Statistica per l'Impresa - 499EC

12 febbraio 2020

1 Fonti statistiche

- a Si citino brevemente alcune fonti statistiche utili per valutare il posizionamento strategico di un'impresa sul mercato
 - 1. dal punto di vista strutturale (settore, dimensione, territorio)
 - 2. da quello delle previsioni di vendita.

b Si discutano le caratteristiche "desiderabili" di tale informazione statistica.

2 Indagini campionarie

Dato il seguente campione *casuale stratificato* di individui maschi e femmine di cui si osserva il peso:

	1	2	3	4	5	6	7	8	
Sesso	F	F	F	M	F	F	M	M	
Peso	62	51	48	75	57	52	90	75	

estratto da una popolazione (di dimensione potenzialmente infinita) dove la proporzione di femmine è del 40 per cento,

- a si calcoli il peso medio del campione
- b si stimi:
 - 1. il peso medio della popolazione μ
 - 2. l'intervallo di confidenza al 95 per cento per μ
- c si standardizzi la variabile Peso

3 Rapporti statistici

Si consideri la seguente tabella di transizione tra diversi stati professionali

Livelli professionali	1	2	3	4	Totale (t-1)
1	200	30	10	-	240
2	-	160	15	5	180
3	-	-	50	6	56
4	-	-	-	12	12
Totale (t)	200	190	75	23	488

Ipotizzando assenza di ingressi e uscite di lavoratori,

- a si calcoli il tasso di passaggio tra la categoria 1 e la 3
- b si calcoli il tasso di permanenza nella categoria 1
- c si preveda il fabbisogno della categoria 3 in t+1

4 Regressione e correlazione

Si consideri il modello di regressione $C=\alpha+\beta P+u$, stimato su un campione relativo a una serie storica di due variabili, numero di pezzi prodotti (P) e costo di produzione (C), Si supponga di aver ottenuto, via minimi quadrati (OLS), la seguente stima: $\hat{\beta}_{OLS}=9.9$ e $S.E.(\hat{\beta}_{OLS})=0.33$

- a si valuti l'ipotesi statistica $H_0: \beta=9$ (con riferimento ai valori critici della Normale: $z_{0.025}=1.96$)
- b si dica sotto quali ipotesi lo stimatore dei minimi quadrati $\hat{\beta}_{OLS}$ è
 - 1. consistente
 - 2. efficiente

5 Serie storiche

Si consideri la seguente serie storica trimestrale:

Q	1q00	2q00	3q00	4q00	1q01	2q01	3q01	4q01	1q02	2q02	3q02	4q02
X	31	18	30	15	37	21	34	20	43	25	37	24

- a La si esprima in numeri indici a base mobile
- b Si effettui un lisciamento (della serie originaria) con una media mobile opportuna
- c Si spieghi il procedimento da utilizzare per proiettare in avanti una serie storica *trimestrale* usando la regressione lineare.

6 Analisi statistica dei bilanci

- a Si discuta brevemente il concetto di "benchmarking" come applicato alla pratica aziendale, elencando alcune tecniche statistiche potenzialmente utili in questo campo.
- b Si ipotizzi di disporre di un database di *k* variabili, tra loro potenzialmente molto correlate, relative a caratteristiche patrimoniali, reddituali e finanziarie di una popolazione di *N* imprese. Si discuta la particolare tecnica statistica utile per sintetizzare le caratteristiche del campione in modo parsimonioso.