Esame di Analisi matematica I : esercizi ${\bf A.a.}$ 2019-2020, sessione invernale, primo appello

COGNOME		NOME			
N. Matricola		Anno di corso			
	Corso di	S. CUCCAGNA			
ESERCIZIO N. 1. Al v	variare di $a \in (0, +\infty)$ si	calcoli			
	$\lim_{x \to 0^+} \frac{\log\left(1 + \frac{1}{x}\right)}{\int_0^{x^2} \sin^2\left(\frac{1}{x}\right)} dx$	$\frac{x^{a} + x^{2a} - \tanh(x)}{\ln\left(\frac{1}{t}\right) dt + 1 - \cos x}$			

2	Università degli Studi di Trieste – Ingegneria. Trieste, 13 gennaio 2020
ESERC	IZIO N. 2. Determinare il numero delle soluzioni dell'equazione $z^6 + z^3 + z ^2 + 1 = 0$.

COGNOME e NOME ______N. Matricola _____

ESERCIZIO N. 3. Si consideri

$$f(x) = \begin{cases} \int_0^x \frac{t}{(\sqrt{t^2 + t} + 1)} dt & \text{se } x \ge 0, \\ \int_0^x 3^{[t]} dt & \text{se } x \le 0 \end{cases}$$

- si determini $\lim_{x \to \pm \infty} f(x)$;
- si calcoli f'(x) dove é definita, ed altrimenti si calcoli $f'_s(x)$ e $f'_d(x)$;
- ullet si discuta concavitá e convessitá di f;
- si stabilisca se f ha rette asintotiche sia per $x \to -\infty$ che per $x \to +\infty$;

• si tracci il grafico.

ESERCIZIO N. 4. Sia $f(x) = \frac{x + x^2}{1 + x^2}$:

(calcolare tutti i polinomi di McLaurin di $f(x)$;

$$(ii)$$
 valutare l'errore $|f(1/2)-p_n(1/2)|$ per ogni $n.$