?(0,1) defined in the same way, is strongly measurable.
First of, since L?(0,1) is separable, it is almost separable valued. Next for any given any
w € L?(0,1) we have

(1)) o) = /0 w(z)de

which is a continuous, and hence measurable, function. So f is also weakly measurable and
hence it is strongly measurable by Pettis Theorem.

Recall that in Remark A.2 we mentioned another possible notion of measurability, that
is that f : I — X could be defined as measurable if f~1(A) is a measurable set for any open
subset A C X. We have the following fact.

Proposition A.14. Consider f : I — X. Then f is strongly measurable < it almost
separably valuable and f~1(A) is a measurable set for any open subset A C X.

Proof. The ”<" follows from the fact that for any a open subset of R and for any 2’ € X
the set A = {x € X : (z,2')x x» € a} is open and for g(t) := (f(t),2')x,x» we have
fYA) = g7'(a). So the latter being measurable it follows that g is measurable and
hence f is weakly measurable. Hence by Pettis Theorem we conclude that f is strongly
measurable.

We now assume that f is strongly measurable. We know from Lemma A.9 that f is almost
separably valuable. Let U be an open subset of X. Let (f,), be a sequence in C%(I, X) with
fa(t) "= f(t) ae. outside a 0 measure set E C I. Let U, = {z € X : dist(z,U°) > r}.
Then

FTHONE = (Umz1 Unzt Misn iy (UL))\E. (A.4)
To check this, notice that if ¢ belongs to the left hand side , then f(t) € U1 for some
mo

n—o0

mo and, since f,(t) — f(t), for n large we have fi(t) € U if k > n for my > myg
preassigned. Viceversa if ¢ belongs to the right hand side, the?llthere exist n and m s.t.
frx(t) € Ux for all k > n. Then by fi(¢) hope f(t) it follows that f(t) € U1 with the latter
a subset of U. This proves (A.4). Since the r.h.s. is a measurable set, this completes the
proof. O

Definition A.15 (Bochner integrability). A strongly measurable function f : I — X is
Bochner—integrable if there exists a sequence (fy,(t)) in Cc(I, X) s.t.

lim /I | ult) — F(0) [t = 0. (A.5)

n—oo
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Notice that || f,(t) — f(¢)||x is measurable.

Ezample A.16. Consider the situation of Example A.13 of a Hilbert space X with an or-
thonormal basis {e;}ier and the map f : R — X, which we saw is not strongly measurable
and hence is not Bochner—integrable. Notice that f is Riemann integrable in any compact
interval [a, b] with [* f(t)dt = 0.

To see this recall that the Riemann integral is, if it exists, the limit

b

/ f(t)dt = lim Z f(t;)|1;] with t; € I; arbitrary
a |Al—=0 LieA

where A varies among all possible decompositions of [a,b] and |A| = maxjea [I|. We have

1D e 1P =D fersead) Il < 2 11114 = 2|A|(b - a)

Lien gk J

A|—0
2120,

Proposition A.17. Let f: I — X be Bochner—integrable. Then there exists an x € X s.t.
if (fn(t)) is a sequence in C.(I,X) satisfying (A.5) then we have

lim x, = x where x, = /fn(t)dt. (A.6)

Proof. First of all we check that x,, is Cauchy. This follows immediately from (A.5) and
from

mwwmwzwﬂh@—ﬁmmwxs/wuw<mw»wt

szwm@— \Xw+/wf (1)) .

Let us set © = limx,. Let (gn(t)) be another sequence in C.(I, X) satisfying (A.5). Then
lim [; g, = x by

H/@zﬁ—ﬂu—W/% ) ﬁ+/n it — 2x

/Ilgn — fult det+|!/fn )dt — x| xdt
<%mmw— |uﬁ+/ﬂm _ >mw+w/m )t — x| .

O

Definition A.18. Let f : I — X be Bochner—integrable and let z € X be the corresponding
element obtained from Proposition A.17. The we set f [ f)dt =z

Theorem A.19 (Bochner’s Theorem). Let f: 1 — X be stmngly measurable. Then f is
Bochner—integrable if and only if || f|| is Lebesgue integrable. Furthermore, we have

HLf@ﬁwg[vwwt (AT)
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Proof. Let f be Bochner—integrable. Then there is a sequence (f,(t)) in C.(I, X) satisfying
(A.5). We have || f|| < [|fall + IIf — full. Since both functions in the r.h.s. are Lebesgue
integrable and || f|| is measurable it follows that| f|| is Lebesgue integrable.

Conversely let ||f|| be Lebesgue integrable. Then there exist a sequence (g,(t)) in
Ce(I,R) and g € LY(I) s.t. [} |gn(t) — || f(®)]||dt — 0 and |gn(t)| < g(t). In fact it is possible
to choose such a sequence so that ||gn — gml[1() < 27" for any n and any m > n (just by
extracting an appropriate subsequence from a starting g, 3). Then if we set

N
Z |90 (t) = gn+1(t)] (A.8)

we have |[Sn|[z1r) < 1. Since {Sn(t)}nen is increasing, the limit S(¢) := limp 400 Sn(?)

remains defined, is finite a.e. and [[S]|p1) < 1. Then |g,(t)| < [g1(t)] + S(t) =: g(¢)

everywhere, where g € L!(I). Notice that lim g,(¢) is convergent almost everywhere (it
n—oo

convergent in all points where lim,,—, . Sy (t) is convergent). By dominated convergence it
follows that this limit holds also in L'(I) and hence it is equal to || f||.
Let (fn(t)) in C.(1,X) s.t. fn(t) — f(t) a.e. (this sequence exists by the strong measura-

bility of f(¢)). Set
a0
O T
Notice that (un(t)) is in C.(I, X). We have
FAQIN O]
1£a (O] + 5

We have (where the 2nd equality holds because because ILm gn(t) = || ()| and le ()| =
IF @Ol a-e.)

[un (8] < < lgn(®)] < 9(1).

lim u,(t) = lim |g"( ) 1fn( )= lim fo(t) = f(t) ace..

Then we have
T fun(t) — )] = 0 e, with un(t) — FO)] < g06) + 150 € L1(1)

By dominated convergence we conclude

lim /Hun (t)]|dt = 0.
n—oo

3Suppose we start with a given {gn}. Then for any 27" there exists N, s.t. ni,nz > N, implies
lgny — gnallriry < 27" Let now {¢(n)} be a strictly increasing sequence in N s.t. ¢(n) > N, for any n.
Then ||gy(n) — Go(m)llLr(ry < 27" for any pair m > n. Rename g, (n) as gn.
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This implies that f is Bochner—integrable. Finally, we have
I [ sl =t | [ unttrat] <t [ Junte)lie = [ 5(0)]ae

Corollary A.20 (Dominated Convergence). Consider a sequence (fy,(t)) of Bochner—integrable
functions I — X, g : I — R Lebesgue integrable and let f : I — X. Suppose that

[fn@®)] < g(t) for alln
nlg{.lo fn(t) = f(t) for almost all t.

O]

Then [ is Bochner—integrable with [, f(t) = limy, [} fu(t)

Proof. By Dominated Convergence in L'(I,R) we have [;[|f(t)|| = lim, [;|fa(t)]l. By
Proposition A.4, as a pointwise limit a.e. of a sequence of strongly measurable functions, f
is strongly measurable. By Bochner’s Theorem f is Bochner—integrable. By the triangular

inequality
im s | / — fu®)] < lim / 1F(t) = ful®)] =0
)] <

where the last inequality follows from ||f(t) — < If(®)| + g(t) and the standard
Dominated Convergence. 0

Definition A.21. Let p € [1,00]. We denote by LP(I, X) the set of equivalence classes
of strongly measurable functions f : I — X s.t. [[f(t)|| € LP(I,R). We set ||f|lrr(7,x) :=

A 2r Ry
Proposition A.22. (LP(I,X),|| ||z») is a Banach space.

Proof. The proof is similar to the case X =R, see [2].
(Case p = 00). Let (f,) be Cauchy sequence in L>°(I, X). For any k > 1 there is a N, s.t.

1
||fn — meLoo(I’X) S E for all n,m 2 Nk
So there exists an Fjy C I with |Eg| = 0 s.t.
1
| fr(t) — fr(t)||x < z for all n,m > Ny and for all for ¢t € I\ F.

Set E := UpE). Then for any ¢t € I'\E the sequence (f,(t)) is convergent. So a function
f(t) remains defined with

1
I1fn) — fD)]lx < z for all n > Ny, and for all for ¢t € I\ E. (A.9)
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By Proposition A.4 the function f is strongly measurable. By (A.9) we have f € L*°(I, X)
and

1
1= fllze.x) < z for all n > Ny,
and so f, — f in L*™(1,X).
(Case p < 00). Let (f,) be Cauchy sequence in LP(I, X) and let (f,,) be a subsequence
with
1 = Frnea ooy < 27°

Set now l
9i(t) = (1) = frgr (D)llx
k=1

Then
gl e (rry < 1.

By monotone convergence we have that (g;(¢)); converges a.e. to a g € LP(I,R). Further-
more, for 2 < k <1

-1
1) = FarDllx = D 1Fn; () = frjs D)l x < g(t) = g1 (8)-
j=Fk

Then a.e. the sequence (fy, (t)) is Cauchy in X for a.e. ¢t and so it converges for a.e. t to
some f(t). By Proposition A.4 the function f is strongly measurable. Furthermore,

1 () = frr )]l x < g(2).

It follows that f — f,, € LP(I,X), and so also f € LP(I,X). Finally we claim |f —
Jrellze(r,xy — 0. First of all we have || f(t) — fu, (t)[[x — 0 for a.e. t and

1) = fa DN < ¢"(2)

by dominated convergence we obtain that || f — f,,||x — 0 in LP(I,R). Hence f,, — f in
IP(1, X). 0

Proposition A.23. C°(1,X) is a dense subspace of LP(I, X)) for p < cc.

Proof. We split the proof in two parts. We first show that C?(I, X) is a dense subspace of
LP(I,X) for p < oco. For p = 1 this follows from the definition of integrable functions in
Definition A.15. For 1 < p < oo going through the proof of Bochner’s Theorem A.19, the
functions u, considered in that proof can be taken to belong to C%(I, X) and converge to
fin LP(1,X).

The second part of the proof consists in showing that C2°(1, X)) is a dense subspace of
CY(I,X) inside LP(I, X) for p < co. Let f € CY(I,X). We consider p € C2°(R, [0,1]) s.t.
[ p(x)dx = 1. Set pe(x) := € *p(x/e). Then for € > 0 small enough p x f € C(I, X). We
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extend both f and p * f on R setting them 0 in R\7. In this way p. x f € C°(R, X) and

f € CR,X) and it is enough to show that p * f 9 fin LP(R, X)..
We have

pex (1) — £(t) = / (F(t — es) — £(s))p(s)dy

R
so that, by Minkowski inequality and for A(s) := || f(- —s) — f(:)|| e, we have

lpes £(t) — £t < / ()| Ae s)ds.

Now we have lims_,0 A(s) = 0 and A(s) < 2||f||zr. So, by dominated convergence we get

sy | = fl1r =l [ |p(s)| (e 5)ds = .

So
Ei{%ps x f=fin LP(R, X). (A.10)

Definition A.24. We denote by D'(I, X) the space L(D(I,R), X).
Proposition A.25. Let p € [1,00) and f € LP(R, X). Set
t+h

Tnf(t) =h"1 (s)ds fort € R and h # 0.
t

Then T, f € LP(R, X) N L¥(R, X) N C°(R, X) and Ty f h30 fin LP(R, X) and for almost
every t.

]
Corollary A.26. Let f € L} (I,X) be such that f =0 in D'(I,X). Then f =0 a.e.

loc

Proof. First of all we have [, fdt = 0 for any J C I compact. Indeed, let (¢,) € D(I) with
0 <y, <1and ¢, — xs a.e. Then

/fdt: lim pnfdt =0
J J

n—-+oo

where we applied Dominated Convergence for the last equality.
Set now f(t) = f(t) in J and f(t) = 0 outside J. Then T}, f = 0 for all h > 0. Then f(t) =0

for a.e. t. So f(t) =0 for a.e. t € J. This implies f(t) =0 for a.e. t € R. O
Corollary A.27. Let g € L}, (I, X), to € I, and f € C(I,X) given by f(t) = ftz g(s)ds.
Then:

(1) =g inD'(I,X);
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(2) f is differentiable a.e. with f' =g a.e.

Proof. Tt is not restrictive to consider the case I = R and g € L!(R, X). We have

t+h B
R O

By Proposition A.25 Tjg h=30 g for almost every t. This yields (2).

For ¢ € D(R) we have
- [ s ar

Furthermore
,%1_1;% QO(t—F h) B (10(75) — SDl(t) in LOO(R)
So olt + h (1) f(t—h) = £(1)
(', —};gg)/ 0 i =~ fim [ o) =S = ar

= — lim i () T_pg(t)dt = (g, ).

h—0

Definition A.28. Let p € [1,00]. We denote by W1P(I, X) the space formed by the
ferLP(I,X)st. ffeD,X)isalso f' € LP(I,X) and we set || f|lw1.r = || fllze + ||/ Le-

References

[1] Bahouri, Chemin, Danchin, Fourier analysis and nonlinear partial differential equa-
tions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences|, 343. Springer, Heidelberg, 2011.

[2] H.Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Universitext, Springer, 2011.

[3] T.Cazenave, Hareaux Semilinear Equations, Oxford Univ.Press.

[4] T. Cazenave, Semilinear Schrodinger equations, Courant Lecture Notes in Mathe-
matics 10, New York University, Courant Institute of Mathematical Sciences, Amer-
ican Mathematical Society, Providence, RI, 2003.

[5] Chemin, Desjardins, Gallagher, Grenier, Mathematical geophysics. An introduction
to rotating fluids and the Navier-Stokes equations. Oxford Lecture Series in Math-
ematics and its Applications, 32, The Clarendon Press, Oxford University Press,
Oxford, 2006

[6] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336.

119



[7]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

H. Fujita, On the blow up for the Cauchy problem for uy = Au +u't®, J. Fac. Sci.
Univ. Tokyo Sect. IA Math., 13 (1966), 109-124.

M. Keel and T, Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998),
955-980.

L.Hérmander Estimates for translation invariant operators in LP spaces, Acta Math.
104 (1960), 93-140.

F.Linares, G. Ponce, Introduction to nonlinear dispersive equations Universitext,
Springer, New York, 2009.

W.Rudin, Real and Complex Analysis, McGraw—Hill (1970).
C.D.Sogge, Lectures on Nonlinear Wave Equations, International Press (1995)

E.M.Stein, Singular Integrals and differentiability properties of functions, Princeton
Un. Press (1970).

E.M.Stein, Harmonic Analysis, Princeton Un. Press (1993).

C.Sulem, P.L.Sulem, The nonlinear Schrédinger equation. Self-focusing and wave
collapse, Applied Mathematical Sciences, 139. Springer-Verlag (1999).

F.B.Weissler, FEzistence and non—existence of global solutions for semilinear heat
equations, Israel. Jour. Math., 38 (1981), 29-40.

120



