

Techniques in cellular neurobiology

Gabriele BAJ gbaj@units.it

Neuroscience read out

UNIVERSITÀ DI TRIESTE

Neuroscience in vivo:

- behavioral
- 2) metabolism
- 3) toxicology
- 4) electrophysiology

etc

NB (In vivo only on KNOWN TARGET)

Neuroscience in vitro:

TARGETS

DNA

RNA

PROTEIN

Other elements

DNA - Protein

RNA-Protein

PROTEIN-Protein

Other elements

KNOWN TARGET

DNA Microarray Methods

UNIVERSITÀ DI TRIESTE

DNA Microarray Maker

Unknown target

•cDNA production

Unknown target

Random Priming

• in situ Hybridization

Known target

Genome-wide response to Glucose

Unknown target

Consumption

Chuck Close and DNA Micorarrays

Unknown target

Genomic Circuits Methods

Plasmids with inducible promoters

Known target

CAT Assays

Known target

GFP and reporter proteins/genes

Known target

Growth Curves

Known target Unknown target

Homologous Recombination

Known target

Brain Anatomy

Known target Unknown target

Proteomics Methods

Domain Functions

•

Yeast Two Hybrid

Cre / lox P recombination

Biotin and Avidin binding

Affinity Chromotography

Kinase and enzyme assays

RNAi (RNA interference)

Mass Spectroscopy

Known target

Unknown target

Known target

Known target

Known target Unknown target

Known target

Known target

Unknown target

Genomic Methods

Pathology/Histology Slides

Karyotypes

Immunoprecipitation

•PCR

•SDS-PAGE

Coomassie Staining

Western Blot

Southern Blot

Northern blot

•<u>Immunofluorescence</u>

Chromosomal Walking

•RFLP

•Knockout Mouse and Homologous Recombination Known target

Liposomes

Unknown target

Known target Unknown target

Unknown target

Known target Unknown target

Unknown target

Known target

Known target

Known target

Known target

Unknown target

Capillary Electrophoresis

Known target Unknown target

ELISA (see animated version)

Known target

FACS (Fluorescence Activated Cell Sorting)

Known target

 Knockout Mouse and Homologous Recombination Known target

•PCR Known target

Real-time PCR Known target

Known target RT-PCR (reverse transcriptase-PCR)

 Whole-Genome Sequencing Unknown target

UNKNOWN TARGET

BIOINFORMATICS

http://www.ebi.ac.uk/

ALL TARGETS

Biochemical read out

MicroARRAYS

mRNA

miRNA

ncRNA

SNP

Protein

2 Gel-Electrophoresys

2 Hybrid Screen

Biochemical read out

High-throughput screening

screening

Biochemical read out

etc

Biochemical read out

cDNA Microarray

cDNA Microarray

cDNA Microarray read out

Available microarrays also for RNAs and Proteins

2D-Gel electrophoresis

KNOWN TARGET

BIOINFORMATICS

ALL TARGETS

DNA

PCR
Southern Blot
Sequencing

Biochemical read out

Biochemical read out

Biochemical read out

PCR

PCR

Western Blot

- Western blots allow investigators to determine the molecular weight of a protein and to measure relative amounts of the protein present in different samples.
- Proteins are separated by gel electrophoresis, usually SDS-PAGE.
- The proteins are transferred to a sheet of special blotting paper called nitrocellulose or PVDF.
- The proteins retain the same pattern of separation they had on the gel.

Western Blot

AFTER SDS

of Interest

Southern blot

Southern blot

DNA FRAGMENTS SEPARATED BY AGAROSE GEL ELECTROPHORESIS

Figure 10-14 part 1 of 2 Essential Cell Biology, 2/e. (© 2004 Garland Science)

KNOWN TARGET

BIOINFORMATICS

ALL TARGETS

RNA

PCR
Northern Blot
Sequencing
In situ

Biochemical read out

Biochemical read out

Biochemical read out

In situ

In situ

Southern/Northern blot

Comparison of Southern, Northern and Western blot hybridization

Blot type	Target	Probe	Applications
Southern	DNA	DNA or RNA	mapping genomic clones estimating gene numbers,
		(Agarose Gel)	etc
Northern	RNA	DNA or RNA (Formaldehyde agarose gel)	RNA sizes and abundance (gene expression level)
Western	Protein	Antibodies (Polyacrylamide gel)	protein size and abundance (gene expression level)

KNOWN TARGET

BIOINFORMATICS

ALL TARGETS

Protein

Western Blot

Elisa

Sequencing

Immuno Istochemistry subcellular read out

Immuno Citochemistry subcellular read out

Biochemical read out

Biochemical read out

Biochemical read out

Immunohistochestry Immunocytochemistry

KNOWN TARGET

BIOINFORMATICS

ALL TARGETS

BASAL CONDITION

"MODIFIED CONDITIONS"

DNA-Protein

Chromatin immunoP

Biochemical read out

RNA-Protein

Co immunoP + RT PCR

EMSA

SuperShift

Biochemical read out

Gel Shift

Protein-Protein

FRET

• Cell Lines

BASAL CONDITION

Biochemical read out

subcellular read out

"MODIFIED CONDITIONS"

Biochemical read out

subcellular read out

Primary culture

Biochemical read out

limited by the availability

MORFOLOGICAL READ OUT

MORFOLOGICAL READ OUT

subcellular read out

subcellular read out

Primary culture

Biochemical read out

Biochemical read out

from Transgenic/

MORFOLOGICAL READ OUT

MORFOLOGICAL READ OUT

KO/KIN Animal

subcellular read out

BASAL CONDITION

"MODIFIED CONDITIONS"

Organotypic cultures Biochemical read out

limited by the availability

MORFOLOGICAL READ OUT

MORFOLOGICAL READ OUT

subcellular read out

subcellular read out

Organotypic cultures

from Transgenic

KO/KIN Animal

Biochemical read out

Biochemical read out

MORFOLOGICAL READ OUT

MORFOLOGICAL READ OUT

subcellular read out

Cell lines = NO REAL NEURONS

NO REAL MORPHOLOGICAL READ OUT IN NEUROSCIENCE STRUCTURE FUNCTION

Primary culture = NO REAL TISSUE

MORPHOLOGICAL READ OUT
IN NEUROSCIENCE
TOLICTURE - FUNCTION

STRUCTURE FUNCTION
LIMITED TO SINGLE FAMILY OF CELLS

Organotypic slice= NO REAL BRAIN

MORPHOLOGICAL READ OUT
IN NEUROSCIENCE
STRUCTURE FUNCTION
LIMITED TO SINGLE TISSUE

Consider Technical LIMITATIONS

Animal = NO HUMAN BRAIN

MORPHOLOGICAL READ OUT IN NEUROSCIENCE

STRUCTURE FUNCTION
LIMITED TO SINGLE ANIMAL SPECIES

Consider many Technical LIMITATIONS

Neurons

Image J

http://rsbweb.nih.gov/ij/

